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Exact solutions of the dynamics of most of the random processes arising in popula-
tion and quantitative genetics are either unknown or are extremely cumbersome.
Starting with Fisher (1922), the use of diffusion approximations to model the exact
dynamics has proven to be extremely powerful. Useful introductions to diffusion
theory with special reference to genetics are given by Ewens (1979) and Karlin and
Taylor (1981). Specific applications to population genetics are covered by these
authors as well as by Crow and Kimura (1970), Maruyama (1977), Kimura (1983),
and Gale (1990). We start by reviewing, without being overly technical, the idea
behind obtaining a diffusion approximation. We then present analytic expressions
for time to fixation, the distribution at equilibrium, and time to loss or fixation.
While most of our initial emphasis is on using diffusion theory to approximate the
frequency of an allele at a diallelic locus, we conclude by examining applications
to quantitative characters.

Consider a continuous random variable xt indexed by continuous time t. If
δx = xt+δt

− xt (the change in xt over a very small time interval δt) satisfies

E (δx |xt = x) = m(x)δt + o(δt)

σ2(δx |xt = x) = v(x)δt + o(δt)

E
(
|δx|k

)
= o(δt) for k ≥ 3

then xt is said to be a diffusion process (provided the additional technical restriction
that xt is a Markov process is satisfied). o(δt) means that the error term is small
relative to δt (formally, limδt→0 o(δt)/δt = 0), while m(x) and v(x) correspond
to the mean and variance of the process over a very small time interval. The
entire structure of a diffusion is described by m(x) and v(x), allowing analytic
expressions for quantities of interest to be obtained.

Diffusion processes are of special importance in that a discrete space, dis-
crete time, random variable can often be closely approximated by a diffusion.
This is done by appropriately scaling of space and time to construct a new ran-
dom variable. For example, consider Xt, the number of copies of allele A in a
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discrete-generation population of N diploids at generation t. Xt takes on values
0, 1, . . . , 2N and time t is in discrete units of generations. Constructing a new
random variable x

(N)
τN = X(τN )/(2N), where τN = t/N — a single generation in-

crements the new time scale by 1/N . Taking the limit as N approaches infinity, the
limiting process xτ is a continuous space, continuous time process that represents
the allele frequency at time τ (e.g., limN→∞ xτN

= pτ , the frequency at time τ ).
If scaling is correctly done, xτ is now a diffusion process and provides a good
approximation to the behavior of Xt. One immediate consequence of this scaling
argument is that the process proceeds at a rate proportional to N . Hence, the larger N ,
the slower the rate.

The Kolmogorov Forward Equation

The infinitesimal mean, m(x), and the infinitesimal variance, v(x), are formally
defined by

m(x) = lim
δ→0

E (xt+δ − xt |xt = x)
δ

(A5.1a)

v(x) = lim
δ→0

E[ (xt+δ − xt)2 |xt = x ]
δ

(A5.1b)

Example 1. A diffusion process examining changes in allele frequencies in a
diploid is typically obtained by setting v(x) = x(1 − x)/(2Ne) (the per gen-
eration variance in the change of allele frequencies due to drift, see Chapter 21)
and using the deterministic change in allele frequency for m(x). An diffusion
process approximating pure drift can be constructed by use of a suitable time
scale (see Karlin and Taylor 1981 for details) to give

m(x) = 0, v(x) =
x(1− x)

2Ne
(A5.2)

where x = freq(A). Similarly, consider additive selection when |s| is small, so
that W ' 1. For Example 1 in Chapter 24, ∆p ' sp(1 − p), suggesting as an
approximating diffusion over 0 < x < 1

m(x) = sx(1− x), v(x) =
x(1− x)

2Ne
(A5.3)

Finally, consider arbitrary selection with constant fitnesses (with selection suffi-
ciently weak such that W ' 1) and forward and back mutation. Let ν be mutation
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rate from A to a, µ the mutation rate from a to A, and p = freq(A). Applying
Wright’s formula (modified to include mutation)

m(x) =
x(1− x)

2
d ln(W )

dx
+ (1− x)µ− xν

and again

v(x) =
x(1− x)

2Ne
(A5.4)

Given m(x), v(x), and initial frequency p0, the probability density function
for xt satisfies the Kolmogorov forward equation:

