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In this lecture, we will be covering models of morphological evolution. These fall into two different

classes: those that model morphology in terms of discrete states and those that treat morphology as

quantitative characters. Both are applicable to other types of data; for instance, the discrete-state

models can be applied to restriction site data and other data of a presence/absence nature, and

the quantitative character models can be used as approximations of allele frequency evolution (see

previous lecture).

1 Morphology as discrete states

In many cases, morphological variation falls naturally into discrete states. Typical examples include

the presence or absence of major features like wings and feathers. Although it is currently standard

practice to use parsimony methods, like Fitch optimization, to infer phylogenies from such discrete-

state morphological data, we can also apply discrete-state continuous-time Markov models like the

ones we have seen previously for molecular sequence data. A few minor complications arise but

they are all possible to address.

1.1 The binary model

For a morphological character with two states (0 and 1) we can simply use a Markov model with

the instantaneous rate matrix (unscaled)

Q = {qij} =

{
− 1

1 −

}
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This is obviously an analogue of the Jukes-Cantor model of DNA evolution. Lewis (2002) recently

referred to this model as the M2 model ; it has been in use for morphological and other types of

discrete data at least since the 80’s.

In principle, the M2 model can be easily extended to multi-state characters, but the issue of state

ordering comes up. Recall that parsimony methods distinguish between ordered and unordered

multi-state characters (Fig. 1). In the simplest case, we assume that all changes between states are

possible (Fig. 1a); the alternative is to order the states in a linear series such that, in a three-state

character, changes between the two end states have to go through the intermediate state (Fig. 1b).

In a stochastic model, we would simply set the instantaneous rate of the impossible changes to zero

and use a uniform rate for the other events. Thus, the stochastic model for a three-state unordered

character, we can refer to it as the M3u model, is:

Q = {qij} =


− 1 1

1 − 1

1 1 −


The equivalent for the three-state ordered character, the M3o model, is:

Q = {qij} =


− 1 0

1 − 1

0 1 −


Figure 1: Stochastic models for unordered (a) and ordered (b) morphological characters.

Note the similarity between the M3o model and the codon models we discussed earlier. As with
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the latter models, the zero entries in the instantaneous rate matrix of the M3o model do not

result in transitions between the end states being impossible but they do force those transitions

to go through the intermediate state, thus lowering the transition probability. An interesting but

somewhat counterintuitive property of the M3o model is that it has the stationary state frequencies

equal for all states; the rate asymmetries only affect the intensity with which the state changes occur.

Thus, if you start a set of characters in the intermediate state, you expect to approach equilibrium

faster than if you start with the same set of characters in one of the extreme states.

The M3o and M3u models can easily be extended to any number of states. However, this raises the

question of how to determine the appropriate state space for a given morphological character. The

state space may be obvious for some characters but for the majority it is difficult to determine the

state space in any other way than by simply recording the number of observed states in some set

of organisms. If the number of states is based on observations, we may wish to let the size of the

state space of each character be a parameter of the model. However, the probability of the state

space being larger than the number of observed states appears to be small for most real data sets;

it is only slowly evolving characters on small phylogenies that are likely to have unobserved states.

1.2 Ascertainment bias [JF: Chapter 15:234-235]

An issue that arises with both morphological and restriction site data is ascertainment bias, also

called coding bias. When calculating the probability of observing some data on a tree, we typically

assume that all character patterns can be observed. For instance, with a four-species tree and

a four-by-four model of DNA evolution for n characters, we could calculate the probability of

observing all the 44 = 256 character patterns from AAAA over AAAC to TTTT on a given tree. If the

probability of pattern i is pi, we have that
∑

pi = 1. The likelihood L (or the probability of the

data given some parameter values) can be calculated by taking the number of observations fi of

each pattern i into account in the product over sites: L =
∏

pfi
i .

If certain types of character patterns cannot be observed, then the likelihood of the observed data

calculated naively according to this formula will be too high, with potentially serious effects on

parameter estimates. In restriction site data, for instance, we typically cannot observe sites that

are absent from all of the studied taxa. To compensate for this, we simply divide the probability

of each character by the probability of the unobservable pattern. If the probability is p0 for the

all-absence pattern, then the corrected likelihood is L∗ =
∏

pi/p0.

With morphological data, the difficulty is to include invariable characters. There is simply no
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straight-forward way of sampling invariable characters with an intensity comparable to that with

which variable characters are scored. Again, the solution is to calculate the probability of the un-

observable patterns, in this case the all-zero and all-one patterns, and correct for the ascertainment

bias when calculating the likelihood value. If the probability is p0 for the all-zero pattern and p1

for the all-one pattern, then the corrected likelihood is L∗ =
∏

pi/(p0 + p1).

