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Summary
Unsaturated soils are solid-water-air systems that include a solid skeleton, pore

water, and pore air. Heterogeneities in porosity or degree of saturation are salient fea-

tures of unsaturated soils. These heterogeneities may trigger localized deformation

(eg, shear banding) in such materials as demonstrated by numerical simulations via

a pseudo three-phase model. In this article, we formulate a true three-phase math-

ematical framework implemented via stabilized low-order mixed finite elements.

With this mathematical framework, we study the evolution of pore air pressure and

its role in the inception of strain localization triggered by initial heterogeneity either

in porosity or suction. The numerical simulations show that pore air pressure is

nonzero and nonuniform in the process of progressive failure in unsaturated soils.

The heterogeneity of pore air pressure may also play a significant role in the onset of

localized deformation of unsaturated soils. Therefore, a three-phase model consider-

ing the pore air phase is physically more appropriate for modeling strain localization

in unsaturated soils.
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1 INTRODUCTION

The coupled solid-liquid-air phenomenon exists in multiphase porous media, such as wet clay, sand, and biological tissues (eg,

skins and bones).1-3 Unsaturated soils are three-phase porous media comprising a solid skeleton, pore water, and pore air. The

difference between pore air pressure and pore water pressure is called suction. The relationship between suction and degree of

saturation is called soil water characteristic curve. Both suction and degree of saturation dramatically impact the mechanical

and hydraulic properties (eg, shear strength and permeability) of partially saturated soils.4 For example, the heterogeneity of

suction and degree of saturation in unsaturated soils may trigger localized deformation in unsaturated soils.5-10 However, these

studies assume that the pore air pressure is passive (ie, constant atmospheric pressure). Therefore, the study could not predict

the variation of pore air pressure and its potential impact on the inception of localized deformation. However, the pore gas

phase plays an important role in the hydromechanical behavior of multiphase deformable porous media.11-14 A pseudo two-phase

formulation cannot capture the observed physical phenomena as a three-phase formulation does, for example, draining process

of unsaturated soil samples15,16 and vapour pressure below the saturation water pressure.13 In this paper, we study the evolution

of heterogeneous pore air phase and its potential impact on the inception of strain localization and progressive failures of
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unsaturated soils via a stabilized low-order mixed finite element formulation. Specifically, heterogeneity of the suction field

and of dry density has been taken into account and plays a substantial role in triggering localized deformations in unsaturated

soils as demonstrated by the numerical examples.

Strain localization is a ubiquitous failure mode of geomaterials. In localized deformation zone, geomaterials involve intense

shear deformation that usually serves as a precursor of failure of such materials.17,18 For this reason, numerous theoretical,

experimental, and computational research has been conducted to study the inception of localized deformation and its triggering

mechanism in geomaterials under the dry or fluid saturated conditions.18-33 For example, in Rudnicki and Rice,19 the authors

first derived a mathematical condition of the onset of shear banding in pressure-sensitive geomaterials. Recently, this mathe-

matical criterion has been extended to study the drained bifurcation condition,9,34,35 and transient bifurcation condition at finite

strain10 for unsaturated soils. The numerical results demonstrated that the spatial variations of density and fluid saturation have

a major influence on the inception of localized deformation in unsaturated soils. Researchers also investigated the bifurcation

of unsaturated geomaterials at the material point level via constitutive modeling.36-38

While theoretical and experimental methods have provided insights into the localized deformation in multiphase geomaterials,

computational modeling (eg, the mixed finite element method) is equally useful to study the onset and fundamental triggering

mechanism of localized deformation in such materials.9,13,16,27,39-43 For example, in Callari et al,40 the authors studied the localized

deformation in unsaturated porous media via the finite element enhanced by strong discontinuities method that could resolve

the pathological or mesh sensitivity issue with the finite element method.22 A two-scale model was formulated to study fluid

flow in an unsaturated and progressively fracturing porous medium.44,45 In Lazari et al,41 the authors formulated a nonlocal

constitutive model to simulate localized deformation in unsaturated soil under the nonisothermal conditions. Few of the above

numerical formulation considered the spatially varying material properties such as density and fluid saturation and their impacts

on the inception of localized deformation in multiphase porous media. Recent numerical investigations of localized failure of

unsaturated porous media via a “meso”-scale finite element method have demonstrated that the material heterogeneities, such

as density and degree of saturation, have a first-order triggering role in strain localization in unsaturated porous medium.5-10,46

