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1 Basics

By the end of this lecture, I hope, you will get an idea how to calculate the probability to go from

nucleotide sequence A to sequence B taking into account the uncertainty that we do not really

know the number of mutations. In the lecture about parsimony we counted the number of changes

on a tree and seeked a score that minimizes the number of changes. This approach is sometimes

misleading because we know that some nucleotide locations mutate fast and might have mutated

more than once, this can be seen in data sets where we can find more than one specific nucleotide

at a specific locus: in parsimony we count a change from A → C → G → A as no changes but in

fact there were 3 changes. Stochastic mutation models can take this into account.

1.1 Branch length and scale

Figure 1: Branch length and change of state

We discussed phylogenetic trees, but ignored so far the time one needs to wait between nodes

on such trees, we did not worry whether a branch is long or short, we were only interested in

the topology. For likelihood and Bayesian methods we need an explicit model for these branch

lengths. But what does it mean to see a branch length of 0.05? Dependent on the scaling this
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might mean rather different things, typically in phylogenetics it could mean that on average 5% of

the sites might have changed, whereas in population genetics it could mean the same or that 0.05

generations scaled by the population size have passed.

1.2 A simple model

1.2.1 Discrete time

We look first at a very simple model with two states U and Y , if you wish you could think of this

as pUrines (either the nucleotide adenosine [A] or a guanine [G]) or pYrimidines (either cytosine

[C] or tyrosine [T]). We have the states and substitution rate µ for the substitution rate from U to

Y and the the rate µ from Y to U (Figure ??). This is a very simple model. We could think of

Figure 2: Simple model with two states and one mutation rate

introducing a different rate for going from Y to U , but will refrain to do so for this outline. We

will see later that there are models that set back-mutation to zero. The most common of these is

the infinite sites mutation model. It will be discussed in chapter mutation models III.

The model shown in Figure ?? assumes that time is discrete and that we evaluate the transition

from one state in time i to the same or other state in time i + 1, where the allele B is at risk to

mutate to Y with rate µ or to stay in B with rate 1 − µ. The same logic applies to Y where Y

changes to B with rate µ and stays in Y with rate 1−µ. We can express this as a transition matrix

R =

(
1− µ µ

µ 1− µ

)
(1)

When we start with a specific state, say U , then we can evaluate in what state we will be in the next

time-click. Running this process for many steps creates a Markov chain, in which the next state is

only dependent on the current state and on the transition matrix that formulates the probabilities

of change from U to Y or from Y to U or the probability of no change.
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1.2.2 Stationary distributions

Unspoken assumptions of the above framework are:

• The Markov chain is irreducible: we can reach every state from any other, in our example we

can go from U to Y and from Y to U . If we would set one of the transition rates to 0 then

our framework will have a problem.

• The chain is aperiodic, we never go into a loop that cycles forever only in a subset of solutions.

As long as µ and ν in our sample are not zero we will visit every state.

• All states of the chain are ergodic1. When we run the chain infinitely long every state has a

non-zero probability πi. So we can say that the rate matrix R has stationary distribution Π

(diagonal matrix)

lim
n−>∞

(Rn) = Π or lim
n−>∞

(Rn)ij = πi (2)

1.2.3 Divergence matrix

The matrix R gives the conditional probabilities:

Rk
ij = Prob(in state j after k ticks|state i)

the matrix X(k) is defined as the divergence matrix

X(k)ij = Prob(in state j after k ticks AND state i)

We assume that the initial state was sampled from the stationary distribution (the process is already

at equilibrium). Then

X(k)ij = πi(Rk)ijor X(k) = ΠRk

Typically we would think of Π as a matrix with the stationary frequencies on the diagonal and

zero anywhere else. There is some inconsistency between the graph theory and the phylogenetic

literature about rate matrices and sometimes the stationary frequencies are considered to be part

of the rate matrix R.
1ergodic – relating to or denoting systems or processes with the property that, given sufficient time, they include

or impinge on all points in a given space and can be represented statistically by a reasonably large selection of points.
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1.2.4 Time reversible models

We say that the Markov chain is time reversible if the divergence matrix X(k) is symmetric for

all k so that X(t)ij = X(t)ji. Therefore we can calculate probabilities on trees without bothering

whether this is forward or backward in time and any calculations can be made on unrooted trees.

This assumptions makes the calculation of probabilities of a pair of nodes A and B that have a

root C easy as the probabilities do not depend on the actual time of a node but only on the total

branch length between A and B, so it is the simple addition of length A-C and C-B.

