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1 Key Concepts

• Model selection - to use the data to select a model - should be an integral part of inference

[4].

• The data generating or ”true” model (f ) has an infinite number of parameters and is un-

reachable.

• The best approximate model (g): best descriptive model given the limited sample size. Find-

ing the best g is (or can be) the goal of model selection.

• A more parameter-rich model has a higher potential than a less parameter rich model: less

discrepancy due to approximation. However, a more parameter-rich model tends to perform

farther below its potential than a less parameter rich model caused by the discrepancy due to

estimation [20].

• Parsimonious trade off between error (decreases with additional parameters) and variance

(increases with additional parameters).

• To help us with the trade off: apply a model selection criterion.

2 Model Selection Criteria in Phylogenetics

2.1 Likelihood

• Changing the model changes the likelihood - (which is proportional to) the probability of

data, given the parameters and the model [5].
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• Maximized log Likelihood is biased upward as an estimator of the target model. The bias is

proportional to the number of parameters [4].

2.2 Likelihood Ratio Testing [7]

δ = −2(ln L0 − lnL1)

• Basic idea: Is the increase in likelihood significant?

• δ is asymptotically χ2
n distributed, with df n, the difference in number of free parameters

between models.

• Only for nested models (model L0 must be a special case of L1).

• Mixed χ2
n distributions when one parameter is in its limit (e.g., GTR vs. GTR+G) [19].

Applications: Modeltest [13], MrModeltest2 [15]

2.3 AIC - Akaike Information Criterion [1, 4]

AICi = −2 ln(L) + 2p

• L: Max. log Likelihood for model i, p: number of parameters.

• Estimates the expected Kullback-Leibler (K-L) distance: information lost when model g is

used to approximate f.

• Min AIC is the best K-L model in the set of competing models.

• No accept or reject (not a strict test).

• Applies to nested and non-nested models.

• AICc - takes sample size in to account.

• Must be based on the maximum likelihood - problematic(?).

Applications: Modeltest [13], MrModeltest2 [15], MrAIC.pl [16], FindModel [8], etc.
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2.4 BIC - Bayesian Information Criterion [18, 4]

BIC = −2 ln(L) + p ln(n)

• L: Max. Likelihood, p: parameters, n: sample size.

• Not sure what the sample size in phylogenetics really is (open area for research!)

• Min. BIC is the best model in the set of competing models.

• No accept or reject (not a strict test).

• Applies to nested and non-nested models.

• Designed for a different purpose than AIC: AIC selects the best K-L model (the g that

minimizes the K-L distance to f ) in the set of candidate models while BIC will select f when

sample size increases (IF f is in the set!).

Applications: MrAIC.pl [16], Modeltest [13].

2.5 Bayes Factors [10]

• The goal is to calculate posterior probabilities of different models given the same data.

• Using Bayes rule, the posterior probability of model Mk (k=1,2) given data D is:

P (Mk | D) =
P (D | Mk)P (Mk)

P (D | M1) P (M1) + P (D | M2) P (M2)

and the ratio of posterior odds to the prior odds is

P (M1 | D)

P (M2 | D)
=

P (D | M1)

P (D | M2)

P (M1)

P (M2)

and we see that the transformation between the posterior and prior odds is done by multi-

plying with

BF12 =
P (D | M1)

P (D | M2)

which is the Bayes factor [10].

• If we allow the prior model probabilities to be equal, we can get the ratio of model probabilities

from the ratio of model likelihoods P (D|Mk). The model likelihoods (or integrated likelihoods,

or predictive likelihoods) are obtained by integrating (not maximizing) over the parameter

space.
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• The model likelihood is the denominator of Bayes rule which is difficult to calculate but can

be approximated using Markov chain Monte Carlo.

• Applies to nested and non-nested models.

• No accept or reject (not a strict test).

• Accounts for uncertainty in parameter estimates.

2 log B10 B10 Evidence against M0

0 to 2 1 to 3 Not worth more than a bare mention

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

> 10 > 150 Very strong

Applications: MrBayes [17]

3 Model Accuracy

A model can be ”best” according some criterion, but is it adequate?

3.1 Penelized Likelihood - Decision Theory

• Additional to AIC/BIC, uses an ad-hoc loss function, e.g., branch length variance.

• Minimize posterior risk, Ri of choosing a wrong model:

Ri =
∑M

j=1 lijP (Mj | D) = 1 − P (Mi | D)

• where lij is 1 if model i is chosen when model j is correct and lij = 0 if the correct model is

chosen. M is the set of competing models.

Applications: DT-ModSel [12]
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3.2 Parametric Bootstrap [6]

• When the χ2 approximation to δ in the LRT does not hold (e.g., non-nested models).

• Simulate data under a null hypothesis (null model).

• Formally, If one has a parametric distribution P (θ) which is well defined except for the

parameter θ, instead of drawing with replacement from the original sample, we can draw

from the distribution F (θ̂), where θ̂ is the estimation obtained from the original sample.

• Test: How extreme is the observed data under the (null) model?

3.3 Posterior Predictive Checks

• Bayesian version of the parametric bootstrap.

• An adequate model would be good in predicting future data

• Simulate new data D′ from the posterior distribution P (D | θ, τ).

• An adequate model would have a high P (D′ | D), the posterior probability of D′ given the

original data D.

• A multinomial test statistic T (D), is used for comparing the observed and generated distri-

butions of site patterns. [3].

Applications: MAPPS [3]

4 How Much Better is the Best Model?

4.1 Akaike weights [4]

wi =
exp(− 1

2
∆AICi)

PR
j=1

exp(− 1

2
∆AICj)

• ∆AICi = AICi − AICMIN ,where AICMIN is set to the best K-L model in the set R of

competing models.

• A shortcut for estimating the pobability of models.
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• Can be used for Occams’s window [11][14].

Applications: Modeltest, MrModeltest, MrAIC.pl

5 Model Averaging

• Basing inference on a single model selected on the basis of data ignores model uncertainty. By

doing this, we tend to underestimate the uncertainty in parameter estimates and overestimate

the strength of support for hypothesis.

• One way to account for model uncertainty is to allow all models to contribute to inference by

averaging:

θ̂MA =
∑R

i=1 wiθ̂i

where θ̂i is the parameter estimate under model i in the set R of candidate models, and wi

is the weight for model i.

5.1 Bayesian Model Averaging

• Takes both model selection uncertainty and parameter uncertainty in to account.

• Allows all models to contribute in proportion to their probability:

θ̂BMA =
∑R

i=1 P (Mi | D) θ̂i

where the weight for model i is the posterior probability of the model given the data;

P (Mi | D).

• Bayesian model averaging can be accomplished:

1. By marginal likelihood estimation and Bayes Factors [14][2].

2. By Reversible jump MCMC [9].
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