However, the study above was based on a numerical framework that assumes a passive pore air pressure. Therefore, it cannot

capture the active role of gas movement and its impact on progressive failures in solid-water-air systems, such as landfill slope

failures.47

In this article, we formulate a three-phase computational framework to study the evolution of pore gas pressure and the

role of solid-water-air coupling on the inception of localized deformation in unsaturated soils. This computational framework

consists of the momentum balance of the mixture, the mass balance equations of pore water and pore air, respectively. To

complete the computational model, we will adopt a “meso”-scale constitutive model for the solid skeleton under the isothermal

conditions,8 a soil-water characteristic curve,48 and the generalized Darcy's law for the flow of pore water and pore air in the

connected pore space.1 The three-phase balance equations are implemented via stabilized low-order mixed finite elements8,49-51

that allow equal order interpolations of displacement and pore pressure fields for its simplicity and computational efficiency52

(see subsection 2.5 for more discussions). The numerical simulations conducted in this article are focused on the inception of

localized deformation. The numerical results show that the pore gas pressure varies nonuniformly in the problem domain. The

comparison of results obtained by the three-phase formulation and the two-phase formulation demonstrates that the former is

physically more appropriate to capture localized deformation in unsaturated soils triggered by material heterogeneity either in

density or suction. For a physically more appropriate postlocalization analysis of unsaturated porous media, enhancements such

as strong discontinuities or the extended finite element technique28,40,45 may be required to regularize the present numerical

formulation at both levels of the finite element and the material model (damage or softening plasticity model),23,51,53 which is

an ongoing effort of the authors.

The remaining part of this article is organized as follows. Section 2 introduces the balance equations, their strong forms, and

weak forms, the generalized Darcy's law for pore air and pore water flow and their linearization, stabilized finite element formu-

lation of the weak forms, discretization in finite element space and a global tangent operator. Section 3 presents a “meso”-scale

constitutive model for unsaturated soils and a soil-water characteristic curve. Section 4 presents the numerical simulations via

the three-phase formulation, the comparison of results with the ones obtained by the equivalent two-phase formulation (ie,

assume passive atmospheric pressure), and mesh sensitivity analysis. Section 5 summarizes the conclusion of this article. As

for notations and symbols used in this article, bold-faced letters denote tensors and vectors; the symbol “.” denotes an inner

product of 2 vectors; the symbol “:” denotes an inner product of 2 second-order tensors or double contraction of adjacent

indices of tensors of rank 2 or higher; the symbol “⊗” denotes a juxtaposition. For any symmetric second-order tensors 𝜶 and

𝜷, (𝜶 ⊗ 𝜷)ijkl = 𝛼ij𝛽kl.
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2 BALANCE EQUATIONS

2.1 Continuous porous media theory
Continuum porous media theory is formulated on the basis of 2 fundamental hypotheses that the porous medium can be con-

sidered as the superposition of several continua that move with distinct kinematics, and the physics of the superposed fluid and

solid continua can be described with respect to the initial configuration of the solid phase.1,54 Following the continuum porous

media theory, let 𝜙 be the porosity of the three-phase porous media, Sr be the degree of saturation of water in the pore space,

and 1 − Sr be the degree of saturation of air in the pore space. Furthermore, let 𝜌s, 𝜌w, and 𝜌a be the intrinsic density of soil

grains, pore water, and pore air, respectively. Therefore, the density of the mixture reads

𝜌 = (1 − 𝜙)𝜌s + 𝜙Sr𝜌w + 𝜙(1 − Sr)𝜌a. (1)

To model the deformation of a porous medium, we need to define an effective stress for the solid skeleton that serves to transfer

the multiphase material into an equivalent single-phase material. For partially saturated soils, there are 2 kinds of stress tensors

for constitutive modeling of the solid phase. In the first one, the total stress tensor is decomposed into net stress (ie, total stress

minus pore air pressure) and suction (ie, pore air pressure minus pore water pressure) multiplied by the second-order identity

tensor. In the second type, the generalized Bishop-type effective stress tensor is used to model the stress state of the solid phase.