1.2.5 Calculation of probabilities for continuous time

We discussed a discrete model that would force us to know the number and duration of the time

’ticks’, both is typically not known. instead of having fixed time events we can assume that the

events are drawn from a Poisson distribution, with probability

Prob(k events|t, µ) = e−µt (µt)k

k!
(3)

the expected number of events is µt and we call µ the expected number of events per unit time –

biologists would think of this as the mean instantaneous substitution rate.

Let P (t)ij be the probability that being in state j at time t when started at time zero in state i.

P (t) =

(
Prob(U → U |t) Prob(U → Y |t)
Prob(Y → U |t) Prob(Y → Y |t)

)
(4)

P (t) =
∞∑

k=0

Rk Prob(k events |t, µ) (5)

=
∞∑

k=0

Rk e−µt (µt)k

k!
(6)

= eµt
∞∑

k=0

Rk (µt)k

k!
(7)

The sum in formula ?? has the same form as the series approximation of the matrix exponentiation

eA =
∞∑

k=0

Ak

k!
(8)
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and so we get

P (t) = e−µteRµt (9)

= e−µtIeRµt I is the identity matrix (10)

= e(R−I)µt (11)

= eQµt (12)

where Q = R− I is the is the instantenous substitution rate matrix.

1.2.6 Matrix exponentiation

Matrix exponentiation is not all that easy, the formula ?? does converge only very slowly and often

is not very useful in programming a better approach for some square and real matrices is using a

Eigen decomposition because

eA = P−1eDP (13)

eD =


ed11 0 ...

0 ed22 0 ...

...

0 ... 0 ednn

 (14)

where P are the Eigenvectors and D is the diagonal matrix of the Eigenvalues. For some of the

models we will use in the lab we will need to calclulate this matrix exponentiation. Decomposition

is available in several packages [add list here]

1.2.7 Substitution matrix for our simple 2-state case

With this simple case we can solve the equation analytically. Using MATHEMATICA we find(
Prob(U → U |t) Prob(U → Y |t)
Prob(Y → U |t) Prob(Y → Y |t)

)
=

(
1
2

(
1 + e−2tµ

)
1
2 −

1
2e−2tµ

1
2 −

1
2e−2tµ 1

2

(
1 + e−2tµ

) ) (15)

Some prefer to name this matrix substitution matrix because in biology the term transition is

occupied for the transition from a nucleotide A to G, G to A or from C to T , T to C.
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1.3 Nucleotide models

Many models are possible and only few have names, we show not even all of these. Most com-

monly used are Jukes-Cantor, Kimura-2 parameter model, Felsenstein 81, Hasegawa-Kishino-Yano,

Tamura-Nei, and General time reversible models. The differences between these models stems from

Figure 3: Left: Kimura 2-parameter model. Rates differ between transitions and transversion.

Right: General time reversible model. Rates are symmetrical but all pairs of substitution rates are

different from each other.

the fact that they allow for different numbers of parameters. We typically order the substitution

matrix

A C G T

A - a b c

C d - e f

G g h - i

T k l m -

and allow for maximally 12 modifiers of the overall mutation rate µ, labelled a to m. For an

alternative ordering of the mutation matrix see Felsenstein’s book, he orders A, G, C, T.

1.3.1 General time reversible model (GTR)

Q =


−µ(aπC + bπG + cπT ) µaπC µbπG µcπT

µaπA −µ(aπA + dπG + eπT ) µdπG µeπT

µbπA µdπC −µ(bπA + dπC + fπT ) µfπT

µcπA µeπC µfπG −µ(cπA + eπC + fπG)
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GTR is the most complex time-reversible model with 6 rate parameters rij = a, b, c, d, e, f and base

frequencies πA, πC , πG, πT . Both, rij and the base frequequencies , form the rates in the Q matrix.

1.3.2 Jukes-Cantor

Jukes-Cantor (JC) allows for a single parameter and has a transition matrix

Q =


−3

4µ 1
4µ 1

4µ 1
4µ

1
4µ −3

4µ 1
4µ 1

4µ
1
4µ 1

4µ −3
4µ 1

4µ
1
4µ 1

4µ 1
4µ −3

4µ


The base frequencies πA, πC , πG, πT are all the same and 0.25. There are only two types of changes

possible, either one does not change or one changes. This results in two probabilities:

Prob(t)ii =
1
4

+
3
4
e−µt (16)

Prob(t)ij =
1
4
− 1

4
e−µt (17)

Compared to the most complex model, GTR, JC is setting all parameters a to f to 1 and all base

frequencies to the same value.

