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A B S T R A C T

Predicting water table depth over the long-term in agricultural areas presents great challenges because these
areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human ac-
tivities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long
Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive phy-
sical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it,
with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and
evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years
(2000–2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and
time as input data to predict water table depth. A simple but effective standardization method was employed to
pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set
(2000–2011) and validation set (2012–2013) in the experiment. As expected, the proposed model achieves
higher R2 scores (0.789–0.952) in water table depth prediction, when compared with the results of traditional
feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004–0.495), proving that
the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout
method and the proposed model’s architecture are discussed. Through experimentation, the results show that the
dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the
proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed
model’s architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one
can conclude that the proposed model can serve as an alternative approach predicting water table depth,
especially in areas where hydrogeological data are difficult to obtain.

1. Introduction

Groundwater provides an important source of water for domestic,
agricultural, and industrial use. However, groundwater resources are
vulnerable to over-exploitation, climate change, and biochemical pol-
lution (Bouwer, 2000; Sophocleous, 2005; Evans and Sadler, 2008;
White and Falkland, 2010; Karandish et al., 2015). As a result, many
areas over the world face groundwater shortages. An example of such
areas is the Hetao Irrigation District, one of the largest irrigation dis-
tricts in China that is located in the arid area of the Yellow River wa-
tershed. The Yellow River serves as the main source of irrigation water
in this district. However, the availability of irrigation water from the
Yellow River has decreased dramatically, with intensified water re-
source use in the Yellow River watershed (Yang et al., 2003). Therefore,

groundwater has become an important source of supplementary irri-
gation water in Hetao Irrigation District. The effective management of
groundwater resources, especially in the context of increased ground-
water demands for agriculture use, is necessary to provide sustainable
use of water resources in Hetao Irrigation District. Sustainable
groundwater planning and management requires accurate forecasting
of water table depth (Wang et al., 2014). An accurate and reliable as-
sessment of water table depth can help engineers and decision-makers
to: (1) develop optimal water resource allocation strategies, (2) adjust
crop patterns in different sub-irrigation areas, and (3) develop optimal
irrigation schedules while controlling the effects of salinity related to
intensive irrigation (Xu et al., 2010). The objective of this study is to
develop an effective and accurate method for predicting water table
depth that can be used to help engineers and decision-makers manage
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groundwater resources and make management decisions.
In the last two decades, predictions of water table depth have

usually been made by using physically based models such as
MODFLOW and HYDRUS (e.g., Pang et al., 2000; Batelaan et al., 2003;
Zume and Tarhule, 2008; Faulkner et al., 2009; Xu et al., 2012).
However, those models have many practical limitations because they
are always data demanding and time consuming during model devel-
opment and calibration. Using physically based models to predict water
table depth in Hetao Irrigation District is particularly challenging be-
cause the district covers a large area, lacks abundant hydrogeological
data, and has strong spatial and seasonal variability in freeze-thaw
periods.

In the last decade, many studies have investigated the advantages
and disadvantages of various physically based models and evaluated
their prediction performance with that of emerging data-driven, ma-
chine learning methods. The machine learning methods include
Multiple Linear Regression (MLR) (Sahoo and Jha, 2013), Support
Vector Regression (SVR) (Yu et al., 2006; Yoon et al., 2011; Belayneh
et al., 2014; Mirzavand and Ghazavi, 2015), and Artificial Neural
Networks (ANN) (Raman and Sunilkumar, 1995; Daliakopoulos et al.,
2005; Sarangi et al., 2006; Napolitano et al., 2011; Parchami-Araghi
et al., 2013; Seo et al., 2015; Chang et al., 2016). These statistical
methods explore the spatial and temporal patterns hidden in historical
data without using a physical model because the latter always requires
a large number of physical parameters and a deep understanding of the
physical processes of the modeling domain. In many cases, machine
learning methods can achieve a better predictive performance than
physically based models (Parkin et al., 2007; Chu and Chang, 2009;
Mohanty et al., 2013; Karandish and Šimunek, 2016). For example,
Mohanty et al., (2013) found that an ANN model provided a better
prediction of water table depth than MODFLOW for short-term pre-
dictions. Karandish and Šimunek (2016) found that both Adaptive
Neuro-Fuzzy Inference System and SVM models performed well when
compared with HYDRUS-2D for water stressed conditions. Therefore,
machine learning methods provide promising tools for predicting water
table depth.