It is worth noting that the Bishop effective stress tensor is the energy conjugate of the strain of the solid skeleton.55 The authors

admit that it is an arguable topic on which effective stress should be used to model unsaturated soils. However, there may be

several advantages with the adoption of the Bishop-type effective stress although the selection of which stress tensor mostly

depends on the convenience as stated in Nuth and Laloui.56 For example, when the Bishop-type effective stress is adopted,

the critical state line may be unique for the same soils under both saturated and unsaturated conditions. Without loss of the

generality, here, we adopt the generalized Bishop-type effective stress following the convention in continuum mechanics (ie,

negative stress means compression).57

𝝈 = 𝝈′ − B
[
Srpw + (1 − Sr)pa

]
1, (2)

where 𝝈 is the total Cauchy stress tensor, 𝝈′ is the effective Cauchy stress that is energy conjugate to the rate of deformation of

the solid matrix, 1 is the second-order identity tensor, pw and pa are pore water pressure and pore air pressure, respectively, and

B is the Biot coefficient that is assumed to be 1 for soils55 in this article.

2.2 Strong forms
In this article, we assume that the basic unknowns for the three-phase mixture are the displacement of the solid phase u,

pore water pressure pw, and pore air pressure pa. Furthermore, we assume that the solid skeleton and the pore water are

incompressible. For the air phase, we assume that the ideal gas law applies,

𝜌a =
paMa

RT
, (3)

where Ma is the molar mass of air, R is the universal gas constant, and T is the absolute temperature (ie, the environmental

temperature under an isothermal condition). The bulk modulus of pore air pressure is assumed to be pore air pressure, that is,

Ka = pa.34 Following the continuous porous media theory, the momentum balance equation for the mixture can be written as

𝛁 ·
[
𝝈′ − Srpw1 − (1 − Sr)pa1

]
+ 𝜌g = 0, (4)

where 𝛁 is the spatial gradient operator and g is the gravity acceleration vector. We focus on the current configuration of the

three-phase mixture and describe the motions of pore water and pore air following the motion of the solid phase. Then, we can

write the mass balance equations of the pore water phase and the pore air phase as follows,7,8,34

Sr 𝛁 ·u̇ − 𝜙
𝜕Sr

𝜕s
ṗw + 𝜙

𝜕Sr

𝜕s
ṗa +

1

𝜌w
𝛁 ·(𝜌wvw) = 0, (5)

(1 − Sr)𝛁 ·u̇ + 𝜙
𝜕Sr

𝜕s
ṗw +

(
𝜙(1 − Sr)

Ka
− 𝜙

𝜕Sr

𝜕s

)
ṗa +

1

𝜌a
𝛁 ·(𝜌ava) = 0, (6)

where vw
and va

are Darcy velocities of pore water and pore air, respectively.
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We assume that the three-phase mixture occupies a domain  with a boundary Γ. The boundary Γ is decomposed into the

regions where essential and natural boundary conditions are specified for the solid skeleton and pore fluids. Specifically, we

define that Γu and Γt are solid displacement and solid traction boundaries, respectively; Γpw and Γqw are pore water pressure and

pore water flux boundaries respectively; and Γpa and Γqa are pore air pressure and pore air flux boundaries, respectively. This

decomposition is subject to the following restrictions,

Γ = Γu ∪ Γt = Γpw ∪ Γqw = Γpa ∪ Γqa , (7)

Γu ∪ Γt = Γpw ∩ Γqw = Γpa ∩ Γqa = ∅. (8)

The corresponding boundary conditions are prescribed as

u = u on Γu, and n · 𝝈′ = t on Γt, (9)

pw = p̄w on Γpw , and − n · vw = q̄w on Γqw , (10)

pa = p̄a on Γpa , and − n · va = q̄a on Γqa , (11)

where n is the normal to the boundary surface. And the initial conditions at t = 0 are prescribed as {u0, pw0, pa0}.