∂ ϕ(x, t, p0)
∂ t

=
1
2

∂2 v(x) ϕ(x, t, p0)
∂ x2

− ∂ m(x) ϕ(x, t, p0)
∂ x

(A5.5)

where ϕ(x, t, p0) is the probability density for x at time t given the process starts
at p0, such that

Pr[a ≤ xt ≤ b] =
∫ b

a

ϕ(x, t, p0) dx

Solving this partial differential equation gives ϕ(x, t, p0). For exact solutions of ϕ
for a number of population genetic problems, see Crow and Kimura (1970) and
Maruyama (1977). For example, the curves given in Figure 4, Chapter 21 represent
ϕ(x, t, p0) for the pure drift diffusion given by Equation A5.2. These curves (each
representing ϕ(x, t, p0) for a particular time) were obtained by solving

∂ ϕ(x, t, p0)
∂ t

=
1

4Ne

∂2 x(1− x) ϕ(x, t, p0)
∂ x2

subject to the initial conditions of either p0 = 0.5 (left half of Figure 4) or p0 = 0.1
(right half of Figure 4).

A final point about the density ϕ(x, t, p0) concerns its range of validity. Sup-
pose the diffusion occurs over the interval (a, b). It is important to realize that
ϕ(x, t, p0) is valid only for a < x < b. The diffusion approximates only what hap-
pens inside the boundaries, the behavior exactly at the boundaries being beyond
the realm of the approximation. In many cases, xt does not change value once it
reaches a boundary. Such a boundary is called an absorbing boundary. For example,
in the absence of mutation and migration, once an allele frequency reaches either
0 or 1, it stays there. For this case, both 0 and 1 are absorbing boundaries.

Stationary Distributions
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At equilibrium, the probability density function does not change over time,
e.g.,

∂ ϕ(x, t, p0)
∂ t

= 0 (A5.6)

Such a distribution (if it exists) is called the stationary distribution and is denoted
by ϕ(x). The stationary distribution is independent of the starting conditions: re-
gardless of where the process starts in the interior of the diffusion, it converges
to the same distribution. ϕ(x, t, p0) can thus be decomposed into a transient and
a stationary part, ϕ(x, t, p0) = ϕ∗(x, t, p0) + ϕ(x), where the transient part sat-
isfies limt→∞ ϕ∗(x, t, p0) = 0. Hence, that part of the distribution depending on
the initial starting conditions decays away over time leaving only the stationary
distribution.

Solving Equation A5.5 subject to Equation A5.6 gives

ϕ(x) =
C

v(x) G(x)
(A5.7)

where G is defined by the indefinite integral

G(x) = exp
[
−2

∫ x m(y)
v(y)

dy

]
(A5.8)

C is a constant such that ϕ(x) integrates to one, so Equation 30A.7 is a proper
probability density function. Note that

∫
[v(x) G(x)]−1 dx may be infinite, in which

case no stationary distribution exists. This happens, for example, in the absence
of mutation and migration where both boundaries are absorbing.

Example 2. Consider pure drift. From Equation A5.2, m(x) = 0 and v(x) =
x(1− x)/(2Ne), giving

G(x) = exp
[
−4Ne

∫ x 0
y(1− y)

dy

]
= e0 = 1 (A5.9)

and
ϕ(x) =

2NeC

x(1− x)
(A5.10)

The only valid equilibrium distribution is ϕ(x) = 0 (e.g., C = 0), as
∫ 0

1
x−1(1−

x)−1dx =∞. This makes sense, as after sufficient time all populations are either
at x = 1 or x = 0, with no populations showing 0 < x < 1 (see Figure 4,
Chapter 21). The resulting equilibrium distribution on this interval is zero.
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Example 3. Compute the stationary distribution for the frequency of an allele at
a diallelic locus experiencing selection, mutation and drift. From Equation A5.4,∫ x m(y)

v(y)
dy = 2Ne

∫ x y(1− y)(1/2)d ln(W )/dy + (1− y)µ − yν

y(1− y)
dy

= Ne

∫ x d ln(W )
dy

dy + 2Neµ

∫ x 1
y

dy − 2Neν

∫ x 1
1− y

dy

= Ne ln(W ) + 2Neµ ln(x) + 2Neν ln(1− x)

Hence,

G(x) = exp
[
− 2

∫ x m(y)
v(y)

dy

]
= W

−2Ne
x−4Neµ (1− x)−4Neν

Applying Equation A5.7 gives

ϕ(x) = CW
2Ne

x4Neµ−1 (1− x)4Neν−1 for 0 < x < 1 (A5.11)

a result first due to Wright (1931). Using interactive mathematical graphics pack-
ages (such as Mathematica) is a very fruitful way to explore the behavior of
Equation A5.11, as well as other stationary distributions.