ANN methods are used in this study for predicting water table
depth, because ANN has a strong self-learning ability, which is suitable
for complicated problems. However, traditional FFNN models do not
have the ability to learn time series data because they cannot preserve
previous information, resulting in limited prediction capability for long-
term time series data, such as data related to water table depth (Cannas
et al., 2006). This problem can be resolved by using more advanced
FFNN models. Recently, researchers have integrated FFNN with other
methods such as genetic algorithms (Ketabchi and Ataie-Ashtiani, 2015;
Bahrami et al., 2016; Mehr and Kahya, 2017), wavelet transform
(Adamowski and Chan; 2011, Kisi and Shiri, 2012; Nourani et al.,
2015), and singular spectrum analysis (Sahoo et al., 2017;
Polomčićet al., 2017). Genetic algorithm can be applied to optimize
neural networks. Wavelet transform and singular spectrum analysis can
pre-process time series data, then add processed time series data into
neural networks and thus allow FFNN models to learn time series data
very well. However, these advanced FFNN models require complicated
procedures related to data pre-processing. For example, Sahoo et al.
(2017) first employed singular spectrum analysis to decompose time
series data into separable and interpretable reconstructed components,
and then applied genetic algorithm to select the best reconstructed
components as inputs of FFNN. While this data pre-processing can
strengthen the ability of a FFNN model to learn time series data, sub-
jective user intervention is needed, e.g., choosing the number of dif-
ferent reconstructed components. Furthermore, the pre-processing is
time consuming because of the calculation of many reconstructed
components.

The present study focuses on a time series prediction task, so re-
current neural network (RNN) (Rumelhart et al., 1986) is a suitable
choice. A RNN model has internal self-looped cells, allowing the RNN to

“remember” time series information and making it adept at performing
time series tasks. In addition, in this study, LSTM, a special kind of
RNN, that works well in processing long term time series data, was
chosen due to its sophisticated network structure. Compared with
aforementioned advanced FFNN model, the proposed LSTM-based
model only applied a very simple data pre-processing method. LSTM is
a famous deep learning model. It is recurrent, where connections be-
tween units form a directed cycle allowing data to flow both forwards
and backwards within the network; then the previous information can
be preserved for future use. LSTM model have already been used as a
very advanced model in the field of Artificial Intelligence and Deep
Learning, such as in nature language processing (Mikolov et al., 2010;
Sundermeyer et al., 2012), speech recognition (Graves and Jaitly,
2014), machine translation (Sutskever et al., 2014) and automatic
image captioning (Wang et al., 2016). However, only a few studies have
applied RNNs or LSTMs to handle time series data in the field of hy-
drology (Silva et al., 2013).

The goal of this study was to develop a two-layer LSTM-based model
for predicting water table depth in Hetao Irrigation District. The model
contained one layer of LSTM and a fully connected layer atop of the
LSTM layer. The model employed monthly water diversion, evapora-
tion, precipitation, temperature and time as input variables for pre-
dicting water table depth in the district. The rest of the paper is orga-
nized as follows. In Section 2, the study area and observational data are
introduced. Section 3 illustrates RNN, LSTM, dropout regularization,
the proposed model’s architecture, and model evaluation criteria. Sec-
tion 4 presents the experiment results and discussion. Finally, Section 5
concludes the paper.

