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In this lecture, we will be covering models for the evolution of two important gene expression

products, proteins and ribosomal RNA.

1 Protein models [JF:14]

DNA sequences (genes) that code for proteins are first transcribed into messenger RNA (mRNA)

which is translated with the help of transfer RNA (tRNA) into polypeptides (sequences of amino

acids). The polypeptides are then folded to form proteins; often there are several polypeptide units

in a single protein. The basic flow of information is affected by several additional processes, includ-

ing so-called splicing of messenger RNA in higher organisms to remove introns (non-coding DNA

segments) from exons (protein-coding segments). There is also some post-translational processing

of the polypeptides before they are assembled into functioning proteins. Much of this complexity

is ignored here even though it can, in principle, be accommodated in stochastic models of protein

evolution.

Polypeptide chains are constructed from twenty amino-acid building blocks, which differ consider-

ably in size, hydrophobicity, and chemical properties (Table 1). These features are all significant

in the evolution of protein-coding sequences. For instance, transmembrane proteins usually have

regions of hydrophobic amino acids where they are embedded in the cell membrane and regions

of hydrophilic amino acids where they interact with the aqueous solution inside or outside the

membrane. Most cytosol proteins (proteins that float around in the interior of the cell) have in-

terior regions that consist mainly of hydrophobic amino acids and an exterior dominated by more

hydrophilic amino acids.

The translation of RNA into polypeptides is governed by the genetic code. Each tRNA molecule
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Table 1: The amino acids (sorted alphabetically on their three-letter code)

Trivial name Three-letter code One-letter code Volume 1 Hydrophobicity2 Properties

Alanine Ala A 88.6 1.8 hydrophobic

Arginine Arg R 173.4 -4.5 basic

Asparagine Asn N 114.1 -3.5 hydrophilic

Aspartic acid Asp D 111.1 -3.5 acidic

Cysteine Cys C 108.5 2.5 hydrophilic

Glutamine Gln Q 143.8 -3.5 hydrophilic

Glutamic acid Glu E 138.4 -3.5 acidic

Glycine Gly G 60.1 -0.4 hydrophilic

Histidine His H 153.2 -3.2 basic

Isoleucine Ile I 166.7 4.5 hydrophobic

Leucine Leu L 166.7 3.8 hydrophobic

Lysine Lys K 168.6 -3.9 basic

Methionine Met M 162.9 1.9 hydrophobic

Phenylalanine Phe F 189.9 2.8 hydrophobic

Proline Pro P 112.7 -1.6 hydrophobic

Serine Ser S 89.0 -0.8 hydrophilic

Threonine Thr T 116.1 -0.7 hydrophilic

Tryptophan Trp W 227.8 -0.9 hydrophobic

Tyrosine Tyr Y 193.6 -1.3 hydrophilic

Valine Val V 140.0 4.2 hydrophobic

has three nucleotides coding for a particular amino acid. These three tRNA nucleotides are called

a codon. There are 43 = 64 different codons and one different kind of tRNA molecule for each.

The codon corresponds to three nucleotides in the sense strand of the DNA, except that the tRNA

codon uses the nucleotide uracil (U) instead of the DNA nucleotide Thymine (T). Most life uses

the same genetic code, called the universal genetic code (Table 2), but there are slightly modified

codes used by some life forms.

There are several interesting properties of the genetic code suggesting that it has not been assembled

haphazardly. First, most of the redundancy in the code is in the third codon position. The matching

of mRNA to tRNA codon nucleotides is less robust at the third position, and translational errors

are therefore more likely to occur at that position. Apparently, selection has compensated for
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Table 2: The universal genetic code

Codon Amino acid Codon Amino acid Codon Amino acid Codon Amino acid

UUU Phe UCU Ser UAU Tyr UGU Cys

UUC Phe UCC Ser UAC Tyr UGC Cys

UUA Leu UCA Ser UAA stop UGA stop

UUG Leu UCG Ser UAG stop UGG Trp

CUU Leu CCU Pro CAU His CGU Arg

CUC Leu CCC Pro CAC His CGC Arg

CUA Leu CCA Pro CAA Gln CGA Arg

CUG Leu CCG Pro CAG Gln CGG Arg

AUU Ile ACU Thr AAU Asn AGU Ser

AUC Ile ACC Thr AAC Asn AGC Ser

AUA Ile ACA Thr AAA Lys AGA Arg

AUG Met ACG Thr AAG Lys AGG Arg

GUU Val GCU Ala GAU Asp GGU Gly

GUC Val GCC Ala GAC Asp GGC Gly

GUA Val GCA Ala GAA Glu GGA Gly

GUG Val GCG Ala GAG Glu GGG Gly

this imperfection by making the third codon position largely redundant, masking most of these

translational errors and thereby increasing the fidelity of polypeptide production. Second, if the

third codon position is not completely redundant, there is almost always partial redundancy, such

that any pyrimidine will translate to one amino acid and any purine to a second amino acid.