It is common practice in morphological studies to omit not only invariable characters but also

characters that are not parsimony-informative. The latter are characters that have the same length

on all trees using the parsimony criterion; typically they are unique features of single terminals

in the tree. In principle, this ascertainment bias can also be corrected for, but the correction is

more complicated because there are many more character patterns that are left out of the character

matrix.

The total probability of all character patterns is summarized in Figure 2.

Figure 2: Cumulative probabilities of different types of character patterns

1.3 Rate asymmetry

We can easily accommodate transition rate asymmetry in the M2 model by assuming that the

stationary state frequencies of the two states are different, giving us an analogue of the Felsenstein

81 model:

Q = {qij} =

{
− π1

π0 −

}
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There is only one free parameter in this model, since π0 + π1 = 1. An alternative parameterization

of the same model would use the ratio (κ) of the forward (0 to 1) rate to the backward (1 to 0)

rate:

Q = {qij} =

{
− κ

1 −

}

We can go from one representation to the other by noting that κ = π1/(π0 + π1), π1 = κ/(κ + 1)

and π0 = 1/(κ + 1).

There is one implicit assumption of this type of model that can cause problems with morphological

data. By introducing a stationary state frequency parameter for the 0 state and one for the 1 state,

we are assuming that state labels are non-arbitrary if there is more than one character. In other

words, given that we know the states of one arbitrarily chosen binary character, there must be a

way of determining how to apply the state labels to all other characters. For instance, if one state

is taken to mean ‘absence’ and the other state ‘presence’ of a particular type of trait, then state

labels are non-arbitrary, the assumption is satisfied, and we can reasonably infer the stationary

state frequency of the two states. This would be true, for instance, for restriction site data where

the two states can be used to denote presence or absence of the each restriction site.

For many morphological characters, however, state labels are truly arbitrary. For instance, how

can we translate the presence or absence of wings to black or yellow body color? The solution to

this dilemma is to model variation in stationary state frequencies across sites using some suitable

distribution, for instance a symmetric beta distribution (Fig. 3). The symmetric beta distribution

is like a normal beta distribution where the two parameters (referred to as α0 and α1) are assumed

to be equal and replaced by a single value α = α0 = α1. The symmetric beta distribution can model

a wide variety of scenarios, from extremely asymmetric rates (α � 1) over moderately asymmetric

rates (α ≈ 1) to equal rates (α = ∞).

2 Quantitative characters [JF: Chapters 23-25]

Many morphological and other characters are best understood as evolving on a continuous scale.

Most of the work on stochastic models for quantitative characters has focused on Brownian motion,

more precisely a mathematical model that approximates Brownian motion. In this model, a particle

takes a large number of steps on an axis, each step being independent of the others and displacing
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Figure 3: Symmetric beta distribution with some different values of α

the particle by a random amount drawn from a normal distribution with variance s2. The model

is obtained as the limit condition when the number of steps n goes to infinity and the variance s2

goes to zero while the product ns2 remains constant. If we start a Brownian motion process with

value x0, and the process accrues the variance σ2 per time unit, then the expected value at time t

is normally distributed with mean x0 and variance σ2t.

Calculating the likelihood under the Brownian motion model is relatively straight-forward except

for a problem with the degrees of freedom at the root of the tree. Felsenstein explains the procedure

in detail in his Chapter 23.

A disadvantage of the Brownian motion model is that it has no limits (Fig. 4). A character can

easily take on an extreme value and then it is unlikely to come back to the ancestral value. This may

not be a realistic model for the evolution of morphological characters, which tend to have physical

bounds as well as some central tendency in their values. An alternative to Brownian motion that

may better reflect these circumstances is the Ornstein-Uhlenbeck (OU) process. The OU process

is Brownian motion but with a force continually pulling towards a central point (Fig. 4). If the

returning force is pushing a character towards a central point at the rate of a per unit time, and

the process accumulates σ2 variance per unit time, then an OU process starting at x0 will find itself

in position xt after t time units, where xt is normally distributed with mean
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Exp[xt] = x0e−at

and variance

Var[xt] =
(1− e−2at)σ2

2a

The Ornstein-Uhlenbeck process is difficult to handle in likelihood inference but it has been used

to model rate variation over time in a Bayesian context.

Figure 4: Examples of Brownian motion (a) and the Ornstein-Uhlenbeck process (b).

3 Study questions

1. What is ascertainment bias and how can it be corrected?

2. How can ordered and unordered discrete morphological characters be modeled?

3. What are the stationary state frequencies of the M3u model and the M3o model?

4. When is it appropriate to assume transition rate asymmetry in a binary character?

5. How can you address transition rate asymmetry when state labels are arbitrary?

6. What is the difference between the Brownian motion model and the Ornstein-Uhlenbeck

process?
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