2. Study area and observational data

2.1. Study area

Hetao Irrigation District lies within Bayannaoer City, Inner
Mongolia, China (106°20′–109°29′ N, 40°14′–41°18′ E; elevation
1020–1050m a.s.l.). The Yellow River and Wolf Mountain form the
northern and southern boundaries, respectively. Characterized by
narrow strips of flat terrain and fertile land, the entire Hetao Irrigation
District has been divided into five sub-areas from west to east as fol-
lows: Ulanbuh, Jiefangzha, Yongji, Yichang and Urad (Fig. 1) based on
management practices. Mean annual precipitation is 169.4mm, about
70% of which falls during June–September; the maximum precipitation
occurs in August. The mean, minimum and maximum temperatures
were 3.9 °C, −14.6 °C, and 28.4 °C, respectively (China Meteorological
Data Service Center, 1954–2013). Hetao Irrigation District covers
11,073 km2; the central part of the district is about 180 km long and
60 km wide. About 52% (5740 km2) of the entire terrestrial area is ir-
rigated. A total of 227 monitoring wells are used in the district (Fig. 1)
with the water table depth measured every 5 days. Because monthly
data are used in the model, the measured water table depth is averaged
by month.

2.2. Data and statistical analysis

Our experiments used 14 years (2000–2013) of time series data
from the five sub-areas in Hetao Irrigation District. Since people in this
district use surface water, pumping volume is very small, so it was
omitted in this study. Therefore, at the beginning, the data included
water diversion, precipitation, evaporation, temperature, water table
depth, area of the region, water consumption for industry and domestic
use. Then Lasso regression (Yuan and Lin, 2006; Tibshirani, 1996), a
statistical method that can be used to select variables, was applied to
choose important variables from the original data, based on regression
weights. Finally, only five variables were chosen for this study: water
diversion, precipitation, evaporation volume, temperature, and water
table depth. Time series of these variables are presented for the five sub-
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areas of the district (Fig. 2). From Fig. 2, these data were found to have
periodic characteristics. Therefore, time (at the monthly scale) has also
been used as an input variable to improve the model’s ability to gen-
eralize, creating a sixth variable.

In the present study, the first 12 years of time series data were used
as a training set, and the next two years of data was used as a validation
set. A statistic description of the water table depth of different sub-areas
is shown in Table 1. Table 1 shows that Ulanbuh had the smallest
standard deviation (0.331m) and range of water table depth (1.297m),
meaning the water table depth of Ulanbuh is more stable than that of
other areas.

2.3. Data pre-processing

As shown in Fig. 2, the input data varied widely. These differences
will have a negative effect on the model’s ability to learn. Therefore, all
six of the variables were standardized to ensure they remain on the
same scale. This pre-processing can guarantee a stable convergence of
parameters in the model developed in the present study. The standar-
dization formula is as follows:

=
−

x
x x

σ
i

i
ij
(new) ij

(1)

where xij represents data in ith year, jth month; xi and σi are the average
and standard deviation of data in the ith year, respectively.

3. Methodology

3.1. Long Short-Term Memory network (LSTM)

Before introducing LSTM, we would like to first introduce RNN
because LSTM is a special kind of RNN. RNNs were first developed in
the 1980s; these networks have connections between neurons and form
a directed cycle. This type of structure creates an internal self-looped
cell, which allows it to display dynamic temporal behavior. RNNs have
chain-like structures of repeating modules (Fig. 3(a)). These structures
can help RNNs to “remember” previous information, which allows the
RNNs to process arbitrary (long time) sequences. Therefore, RNNs have
been successful in learning sequences.

Forward propagation begins with a specific initial state h0= 0. For
each time step from t=1 to t= τ, the following update equations were

applied:

= + +−h b Wh Uxtanh( ),t h t 1 t (2)

= +o b Vh ,t o t (3)

where xt is the input vector at time t and ht−1 is the hidden cell state at
time t− 1. The parameters are the bias vector bh and bo, as well as the
weight matrices U, W and V for input-to-hidden, hidden-to-hidden and
hidden-to-output connections, respectively.