Probability of Fixation

When at least one boundary is absorbing, no stationary distribution exists. In
such cases, one important descriptor of the process is the probability of reaching
one boundary before the other. A companion equation to the forward equation (the
Kolmogorov backward equation, or KBE) can be solved to obtain an expression
for u(p0), the probability of fixation of an allele, given initial frequency p0:

u(p0) =

∫ p0

0
G(x) dx∫ 1

0
G(x) dx

(A5.12a)

More generally for any diffusion (regardless of the nature of the boundaries)
the probability that the process reaches b before a, given it starts at p0 (where
A ≤ a ≤ p0 ≤ b ≤ B with the diffusion defined over A < x < B), is

ub,a(p0) =

∫ p0

a
G(x) dx∫ b

a
G(x) dx

(A5.12b)
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Example 4. Compute the probability of fixation of an allele at a diallelic locus
experiencing additive selection and drift. From Equation A5.2,

m(x) = sx(1− x), v(x) =
x(1− x)

2Ne

implying

G(x) = exp
[
−4Nes

∫ x y(1− y)
y(1− y)

dy

]
= e−4Nesx

Thus,

u(p0) =
1− e−4Nesp0

1− e−4Nes

Likewise, for pure drift, G(x) = 1 (Equation A5.9), giving

u(p0) =

∫ p0

0
1 dx∫ 1

0
1 dx

= p0

Finally, allowing for dominance, from Equation 29.4a,

m(x) = sx(1− x)(1 + h(1− 2x) )

giving

G(x) = exp
[
−4Nes

∫ x y(1− y)(1 + h(1− 2y) )
y(1− y)

dy

]
= exp

[
− 4Nesx(1 + h(1− x) )

]
and hence

u(p0) =

∫ p0

0
exp [−4Nesx(1 + h(1− x) ] dx∫ 1

0
exp [−4Nesx(1 + h(1− x) ] dx

Time to Fixation

The expected time a diffusion spends in the interval (a, b) is given by

ta,b =
∫ ∞

0

Pr[a ≤ xt ≤ b] dt =
∫ ∞

0

∫ b

a

ϕ(x, t, p0) dx dt (A5.13)
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If a stationary distribution exists, this time is infinite and not really of any concern.
If one or both boundaries are absorbing then t(p0), the total time the diffusion
spends in the interior, is given by evaluating Equation A5.13 taking a and b as
the lower and upper limits (respectively) of the diffusion. Using the KBE, we can
avoid the problem of first having to solve for ϕ(x, t, p0). Instead the integral in
Equation A5.13 can be expressed as

ta,b =
∫ b

a

h(x, p0)dx (A5.14a)

where

h(x, p0) =


2[1− u(p0)]
v(x)G(x)

∫ x

a

G(y) dy, fora ≤ x ≤ p0

2u(p0)
v(x)G(x)

∫ b

x

G(y) dy, forp0 ≤ x ≤ b

(A5.14b)

This can be modified to obtain expressions for conditional times. For example, tF ,
the expected time to fix allele A (in those populations where it is fixed) is given
by replacing h(x, p0) by

hF (x, p0) = h(x, p0)
u(x)
u(p0)

(A5.15a)

This follows from standard conditional probability arguments (see Ewens 1979)
and u(x)/u(p0) is a weighting factor correcting for the fact that we are only con-
sidering those sample paths over which A is fixed. Similarly, tL, the expected time
to lose allele A is obtained by replacing h(x, p0) by

hL(x, p0) = h(x, p0)
1− u(x)
1− u(p0)

(A5.15 b)

t, tF , and tL are related by

t(p0) = u(p0) tF (p0) + [1− u(p0)] tL(p0)

That is, the expected time to loss or fixation is equal to the expected time to fixation
multiplied by the probability of fixation plus expected time to loss multiplied by
the probability of loss.