2.3 Weak forms
To obtain the weak form of the boundary value problem, we first define three spaces of trial functions,

𝒮u =
{

u ∶ → ℛ3|unℋ 1,u = u on Γu
}
, (12)

𝒮pw =
{

pw ∶  → ℛ|pw∈ ℋ 1, pw = p̄w on Γpw

}
, (13)

𝒮pa =
{

pa ∶  → ℛ|pa∈ ℋ 1, pa = p̄a on Γpa

}
, (14)

where ℋ 1 represents a Sobolev space of degree one. The corresponding variational spaces with homogeneous essential

boundaries are

𝒱 u =
{
𝜼 ∶ → ℛ3|𝜼∈ ℋ 1, 𝜼 = 0 on Γu

}
, (15)

𝒱 pw =
{
𝜗w ∶  → ℛ|𝜗w∈ ℋ 1, 𝜗w = 0 on Γpw

}
, (16)

𝒱 pa =
{
𝜗a ∶  → ℛ|𝜗a∈ ℋ 1, 𝜗a = 0 on Γpa

}
. (17)

The weak form of this boundary value problem is then to find {u, pw, pa}∈ 𝒮u×𝒮pw×𝒮pa such that for all

{𝜼, 𝜗w, 𝜗a}∈ 𝒱 u×𝒱 pw×𝒱 pa ,

𝒢 = 0, ℳ̃w = 0, and ℳ̃a = 0, (18)

where

𝒢 = ∫
𝛁s𝜼 ∶

[
𝝈′ − Srpw1 − (1 − Sr)pa1

]
dV − ∫

𝜼 · 𝜌gdV − ∫Γt

𝜼 · tdA, (19)

ℳ̃w = ∫
𝜗w

[
Sr 𝛁 ·u̇ − 𝜙

𝜕Sr

𝜕s
ṗw + 𝜙

𝜕Sr

𝜕s
ṗa

]
dV − ∫

𝛁 𝜗w · vw
dV − ∫Γqw

𝜗wq̄wdA, (20)

ℳ̃a = ∫
𝜗a

[
(1 − Sr)𝛁 ·u̇ + 𝜙

𝜕Sr

𝜕s
ṗw +

(
𝜙(1 − Sr)

Ka
− 𝜙

𝜕Sr

𝜕s

)
ṗa

]
dV

− ∫
𝛁 𝜗a · va

dV − ∫Γqa

𝜗aq̄adA.
(21)

Motivated by the return mapping algorithm58 that uses the standard backward implicit scheme for a stress-point integration, we

adopt the backward implicit scheme to integrate the variational forms of the mass balance equations of pore water and pore air.

Let Δt be the time increment, at time step n + 1; we have
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ℳw = ∫
𝜗w

[
Sr 𝛁 ·Δu − 𝜙

𝜕Sr

𝜕s
Δpw + 𝜙

𝜕Sr

𝜕s
Δpa

]
dV − Δt∫

𝛁 𝜗w · vw
dV − Δt∫Γqw

𝜗wq̄wdA, (22)

ℳa = ∫
𝜗a

[
(1 − Sr)𝛁 ·Δu + 𝜙

𝜕Sr

𝜕s
Δpw

]
dV + ∫

𝜗a

(
𝜙(1 − Sr)

Ka
− 𝜙

𝜕Sr

𝜕s

)
ΔpadV

− Δt∫
𝛁 𝜗a · va

dV − Δt∫Γqa

𝜗aq̄adA,
(23)

where Δu = un+1 −un, Δpw = pw,n+1 −pw,n, and Δpa = pa,n+1 −pa,n. Next, we conduct the variations on the momentum balance

and the mass balance equations of pore water and pore air, respectively. For the momentum balance equation, its variational

form can be written as

𝛿𝒢 = ∫
𝛁s𝜼 ∶

[
𝜕𝝈′

𝜕𝛁su
∶ 𝛁s𝛿u + 𝜕𝝈′

𝜕s
𝛿s − Sr1𝛿pw + (Sr − 1)1𝛿pa

]
dV − ∫

𝜼 · g𝛿𝜌dV , (24)

where Sr = 𝜕Sr
𝜕s

s + Sr, and assuming that air is weightless, 𝛿𝜌 = 𝜌w𝜙
𝜕Sr
𝜕s
(𝛿pa − 𝛿pw) for an infinitesimal deformation. The

variational form of the balance of the water phase for a fixed surface flux of pore water is