The gradients of the RNNs can be computed via Back-Propagation
Through Time (Rumelhart et al., 1986; Werbos, 1990). However, Back-
Propagation Through Time is not sufficiently efficient to learn a pattern
from long term dependency because of a gradient vanishing problem
(Hochreiter, 1998). This problem can be solved by the structure of
LSTMs (Hochreiter and Schmidhuber, 1997; Graves, 2012; Jozefowicz
et al., 2015). Like RNNs, LSTMs also have chain like modules, but the
repeating modules have more complicated structures. Each repeating
module of LSTMs contain a memory block. This memory block is spe-
cifically designed to store information over long time periods.

The memory block contains four parts: a CEC (the Constant Error
Carousel) cell in addition to three special multiplicative units called
gates. The CEC cell runs straight down the entire chain without any
activation function and thus the gradient does not vanish when Back-
Propagation Through Time is applied to train a LSTM. Therefore,
LSTMs have been shown to learn long-term dependencies more easily
than RNNs because information can easily flow along the cells un-
changed. Furthermore, the input, forget (Gers et al., 2000) and output
gates, in each memory block can control the flow of information inside
memory block. The input, forget, and output gates control the extent to
which new input flows into a CEC cell, information is stored in a cell,
and output flows of the cell into the rest of the networks, respectively.

A schematic of memory block is shown in Fig. 3(b). It includes block
input, three gates (input, forget, output), and a CEC cell.

Similar to RNNs, LSTMs computes a mapping from an input se-
quence x to an output sequence y by calculating the network unit ac-
tivations using the following equations iteratively from t=1 to t= τ
with initial values C0= 0 and h0= 0:

= + +−i σ W x U h b( ),t i t i t 1 i (4)

= + +−f σ W x U h b( ),t f t f t 1 f (5)

Fig. 1. Location of Hetao irrigation district, the boundary of the five sub-areas, and the observation wells.
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= + +−o σ W x U h b( ),t o t o t 1 o (6)

= + +
∼

−C W x U h btanh( ),t c t c t 1 c (7)

= ⊗ + ⊗
∼

−C f C i C ,t t t t t1 (8)

= ⊗h o Ctanh( ),t t t (9)

Fig. 2. Variables for different sub-areas, including (a) water diversion, (b) precipitation (c) evaporation volume, (d) temperature and (e) water table depth.

Table 1
Statistic description of water table depth of five sub-areas.

Areas Average (m) Maximum (m) Minimum (m) Standard Deviation (m) Skewness

Ulanbuh 1.817 2.430 1.133 0.331 −0.167
Jiefangzha 1.970 2.821 0.914 0.422 −0.140
Yongji 2.111 2.870 1.129 0.379 −0.108
Yichang 2.421 3.430 1.202 0.429 −0.222
Urad 2.002 2.932 1.080 0.375 −0.103
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where Wi, Wf, and Wo denote the matrix of weights from the input,
forget, and output gates to the input, respectively. Similarly, Ui, Uf, and
Uo denote the matrix of weights from the input, forget, and output gates
to the hidden, respectively. bi, bf, bo denote the input, forget, and output
gate bias vectors, respectively. σ is an element-wise non-linear activa-
tion function: logistic sigmoid. it, ft, ot and Ct are the input, forget, output
gates and the cell state vectors at time t, respectively, all of which are
the same size as the cell output vector ht. The element-wise multi-
plication of two vectors is denoted with ⊗.

3.2. Dropout for neural networks

Deep neural networks are well suited to process big data. However,
deep neural networks with large number of parameters can easily be
overfitting, especially when data are limited. Therefore, dropout pro-
vides an effective regularization method that can be used to solve this
problem (Hinton et al., 2012; Srivastava et al., 2014). The most im-
portant idea of dropout method is that at each training iteration, when
the neural network is updating a certain layer where the dropout is

Fig. 3. (a) Chain like structure of the recurrent neural network. The self-connected hidden units allow information to be passed from one step to the next. (b) A
graphical representation of LSTM’s memory block.