Example 5. Compute the conditional and unconditional expected time to loss
or fixation for a neutral allele. For a neutral allele, u(x) = x and G(x) = 1.
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Hence,
∫ x

0
G(y)dy = x,

∫ 1

x
G(y)dy = 1 − x, and Equation A5.14b simplifies

considerably to

h(x, p0) =


4Ne(1− p0)/(1− x), for 0 ≤ x ≤ p0

4Nep0/x for p0 ≤ x ≤ 1

Thus the expected amount of time a neutral allele (with initial frequency p0)
remains polymorphic is

t(p0) =
∫ 1

0

h(x, p0) dx

= 4Ne(1− p0)
∫ p0

0

dx

1− x
+ 4Nep0

∫ 1

p0

dx

x

= −4Ne[ (1− p0) ln(1− p0) + p0 ln(p0) ]

Similarly, the conditional fixation times are obtained using

h0(x, p0) =
1− x

1− p0
h(x, p0) and h1(x, p0) =

x

p0
h(x, p0)

giving the expected conditional time to fixation as

tF (p0) = 4Ne
1− p0

p0

∫ p0

0

x

1− x
dx + 4Ne

∫ 1

p0

dx

= −4Ne
1− p0

p0
ln(1− p0)

and the expected conditional time to loss as

tL(p0) = 4Ne

∫ p0

0

dx + 4Ne
p0

1− p0

∫ 1

p0

1− x

x
dx

= −4Ne
p0

1− p0
ln(p0)

These results were first obtained by Kimura and Ohta (1969a ,b). For the special
case of a neutral allele introduced as a single copy, p0 = 1/2N and these reduce
further to

t ' tL '
2Ne

N
ln(2N), tF ' 4Ne

Green’s Functions: Exceptations of More General Expressions.
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Material still to be written

Applications to Quantitative Characters

When we shift our attention to from individual alleles to the phenotype of
a quantitative character under drift, diffusions now follow the mean phenotype
instead of the frequency of an allele. Two well studied diffusions, Brownian motion
and the Ornstein-Uhlenbeck process, are especially useful in this case. For Brownian
motion, the diffusion over −∞ < x <∞ is given by

m(x) = a v(x) = b (A5.16)

where b > 0. The general solution under Brownian motion starting at x0 is that
xt is normally distributed, with mean x0 + at and variance σ2

t = bt. There is no
equilibrium solution, as the process converges to a normal with infinite variance
(and infinite mean if a 6= 0).

Example 5. Lande (1976) used Brownian motion to approximate the change in the
phenotypic mean for a neutral character with constant additive genetic variance.
There is no directional force to change the mean, so a = 0. Assuming the character
is strictly additive, the per generation sampling variance in the mean is σ2

A/Ne

(Chapter 23), which is used for b. Hence, at generation t, the distribution of
phenotypic means is approximately normal with expected mean µ0 (the initial
mean) and variance σ2

t = tσ2
A/Ne. One measure of how quickly phenotypic

means drift is given by the minimum number of generations required such that a
random population has at least a 50% probability of being more that K standard
deviations from its initial mean. This is expressed as Pr(|xt−µ0| ≥ Kσz) = 0.5,
where xt is the mean of a randomly drawn population and σ2

z the phenotypic
variance. Assuming Brownian motion, (xt − µ0)/σt is a unit normal random
variable, hence

Pr(|xt − µ0| ≥ Kσz) = Pr
[
|xt − µ0|

σt
≥ Kσz

σt

]
= Pr

[
|U | ≥ Kσz

σt

]
= 0.5

For a unit normalU , Pr(|U | ≥ 0.675) = 0.5, givingKσz/σt = Kσz/(σA

√
t/Ne) =

0.675. Upon rearranging and substituting h2 = σ2
A/σ2

z ,

t =
K2 Ne

h2 0.6752
' 2 Ne

K2

h2

Thus, for Ne = 10, a neutral character with heritability h2 = 0.5 requires 2 ×
10×9/0.5 = 360 generations until half the populations have phenotypic means
more than three standard deviations from their initial value.
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The careful reader will recall from Chapter 23 that drift also changes σ2
A, with

the assumption of a constant σ2
A being reasonable only for t < N . Alternatively,

we could assume that the population has been at its current size sufficiently
long enough so that additive variance is at its mutation-drift equilibrium value
(Equation 23.19b), σ2