𝛿ℳw = ∫
𝜗w

[
Sr 𝛁 ·𝛿u − 𝜙̃

𝜕Sr

𝜕s
𝛿pw

]
dV + ∫

𝜗w𝜙̃
𝜕Sr

𝜕s
𝛿padV − Δt∫

𝛁 𝜗w · 𝛿vw
dV , (25)

where 𝜙̃ = 𝛁 ·Δu + 𝜙. Similarly, the variational form of the balance equation of the air phase for a fixed surface flux of pore

air can be written as

𝛿ℳa = ∫
𝜗a

[
(1 − Sr)𝛁 ·𝛿u +

(
𝜙̃ + 𝜙

Ka
Δpa

)
𝜕Sr

𝜕s
𝛿pw

]
dV

+ ∫
𝜗a

[
𝜙(1 − Sr)

Ka
−
(
𝜙̃ + 𝜙

Ka
Δpa

)
𝜕Sr

𝜕s

]
𝛿padV − Δt∫

𝛁 𝜗a · 𝛿va
dV .

(26)

2.4 Generalized Darcy's law for water and air
The pore water flow and pore air flow can be described by the generalized Darcy's law54,59 as follow:

vw = −krwkw · (𝛁 pw + 𝜌wg) , (27)

va = −kraka · (𝛁 pa + 𝜌ag) , (28)

where kw = kw1 and ka = ka1 are the intrinsic permeabilities of pore water and pore air in the solid, respectively; krw and kra
are the relative permeabilities related to the pore water phase and the pore air phase, respectively. Both relative permeabilities

are dependent on the effective degree of saturation that is defined in the next section. With the generalized Darcy's law at hand,

we can write out the variational forms of flux terms in Equations 25 and 26 as follows:

𝛿vw = −krwkw · 𝛁 𝛿pw −
[
kw · (𝛁 pw + 𝜌wg)

] 𝜕krw

𝜕s
(𝛿pa − 𝛿pw), (29)

𝛿va = −kraka · 𝛁 𝛿pa −
[
ka · (𝛁 pa + 𝜌ag)

] 𝜕kra

𝜕s
(𝛿pa − 𝛿pw), (30)

where

𝜕krw

𝜕s
= 𝜕krw

𝜕Sr

𝜕Sr

𝜕s
, and

𝜕kra

𝜕s
= 𝜕kra

𝜕Sr

𝜕Sr

𝜕s
. (31)

Substituting Equations 29 and 30 into the last terms on the right-hand side of Equations 25 and 26 generates,

−Δt∫
𝛁𝜗w · vw

dV = Δt∫
𝛁 𝜗w ·

[
kw · (𝛁 pw + 𝜌wg)

] 𝜕krw

𝜕s
(𝛿pa − 𝛿pw)dV

+ Δt∫
𝛁 𝜗w · (krwkw) · 𝛁 𝛿pwdV ,

(32)
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−Δt∫
𝛁 𝜗a · va

dV = Δt∫
𝛁 𝜗a ·

[
ka · (𝛁 pa + 𝜌ag)

] 𝜕kra

𝜕s
(𝛿pa − 𝛿pw)dV

+ Δt∫
𝛁 𝜗a · (kraka) · 𝛁 𝛿padV .

(33)

2.5 Stabilization formulation for low-order mixed finite elements
In this part, we present stabilized formulations of mass balance equations of pore water and pore air to use a three-phase version

of stabilized Q4P4 elements8,49,50,60-62 instead of Q9P4 elements (eg, the Taylor-Hood element63) for two-phase coupled solid

deformation-diffusion problems. Here, “Q” refers to the number of solid skeleton displacement nodes, and “P” refers to the

number of pore fluid pressure nodes. In this case, for each element, there are 4 nodes and each node has 4 degrees of freedom (2

for displacement, 1 for pore water pressure, and 1 for pore air pressure) under the plane strain condition. The purpose of using

stabilized low-order mixed finite elements is twofold. First, from a computation point of view, using low-order mixed finite ele-

ments rather than high-order mixed finite elements (eg, the Taylor-Hood elements) to spatially discretize the three-phase field

equations dramatically reduces the numerical problem size (ie, the total degree of freedom) that favors large-scale computa-

tions. Second, standard low-order mixed finite elements without stabilization (ie, the equal order interpolation of displacement

and pore pressure variables) has a notorious instability issue in the form of spurious pressure oscillation, which is generally

recognized as the result of the mixed finite elements violating the inf-sup condition.64-68 Several methods have been formulated

to stabilize the low-order mixed finite element, for instance, the Galerkin least-squares method,69 the variational multiscale

technqiue,70 and the Polynomial-Pressure-Projection (PPP) approach.71,72 We refer Truty and Zimmermann73 and Preisig and

Prévost74 for further discussions on this topic.