Fig. 4. (a) A standard feed-forward neural network with two hidden layers; (b) Applying dropout to two hidden layers on network (a). Grey units on (b) have been
dropped.
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applied, it randomly does not update, or “dropout” some neurons (with
probability p) in this layer. This means that a part of the neural network
was sampled and it was trained at one iteration. In each iteration of
training, a different part of the network was sampled and trained. With
dropout, the weights of the neurons learned through backpropagation
become somewhat more insensitive to the weights of the other neurons.
Thus, dropout can help to prevent the networks from relying on certain
neurons in the layers too much and reduce the neurons’ co-adaptability.
At testing time, all of the neurons of the networks are retained (no
dropout), but the activations are scaled by p (probability of dropout). A
neural network, whose first and second hidden layers have been applied
dropout, is shown in Fig. 4.

3.3. Our proposed model framework

In this work, we were interested in predicting water table depth.
This is a time series problem because the current water table depth has
changed in a way that is dependent on previous. This time series pre-
diction was cast as a regression problem. The proposed model is illu-
strated in Fig. 6(a). The input data were first put into the LSTM layer.
The input gate of the LSTM layer will recompose input data and decide
which input data is important; this process is similar to principal
component analysis (PCA). However, the LSTM layer can preserve
previous information, which can help to improve the ability of the
model to learn time series data. A fully connected layer is set atop the
LSTM layer in order to improve the model’s learning ability. Moreover,
dropout is set on the LSTM layer to prevent overfitting. The loss func-
tion is defined below:

̂∑= −
=

LOSS (y y) ,
i 1

N

i i
2

(10)

where yi is measured value at time i; and ̂yi is predicted value at time i.
However, this model framework has some limitations. First, the

initial parameters of the proposed model will affect the final results. In
addition, even though an LSTM layer has a strong ability to learn time
series data, its fitting ability may be insufficient. Therefore, a fully
connected layer was added atop of a single LSTM layer. Nevertheless,
exactly how many LSTM layers should be used as hidden layers in order
to reach the optimized results remained unknown.

The flowchart of the proposed model framework is displayed in
Fig. 5. All of the code in this study was written in the Theano package of
Python software. Throughout, the computation was performed on an
Intel Core i5-4210U CPU with 4G RAM.

3.4. Model evaluation criteria

In this study, the root mean square error (RMSE), and coefficient of
determination (R2) were used to evaluate the model’s accuracy between
the measured and predicted values. R2 measures the degree of how well
the outcomes are replicated by the model, ranging between [−∞, 1]
where for optimal model prediction an R2 score close to 1 is preferred.
The R2 equation is as follows,

̂
=

∑ − − ∑ −

∑ −

= =

=

R
(y y) (y y)

(y y)
,2 i 1

N
i

2
i 1
N

i i
2

i 1
N

i
2 (11)

where yi is measured value at time i, y is mean of yi, (i = 1,…, N) and ̂yi
is predicted value at time i.

Diverse types of information related to the predictive capacities of
the model were measured through RMSE. RMSE measures the predic-
tion precision which creates a positive value by squaring the errors.
RMSE scores range between [0, ∞], and the model prediction is ideal if
RMSE is 0. RMSE is defined as,

̂∑
=

−
=RMSE

y(y )

N
.i 1

N

i i
2

(12)

4. Results and discussions

In Section 4.1, the first 12 years of data were used, including water
diversion, evaporation, precipitation, temperature, month and water
table depth to train the proposed model (different models were used for
different areas). Each model was trained using stochastic gradient
descent (SGD) method. In order to observe the changes in water table
depth in the entire Hetao Irrigation District, the proposed model also
has been evaluated in the entire area, whose temperature was the
average of five sub-areas and precipitation, water diversion and eva-
poration volume were sum of five sub-areas. This “all-encompassing”
area was named “Hetao”. It is reasonable to expect that the proposed
model can work well in the entire area if it can perform well in other
sub-areas. In addition, the proposed model was compared with FFNN in
the water table depth prediction. In Section 4.2, the effectiveness of
dropout was explored. Finally, Section 4.3 discusses the architecture of
the proposed model and compares it with a Double-LSTM model.