A = 2Neσ
2
m. The distribution of means now has expected

variance
σ2

t = 2tNeσ
2
m/Ne = 2tσ2

m

and thus the expected time until 50% of the means exceed K standard deviations
is obtained from Kσz/

√
t 2σ2

m = 0.675. Since σ2
z = σ2

A + σ2
E ,

t = K2 σ2
z

σ2
m

' K2(2Ne + 1/h2
m)

where h2
m = σ2

m/σ2
E , the mutational heritability. From Table 1 in Chapter 9, h2

m

has an approximate average value of 0.006. Taking this value, and repeating the
calculation above (e.g., Ne = 10 and K = 3) gives t = 9 × (20 + 1/0.006) =
1680 generations. The reason for the huge increase in time relative to the fixed
variance example above is that additive variance is much smaller due to the small
population size. Contrast this when Ne = 100, where t = 3300, while (assuming
h2 = 0.5) the constant variance assumption yields t = 3600.

The Ornstein-Uhlenbeck process is essentially Brownian motion with a linear
restoring force that tends to bring the mean back to 0. The resulting diffusion for
−∞ < x <∞ is

m(x) = −ax v(x) = b (A5.17)

with a, b > 0. Like Brownian motion, the distribution of xt given the starting
condition x0 is also normal, with mean and variance

µt = x0e
−at σ2

t =
b

2a
(1− e−2at) (A5.18)

Thus the stationary distribution is normal with mean zero and variance b/(2a)

Example 7. Lande (1976) examined the distribution of phenotypic means under
drift and stabilizing selection. Consider the Gaussian fitness function (nor-optimal
selection) as a model of stabilizing selection,

W (z) = C e−z2/(2ω)
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where the optimal phenotype is z = 0 and the strength of selection is given
by ω. Under nor-optimal selection, if phenotypes before selection are normally
distributed with mean µt and phenotypic variance σ2, they remain normal after
selection, with new mean µt + s and variance σ2

z (assuming weak selection,
ω >> σ2

z ), where

s = −µt
σ2

z

σ2
z + ω

Let xt be the mean in generation t of a randomly drawn replicate population. As-
suming R = h2s, the distribution of means can be approximated by an Ornstein-
Uhlenbeck process, with

a = h2 σ2
z

σ2
z + ω

=
σ2

A

σ2
z + ω

, b =
σ2

A

Ne

where a follows from the change in mean ∆µ = h2s upon substituting for
s. Hence, the distribution of phenotypic means in generation t is normal, with
mean

µt = µ0 exp
[
− t

σ2
A

σ2
z + ω

]
and variance

σ2
t =

σ2
z + ω

2Ne

(
1− exp

[
− 2t

σ2
A

σ2
z + ω

])

Example 8. Diffusions can provide a more general solution for the equilibrium
distribution of means under selection and drift. If phenotypes are normally dis-
tributed, then from Equation 25.12b the change in mean is

∆µ = σ2
A

d ln(W )
dµ

Hence, an approximating diffusion under selection and drift is to let x = current
mean and set

m(x) = σ2
A

d ln(W )
dx

and v(x) =
σ2

A

Ne
(A5.19)

Solving for the equilibrium distribution of means,

G(x) = exp
[
−2Ne

∫ x d ln(W )
dy

dy

]
= exp[−2Ne ln(W )] = W (x)−2Ne

thus
ϕ(x) =

C

v(x)G(x)
=

CNe

σ2
A

W (x)2Ne ∝W (x)2Ne (A5.20)
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where we have written W (x) to remind the reader that mean population fitness
is a function of the phenotypic mean (this result is due to Lande 1976). Thus, as
effective population size increases, the probability of the population mean being
near a local maximum in fitness also increases. This follows since ϕ(x) becomes
increasingly peaked around local maxima relative to other parts of the fitness
surface as we increase Ne. Equations A5.19-20 also have the assumption that the
phenotypic and additive genetic variance remains constant as the mean changes,
as well as the additional assumption that the phenotypic distribution remains
normal.