The formulation here is based on the PPP technique originally developed for Stokes flow71,72 and later applied to porome-

chanics problems.8,49,50,60-62 For the three-phase poromechanics problem, here, the application of the PPP techinque leads to a

twofold saddle point problem75 like the one recently formulated for porous media with double porosity in Choo and Borja.50

Recall the original PPP technique for two-phase poromechanics with single porosity,49 and the projection operator for the water

and air phases can be written as

Πpw|e = 1

Ve ∫e
pwdV , and Πpa|e = 1

Ve ∫e
padV , (34)

where Ve is the volume of the element. The value of the projected pore water pressure and pore air pressure within each element

is simply equal to the element average of pw and pa, respectively. The temporal discretized versions of the balance equations of

pore water and pore air are modified with additional terms as follows:

ℳw +ℳstab
w = 0, and ℳa +ℳstab

a = 0, (35)

where

ℳstab
w = ∫

𝜏

2G
(𝜗w − Π𝜗w) (Δpw − ΠΔpw) dV , (36)

ℳstab
a = ∫

𝜏

2G
(𝜗a − Π𝜗a) (Δpa − ΠΔpa) dV . (37)

Here, G is the shear modulus of the solid skeleton and 𝜏 > 0 is a constant multiplier.49 Then, we have the variational forms of

ℳstab
w and ℳstab

a as follows:

𝛿ℳstab
w = ∫

𝜏

2G
(𝜗w − Π𝜗w) (𝛿pw − Π𝛿pw) dV , (38)

𝛿ℳstab
a = ∫

𝜏

2G
(𝜗a − Π𝜗a) (𝛿pa − Π𝛿pa) dV . (39)

In summary, the variational forms of the momentum balance of the mixture, the pore water mass balance, and the pore air mass

balance at time step n + 1 are as follows :

𝛿𝒢 = ∫
𝛁s𝜼 ∶ 𝜕𝝈′

𝜕𝛁su
∶ 𝛁s𝛿udV + ∫

𝛁s𝜼 ∶ 𝜕𝝈′

𝜕s
(𝛿pa − 𝛿pw)dV − ∫

𝛁s𝜼 ∶ 1Sr𝛿pwdV

+ ∫
𝛁s𝜼 ∶ 1(Sr − 1)𝛿padV − ∫

𝜼 · g𝛿𝜌dV ,

(40)
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𝛿ℳw = ∫
𝜗wSr 𝛁 ·𝛿udV − ∫

𝜗w𝜙̃
𝜕Sr

𝜕s
𝛿pwdV − Δt∫

𝛁 𝜗w · kw · (𝛁 pw + 𝜌wg) 𝜕krw

𝜕s
𝛿pwdV

+ ∫
𝜏

2G
Π̃𝜗wΠ̃𝛿pwdV + Δt∫

𝛁 𝜗w · (krwkw) · 𝛁 𝛿pwdV

+ ∫
𝜗w𝜙̃

𝜕Sr

𝜕s
𝛿padV + Δt∫

𝛁 𝜗w · kw · (𝛁 pw + 𝜌wg) 𝜕krw

𝜕s
𝛿padV ,

(41)

𝛿ℳa = ∫
𝜗a(1 − Sr)𝛁 ·𝛿udV + ∫

𝜗a

(
𝜙̃ + 𝜙

Ka
Δpa

)
𝜕Sr

𝜕s
𝛿pwdV

− Δt∫
𝛁 𝜗a · ka · 𝛁 pa

𝜕kra

𝜕s
𝛿pwdV + ∫

𝜗a

[
𝜙(1 − Sr)

Ka
−
(
𝜙̃ + 𝜙

Ka
Δpa

)
𝜕Sr

𝜕s

]
𝛿padV

+ Δt∫
𝛁 𝜗a · ka · 𝛁 pa

𝜕kra

𝜕s
𝛿padV + ∫

𝜏

2G
Π̃𝜗aΠ̃𝛿padV

+ Δt∫
𝛁 𝜗a · (kraka) · 𝛁 𝛿padV .

(42)

Here, the operator Π̃ = 1 − Π and Π is defined in Equation 34. Note that the constitutive model for the solid phase and a

soil-water characteristic curve will be introduced in Section 3.