4.1. Water table depth prediction results

As mentioned above, in the training process, the first 12 years of
data were used to train the proposed model in different areas. After the

Fig. 5. Flowchart of this study.
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models had been trained, each model was validated through use of the
validation set and tuned the hyper-parameters of the models. Two
performance metrics of different models in different sub-areas and
“Hetao” were computed in order to obtain the optimal model hyper-
parameters (the number of hidden neurons in the LSTM layer, and the
learning rate). The optimal hyper-parameters of the proposed model
used for water table depth prediction are shown in Table 2 (first row).
Note that models for different areas use the same hyper-parameters.

In order to illustrate how hyper-parameters affect the results, dif-
ferent hyper-parameters were set for the proposed model and the Yongji
sub-area was used as an example. Results, including training loss, R2

and running time, are also displayed in Table 2. From Table 2 it can be
learned that a higher learning rate (10−3) may cause the optimization
task to miss the optimal point (R2 was only 0.62); however, a lower

learning rate (10−5) may help to avoid overshooting but may cause the
model to use a longer time to converge. Too many training iterations
may not ensure more optimal results (the results from 20,000 and
40,000 training iterations were the same). In addition, it is common to
set a dropout probability to 0.5 in the deep learning field, as introduced
by Hinton et al., (2012). Moreover, too many neurons (70 in this study)
are computationally expensive (20,000 iterations in 9.76min) and
often cause overfitting, meanwhile, having an insufficient number of
neurons (10 in this study) may decrease the network’s learning ability,
as can be seen in Table 2. Therefore, during implementation, 40 hidden
neurons were chosen in the LSTM layer.

To compare the proposed model with FFNN model, FFNN model in
different areas were also trained using the same hyper-parameters as
mentioned above. Results in terms of the two evaluation metrics in
different areas are summarized in Table 3.

From Table 3, the R2 of the proposed model ranged from 0.789 to
0.952 and RMSE from 0.070m to 0.184m. The R2 of the proposed
model was much higher than that of FFNN model, which ranged from
0.004 to 0.466. In addition, the RMSE of the proposed model was much
smaller than that of FFNN model with the RMSE ranging from 0.239m
to 0.372m. These findings indicate that the proposed model can predict
water table depth more accurately than other methods. Table 3 also
shows that the proposed model has the best performance in Ulanbuh’s
water table depth prediction (R2= 0.952, RMSE=0.070m). We be-
lieve this occurred because the range and standard deviation of water
table depth in Ulanuh were the smallest (Table 1), meaning the water
table depth was more stable in Ulanbuh than in other areas. The pro-
posed model produced better results with respect to R2 and RMSE than
the FFNN model, especially in Yichang and Urad where the

Fig. 6. (a) Structure of the proposed model. Dropout has been applied at the Long Short-Term Memory (LSTM) layer. (b) Structure of the Double-LSTM model.
Dropout has been applied at the first LSTM layer. Grey units have been dropped.

Table 2
Results of Yongji’s water table depth prediction, with different hyper-para-
meters set to the proposed model. The hyper-parameters in first row are used in
this study. The bold significances represent the optimal hyper-parameters used
in the proposed model which leads to the best R-Square score.

Neurons Learning rate Dropout Iterations Loss R2 Time (min)

40 10−4 0.5 20,000 9.86 0.82 4.38
40 10−4 0.5 40,000 7.11 0.82 8.41
40 10−4 0.5 5000 30.10 0.35 1.21
40 10−4 0.0 20,000 0.72 0.59 5.31
40 10−4 0.8 20,000 30.70 0.64 4.02
40 10−3 0.5 20,000 5.08 0.62 4.46
40 10−5 0.5 20,000 52.07 0.69 4.29
70 10−4 0.5 20,000 8.76 0.49 9.76
10 10−4 0.5 20,000 23.37 0.41 3.30

Table 3
Comparison of performance statistics for the proposed model, FFNN, model without dropout and Double-LSTM model in water table depth prediction in the last two
years.