This structure masks the most common DNA mutations, transcriptional errors, and translational

mismatches, namely those involving substitution of one purine with another purine or a pyrimidine

with another pyrimidine. Finally, the code generally groups the amino acids such that most single

DNA substitutions will, at most, result in the substitution of an amino acid with a chemically

similar one in the polypeptide the DNA codes for.

Like most text languages the genetic code has a start signal, which is the same as the codon used

for Methionine (AUG). There are also three stop codons (UAA, UAG and UGA), which are used

to signal the end of the polypeptide chain.

Because of the redundancy of the genetic code, some DNA substitutions will not result in changes

at the amino acid level (synonymous substitutions) whereas others will (nonsynonymous substitu-
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tions). Similarly, some amino acid changes require several nucleotide substitutions whereas other

require only one. There are basically two kinds of stochastic models for protein evolution: those

that deal with only the amino acid changes and disregard the changes at the DNA level, and those

that take changes both at the DNA level and at the amino acid level into account. The former are

often referred to as amino acid models and the latter as codon models.

1.1 Amino acid models

Amino acid models only take the changes between the amino acids into account. We can formulate

such models by simply applying the four by four nucleotide substitution models described in the last

lecture to a larger state space. For instance, if we assume that all stationary state frequencies and

rates are identical, we would obtain the analogue of the Jukes Cantor model, sometimes referred to

as the Poisson model in the context of amino acids. It appears to have been formulated originally

by Neyman (1971). The instantaneous rate matrix (unscaled) for this model is a twenty by twenty

matrix of the following form

Q = {qij} =



− 1 1 · · · 1

1 − 1 · · · 1

1 1 − · · · 1

· · · · · · · · · · · · · · ·
1 1 1 · · · −


Note that we omit the rates along the diagonal (which are −19 in this example); this is quite

helpful for more complicated rate matrices because the expressions along the diagonal can be quite

involved and they are easily calculated anyway since we know that each row of the rate matrix

sums to 0, that is, qii = −
∑

j 6=i qij . Like the Jukes Cantor model, the Poisson model does not have

any free parameters (if scaled to a mean rate of 1.0 at stationarity). This means that it does not

take the different properties of the amino acids into account, resulting in a poor fit to most real

data sets.

A simple extension is to allow the stationary state frequencies of the amino acids to be different. Let

πA be the stationary state frequency of alanine (A), πR the stationary state frequency of arginine

(R), etc. Then the instantaneous rate matrix (unscaled) of the equalin model, an extension of the

Felsenstein 1981 four by four model of nucleotide (DNA) evolution, is:
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Q = {qij} =



− πR πN · · · πV

πA − πN · · · πV

πA πR − · · · πV

· · · · · · · · · · · · · · ·
πA πR πN · · · −


We can write this in more compact form by saying that the instantaneous rate for the change from

amino acid i to the amino acid j is:

qij =

{
πj : i 6= j

−
∑

j 6=i πj : i = j

or, if we omit the negative rate:

qij = πj : i 6= j

The number of free parameters in the equalin model is 19 (20 − 1).

The most general time-reversible model may be referred to as the GTR model for amino acids, and

is completely analogous to the GTR model for four by four DNA data:

qij = πjrij : i 6= j

The number of free parameters in this model is 19 (20 − 1) stationary state frequencies and 189

(((20 ∗ 20 − 20)/2) − 1) relative rate parameters, in total 208 free parameters. Depending on the

amount of data we have at hand and the statistical approach we are using, the large number of

parameters in this model may cause problems even though it usually provides the best fit to the

data of the models discussed thus far.

A practical alternative to using the full GTR model is to fix the rates to those determined from some

large empirical data set. This approach accounts for the differences in substitution rates among

pairs of amino acids without necessitating the estimation of these rates in a particular analysis.