1.3.3 Kimura’s 2-parameter model

Kimura’s two-parameter (K2P) allows for two parameters, different rates for transitions and transver-

sion but still assumes equal base frequencies and has a transition matrix

Q =


−1

4µ(κ + 2) 1
4µ 1

4µκ 1
4µ

1
4µ −1

4µ(κ + 2) 1
4µ 1

4µκ
1
4µκ 1

4µ −1
4µ(κ + 2) 1

4µ
1
4µ 1

4µκ 1
4µ −1

4µ(κ + 2)



The base frequencies πA, πC , πG, πT are all the same and 0.25. the parameter κ represents the

transition bias, when κ = 1 then the models reduces to the JC model. If the importance of

transitions and transversions are rated equally then κ should be two because there are twice as
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Figure 4: Effect of the transition-transversion ratio

many transversions a transitions. There are three types of changes possible:

Prob(t)ii =
1
4

+
3
4
e−µt (18)

Prob(t)ij,Transition) =
1
4

+
1
4
e−µt +

1
2
e−µt(κ+1

2
) (19)

Prob(t)ij,Tranversion =
1
4
− 1

4
e−µt (20)

Using GTR we can express the K2P model as a = c = d = f = 1 and b = e = κ.

1.3.4 Hasegawa-Kishino-Yano 1985 and Felsenstein 1984

Hasegawa-Kishino-Yano and Felsenstein relaxed the K2P model and allowed for unequal base fre-

quencies

QHKY =


−µ(κπG + πY ) µπC µκπG µπT

µπA −µ(κπT + πR) µπG µκπT

µκπA µπC −µ(κπG + πY ) µπT

µπA µκπC µπG −µ(κπC + πR)
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where πR = πA + πG and πY = πC + πT . There are three types of changes possible:

Prob(t)jj = πj + πj

(
1
Πj

− 1
)

e−µt +
(

Πj − πj

Πj
− 1
)

e−µtα (21)

Prob(t)ij,Transition) = πj + πj

(
1
Πj

− 1
)

e−µt −
(

πj

Πj
− 1
)

e−µtα (22)

Prob(t)ij,Tranversion = πj(1− e−µt) (23)

where Πj = πA + πG if the base j is a purine, and Πj = πC + πT is a pyrimidine. The parameter

α is different between the HKY and the F84 model:

• α = 1 + Πj(κ− 1) for the HKY model

• α = κ + 1 for the F84 model

GTR expresses the HKY model setting a = c = d = f = 1 and b = e = κ and unequal base

frequencies.

1.3.5 Other models

According to Huelsenbeck and Ronquist (2005) there are 203 time-reversible models. It is not

difficult to generate them and use the matrix-exponentiation method to get probability estimates,

whether these models are all useful is a difficult question. Very few attempts to work with models

that are not time-reversible were made [JF:210].

1.4 Reducing constraints

1.4.1 Rate variation among sites

We assumed that each site has the same substitution rate. this can be relaxed when we treat the

mutation rate as a random variable with appropriate distribution. Currently almost all programs

use the gamma distribution. Its density function with parameters α, β > 0 is

f(r|α, β) =
1

Γ(α)βα
rα−1e−r/β (24)

Γ(a) =
∫ ∞

0
Prob(t|r)f(r|α, β)dr (25)
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We think of this mutation rate variation often as two parameters: the mutation rate µ and the

rate modifier r. The rate r is the random variable whereas the mutation rate is fixed. for practical

purposes we typically assume the mean of r as 1 and so we can simplify the number of parameters

of the gamma distribution and reduce β to 1/α (the mean of the gamma distribution is αβ. To

calculate the rates we use

Prob(t|r) = eQµrt (26)

this results in

Prob(t|r) =
∫ ∞

0
Prob(t|r)f(r|α)dr (27)

where we integrate each element of the matrix separately. The integral is time consuming and needs

to be done whenever the branch length changes. A faster approximation is to use a discretization

of the gamma distribution.

1 2

α = 100

α = 10

α = 0.1

α = 1

Mutation rate µ [× 10−6]

P
ro

ba
bi

lit
y

0

Figure 5: Gamma distributions with several values for α, β = 1/α

1.4.2 Invariant sites

[to come]

10



BSC5936-Fall 2005 Computational Evolutionary Biology

2 Study question

1. What happens when the models are not time reversible? Can you given an example?

2. Change the simple model so that it has a different back mutation, say ν, can you generate

the transition matrix Q? It is easiest to think of ν = aµ.
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