Area Proposed model FFNN Model without dropout Double-LSTM

Loss R2 RMSE (m) R2 RMSE (m) Loss R2 RMSE (m) R2 RMSE (m)

Ulanbuh 9.32 0.952 0.070 0.447 0.239 0.738 0.874 0.114 0.864 0.119
Jiefangzha 11.42 0.810 0.184 0.466 0.287 0.771 0.499 0.278 0.387 0.308
Yongji 8.47 0.842 0.145 0.327 0.279 0.725 0.591 0.217 0.550 0.228
Yichang 9.81 0.849 0.144 0.004 0.372 1.204 0.645 0.222 0.620 0.230
Urad 10.63 0.789 0.167 0.495 0.258 0.832 0.368 0.289 0.170 0.331
Hetao 7.34 0.841 0.137 0.373 0.273 1.084 0.599 0.218 0.357 0.226
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performance metrics of the proposed model were much better than the
FFNN model’s. In addition, Table 3 illustrates that the proposed model
also worked well in predicting the water table depth in the “Hetao”
area, meaning the proposed model can be used to predict the water
table depth in the entire Hetao Irrigation District.

Fig. 7 displays the measured and predicted water table depth from
both the proposed and the FFNN models in different sub-areas. For
brevity, only the results of Yichang, Urad and “Hetao” are presented
(Fig. 7), showing both the proposed and the FFNN models can capture
the variation trend of water table depth in these three areas. However,
the FFNN model fails to accurately predict the water table depth be-
cause it cannot capture the previous information, which is further il-
lustrated in Fig. 8. The FFNN model was found to not accurately predict
the water table depth in the first month of 2012, indicating that the
FFNN model cannot “remember” the previous water table depth. This
phenomenon is especially obvious in Yichang and Urad, because during
2009–2011, the government decreased the irrigation volume there,
leading to a 40–60 cm increase in water table depth. Therefore, even
though a traditional FFNN model has strong ability to represent the
variation in water table depth, it cannot predict water table depth as
accurately as the proposed model; this further confirms the LSTM’s
ability to process time series data.

4.2. Dropout effect

In order to explore the dropout method that was used to prohibit
overfitting, the results from the proposed model were compared with a
model with same architecture but without applying dropout in the
LSTM layer. The same hyper-parameters (40 hidden neurons, 10−4

learning rate and 20,000 training iterations) were set in the model
without dropout and its performance was compared with the proposed
model in water table depth prediction. Training loss and two evaluation
metrics were used for evaluating these two models. Fig. 9 shows the
prediction results of the proposed model and the model without
dropout in three areas. The evaluation metrics and training loss are
shown in Table 3. From Fig. 9, one can see that the proposed model and
model without dropout provided very similar results in the training
process in different areas. However, the results in the validating process
showed stronger deviations from the predicted value. Table 3 shows
that the training loss of the proposed model ranged from 7.34 to 11.42,
whereas that of model without dropout ranged from 0.725 to 1.204.
However, the R2 of the proposed model was higher than that of model
without dropout, which ranged from 0.368 to 0.874; also, the RMSE of
the proposed model was smaller than that of model without dropout,
which ranged from 0.114m to 0.289m. These findings indicate that

Fig. 7. Comparison of measured and simulated water table depth using the proposed model and a feed-forward neural network (FFNN) model in different areas. The
blue dash line separates the data into two sets: the training and validating sets. For brevity, we only present three typical areas here.
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Fig. 8. The last two years of water table depth prediction results in (a) Yichang and (b) Urad.

Fig. 9. Comparison of measured and simulated water table depth using the proposed model and model without dropout in different areas. The blue dash line
separates the data into two sets: the training and validating sets. For brevity, we only present three typical areas here.
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even though the model without dropout can fit training data perfectly,
it cannot predict the last two years of water table depth as well as the
proposed model. This phenomenon is a typical overfitting. However,
from the reported result of the proposed model, the conclusion could be
drawn that the dropout method can help the proposed model by pre-
venting overfitting.