However, the success of the method obviously depends heavily on the accuracy of the fixed rate

matrix and its applicability to the data at hand. And we still need to estimate the rates using some

large data set.

Many different rate matrices have been derived for different types of proteins using more or less

sophisticated approaches. Commonly, one simply scores the number of observed amino acid dif-

ferences between pairs of closely related sequences. Closely related sequences are used so that the
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possibility of multiple amino acid changes at a particular site can be ignored. More sophisticated

estimation of rate matrices involves statistical inference on a phylogeny.

1.1.1 Computational complexity

Even though fixed rate matrices are helpful in that they reduce the number of free model parameters

to estimate, they do not change the basic computational complexity of calculating parsimony

scores or likelihoods under amino acid models, which is determined by the number of states. The

computational complexity for inference under a discrete model with k states is O(k2) as we have

shown previously for Sankoff parsimony and will show later for likelihood calculations. Amino

acid models with 20 states thus require roughly (20 ∗ 20)/(4 ∗ 4) = 25 times the computational

effort of a standard four by four model of DNA substitution. If the rate matrix is not fixed but

estimated during inference, then we need to recalculate the eigenvalues and eigenvectors, which is an

operation of time complexity O(k3). Thus, inference under the equalin and GTR models is roughly

203/43 = 125 times slower than the comparable four by four models of nucleotide substitution.

1.2 Codon models

Codon models accommodate both changes at the DNA level and changes at the amino acid level

in protein-coding sequences. The basic unit in these models is the codon. In theory, this requires a

state space of 64 states, one for each possible codon. However, there are typically three stop codons

(Table 2) that can be disregarded, so the state space can be shrunk down to 61 states.

A GTR model for codons would be extremely parameter-rich and has, to our knowledge, not been

implemented yet. Instead, various simplifications have been introduced in order to model codon

evolution realistically with a limited number of parameters.

A standard assumption in the codon models that have been explored so far is that the instantaneous

rate of change between two codons is zero if the change involves more than one nucleotide change.

This does not mean that the change is impossible, only that it has to occur through one or more

intermediate steps, each involving the replacement of a single nucleotide.

The remaining non-zero non-diagonal entries in the instantaneous rate matrix now fall into two

different types: those that represent a synonymous change (the two codons produce the same

amino acid) and those that involve nonsynonymous changes (the two codons produce different
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amino acids). In the simplest possible case, we can assume that synonymous nucleotide changes

occur at rate µ and that nonsynonymous amino acid changes occur at rate ωµ. Assume that d(i, j)

is the number of nucleotide changes required to go from codon i to j and that ai is the amino acid

specified by codon i. Then we can formulate the rate of going from codon i to codon j as

qij =


0 : d(i, j) > 1

ωµ : d(i, j) = 1, ai 6= aj

ω : d(i, j) = 1, a(i) = a(j)

if we omit the diagonal (negative) rates as usual.

There are several different ways of accommodating unequal state frequencies in codon models. An

approach that is parsimonious with the number of parameters is to assume that there are overall

stationary state frequencies for the four nucleotides (A, C, G, and T), and that the stationary

frequencies of the codons is simply determined by multiplying these frequencies together. Thus,

the codon AUG, corresponding to the DNA triplet ATG, would have the stationary state frequency

πAπT πG. This solution requires only four (three free) parameters.

An alternative model is to allow a stationary state frequency for each of the 61 codons. Although

this introduces a lot more parameters, there is ample evidence of so-called codon usage bias in

many types of organisms. To avoid estimating all 60 free parameters of this model, it is common to

determine the stationary codon frequencies by simply counting the frequencies of the codons in the

data matrix. This tends to be fairly accurate but it does not take the relatedness of the sequences

into account, and can therefore lead to biased estimates.

A compromise approach is to use stationary state frequencies for the four nucleotides but allow these

frequencies to be different for the different codon positions. Thus, there would be one stationary

frequency for nucleotide A at codon position 1, π
(1)
A , another frequency at position 2, π

(2)
A , and a

third frequency at position 3, π
(3)
A . The stationary state frequency of a codon such as AUG would

now be determined as π
(1)
A π

(2)
T π

(3)
G .

The rate parameter ω is interesting; it is the ratio of the nonsynonymous to the synonymous

substitution rates (observe that this is a rate ratio just like κ in our formulation of the HKY

and K2P models of DNA evolution). If ω < 1, then nonsynonymous changes are more rare than

synonymous changes. This is evidence of natural selection discriminating against change of amino

acid, often called negative or constraining selection. If ω = 1 then the two rates are identical and

evolution is selectively neutral. Finally, if ω > 1 then there is positive selection favoring amino

acid changes. Although relatively rare in nature, positive selection often indicates that something

interesting is going on. For instance, a virus protein that is targeted by the host immune response
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might be expected to be subject to positive selection. Thus, methods that estimate ω could be used

to find such proteins. Another similar example is that animal breeding should result in positive

selection on the genes responsible for the traits being selected for; this should enable identification

of such genes with methods that estimate ω.

The basic type of codon model described here can easily be extended. Assume for instance that we

allow each codon i to have its stationary frequency πi. Furthermore, assume that ai is the amino

acid specified by codon i and that ni and nj are the two nucleotides that differ between two codons

i and j separated by only one nucleotide difference. We can now use any four by four model of

DNA substitution and any twenty by twenty model of amino acid substitution to give us a codon

model with the (unscaled) structure:

q =


0 : d(i, j) > 1

πjωraiajrninj : d(i, j) = 1, ai 6= aj

πjrninj : d(i, j) = 1, a(i) = a(j)

It is often assumed that the parameter ω varies across sequences (from one part of a sequence

to another) and across lineages. There has been some progress in accommodating this variation,

particularly the variation across sequences. There are two general approaches that can be used

for the latter: Hidden Markov Models and mixture models. Hidden Markov Models simply allow

variation in a value like ω across sites while favoring solutions that assign adjacent sites similar ω

values. The mixture model assumes that the sites are drawn independently from a mixture of a

fixed number of categories of ω values. For instance, we can assume that there is a probability p+

that the site belongs to a positively selected category with ω+ > 0, a probability p0 that the site is

neutral with ω0 = 1, and a probability p− that the site is under negative selection with ω− < 1. All

of these parameters can then be estimated from the data at hand. Note that the mixture model

does not favor solutions with adjacent sites having similar ω values.

2 Ribosomal RNA models

Some genes do not code for proteins but are translated to RNA. The secondary structure of these

RNA molecules involve two basic structural elements: loops and stems. In the loop regions, the

RNA is single-stranded, while it pairs with itself using standard Watson-Crick nucleotide matching

in the stem regions (Figure 1).
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Figure 1: Secondary structure of ribosomal RNA. Note the stem regions where the RNA pairs with

itself.

While a standard four by four model can be used for the nucleotide sites in loop regions, it is obvious

that changes in stem-region sites will be strongly correlated with changes in their matching sites.

If this correlation is not accounted for, then estimates of phylogeny and other model parameters

will be excessively precise.

Models of stem regions essentially take two different forms. The first form is similar to the codon

models described above. The state space is all of the 16 possible state pairs (or doublets) (AA,

AC, AG, AT, ..., TT), and we allow changes of only one nucleotide at a time. The nucleotide sub-

stitutions are modeled using a standard four by four model of DNA evolution, while the stationary

state frequencies are allowed to be different for all the sixteen doublets. If we use similar notation

introduced above for the codon models, the rate of changing from one doublet i to another doublet

j is now given by:

qij =

{
0 : d(i, j) > 1

πjrninj : d(i, j) = 1

There has been some work (Jow et al. 2002; Savill et al., 2001) suggesting that such a model is

relatively poor for two reasons. First, there are only six doublets that occur with any significant

frequency (AU, GU, GC, UA, UG and CG). Second, the rate of double substitutions is high because

of a tendency for compensatory mutations to occur once a single nucleotide has been replaced. Thus,
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it is not realistic to model evolution as occurring in single nucleotide substitution steps. Thus, a six

by six GTR model generally tends to outperform the single-step sixteen by sixteen model (Savill

et al. 2001). . The GTR model would have the rates

qij = πjrij

like a normal GTR model. If one wanted to model the rare doublets in such a model, they can be

introduced by adding a seventh state (Jow et al. 2002).

3 Study questions

1. What is the difference between an amino acid and a codon model?

2. How can an amino acid rate matrix be estimated?

3. Describe the significance of the ω parameter in codon models.

4. Why are special models needed for stem regions of ribosomal RNA?

5. Why do you think that double substitutions are so common in stem regions?

6. Is there any reason to suspect that double substitution are common in codons as well?
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