4.3. Discussion about model structure

Note that the proposed model has one layer of LSTM and one fully
connected layer. The proposed model was compared with the FFNN
model in Section 4.1 to discuss the proposed model’s ability to preserve
previous information and process time series data. Therefore, in order
to discuss the learning ability of the proposed model, it was also com-
pared with a model that has different structures but the same archi-
tectural scale (two hidden layers), like a model that has two LSTM
layers (Double-LSTM). Since a Double-LSTM model has two hidden
LSTM layers, one can intuitively expect that this model can forecast
water table depth well in these areas. The architecture of the Double-
LSTM model is illustrated in Fig. 6(b).

Similar to Section 4.1, two evaluation metrics of these two models
were compared. The Double-LSTM model is very similar to the

proposed model; only change the fully connected layer to LSTM layer in
Double-LSTM model. The same hyper-parameters were used to train the
Double-LSTM model in different areas. Table 3 shows summarized re-
sults of these two models. Table 3 shows that the R2 of the proposed
model was higher than that of the Double-LSTM model, which ranged
from 0.170 to 0.864; meanwhile, the RMSE of the proposed model was
smaller than that of the Double-LSTM model, which ranged from
0.119m to 0.331m. Fig. 10 shows the prediction results of both the
proposed and Double-LSTM models. One can see that although both the
models performed well in capturing variations in the water table depth,
the Double-LSTM model failed to fit data in the training process, as can
obviously be seen at the peak values. We believe this phenomenon was
caused by the insufficient fitting ability of the LSTM layer or the lack of
an adequate number of hidden cell; thus, the Double-LSTM model
cannot fit the training data. In addition, the simulation results become
worse in the validation process. The failure of the Double-LSTM model
to predict water table depth further proves that a fully connected layer
has strong fitting ability. Considering the results in Table 3, one can
conclude that the proposed model is more effective than both the FFNN
and Double-LSTM models in water table depth prediction. The pro-
posed model cannot only preserve previous hydrologic and climatic
information while performing well in the time series process; it also has

Fig. 10. Comparison of measured and simulated water table depth using the proposed model and Double-LSTM model in different areas. The blue dash line separates
the data into two sets: the training and validating sets. For brevity, we only present three typical areas here.
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a strong learning ability.

5. Conclusions

In this study, a new framework composed by one LSTM layer and
one fully connected layer is proposed for predicting water table depth,
in order to help engineers and decision-makers to plan and manage
groundwater resources in agricultural areas. This framework is different
from a traditional neural network model and has not been widely used
in the field of hydrology. The ability of the proposed model to predict
monthly water table depth in five sub-areas of Hetao Irrigation District
and in the entire district itself were evaluated and discussed. In addi-
tion, the proposed model was also compared with Double-LSTM model.
The major conclusions are as follows:

(1) The proposed model provides a promising new method for pre-
dicting water table depth, as evidenced by satisfactory performance
on water table depth prediction in five sub-areas and “Hetao”.

(2) The architecture of the proposed model is reasonable. The LSTM
layer helps to maintain previous information and contributes to
learning the time series data. The dropout method helps to prevent
overfitting during the training process. A fully connected layer atop
the LSTM layer helps to improve the learning and fitting ability of
the model.

(3) The newly proposed model provides a valuable tool for predicting
water table depth. It can serve as an alternative model to predict
water table depth in places with complex hydrogeological char-
acteristics and hydrogeological data are difficult to obtain.

In the future, we can design a deeper, wider and more robust LSTM-
based model, in order to provide more accurate water table depth
prediction worldwide. In addition, the proposed model also can be
combined with other methods, such as PCA and wavelet transform.
Furthermore, the proposed model can be applied to other time series
prediction tasks, such as soil water change and streamflow prediction.
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