2.6 Discretization in the mixed finite element spaces and the global tangent operator
The basic variables in this formulation are displacements of the solid skeleton u, pore water pressure pw, and pore air pressure

pa. The weighting functions and the solutions of u, pw, and pa are expressed in terms of their of nodal values as

𝜼 = Nucu, and u = Nuu, (43)

𝜗w = Nwcw, and pw = Nwpw, (44)

𝜗a = Naca, and pa = Napa, (45)

where Nu, Nw, and Na are the global shape functions for the displacement of the solid skeleton, pore water pressure and pore air

pressure, respectively. cu, cw, and ca are vectors of the variations of the displacement of the solid skeleton, pore water pressure

and pore air pressure, respectively. u, pw, and pa are vectors of the solutions of the displacement of the solid skeleton, pore water

pressure, and pore air pressure, respectively. Let

B = 𝛁sNu, b = 𝛁 ·Nu, Ew = 𝛁Nw, and Ea = 𝛁Na. (46)

Then, the application of standard finite element discretisation procedure76 results in the following 3 balance equations at time

step n + 1,

∫
BT [𝝈′ − Srpw1 − (1 − Sr)pa1

]
dV = ∫

NT
u𝜌gdV + ∫Γt

NT
u t̄dA, (47)

∫
NT

wSr 𝛁 ·ΔudV + ∫
NT

w𝜙
𝜕Sr

𝜕s
ΔsdV − Δt∫

ET
wvw

dV

+ ∫
𝜏

2G
Π̃NT

wΠ̃ΔpwdV = Δt∫qw

NT
wq̄wdA,

(48)

∫
NT

a (1 − Sr)𝛁 ·ΔudV − ∫
NT

a𝜙
𝜕Sr

𝜕s
ΔsdV + ∫

NT
a
𝜙(1 − Sr)

Ka
ΔpadV

− Δt∫
ET

a va
dV + ∫

𝜏

2G
Π̃NT

a Π̃ΔpadV = Δt∫qa

NT
a q̄adA,

(49)

where Δs = Δpa − Δpw and T is the transpose operator. Accordingly, we can express 𝛿𝒢 , 𝛿ℳw, and 𝛿ℳa for the kth iteration

at time step n + 1 as follows:
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𝛿𝒢 = Kuu𝛿u + Kuw𝛿pw + Kua𝛿pa, (50)

𝛿ℳw = Kwu𝛿u +
(
K1

ww + ΔtK2
ww + K3

ww
)
𝛿pw +

(
K1

wa + ΔtK2
wa
)
𝛿pa, (51)

𝛿ℳa = Kau𝛿u + (K1
aw + ΔtK2

aw)𝛿pw +
(
K1

aa + ΔtK2
aa + K3

aa
)
𝛿pa. (52)

From Equations 50, 51, and 52, we can express the global tangent operator as

 =
⎡⎢⎢⎣

Kuu Kuw Kua

Kwu K1
ww + ΔtK2

ww + K3
ww K1

wa + ΔtK2
wa

Kau K1
aw + ΔtK2

aw K1
aa + ΔtK2

aa + K3
aa

⎤⎥⎥⎦ . (53)

Here, the expressions for submatrices in Equation 53 are as follows:

Kuu = ∫
BT ∶ 𝜕𝝈′

𝜕𝛁su
∶ BdV , (54)

Kuw = −∫
BT ∶ 𝜕𝝈′

𝜕s
NwdV − ∫

bTSrNwdV , (55)

Kua = ∫
BT ∶ 𝜕𝝈′

𝜕s
NadV + ∫

bT (Sr − 1)NadV , (56)

Kwu = ∫
NT

wSrbdV , (57)

K1
ww = −∫

NT
w𝜙̃

𝜕Sr

𝜕s
NwdV , (58)

K2
ww = ∫

ET
w(krwkw)EdV − ∫

ET
wkw(𝛁 pw + 𝜌wg)𝜕krw

𝜕s
NwdV , (59)

K3
ww = ∫

𝜏

2G
Π̃NT

wΠ̃NwdV , (60)

K1
wa = ∫

NT
w𝜙̃

𝜕Sr

𝜕s
NadV , (61)

K2
wa = ∫

ET
wkw(𝛁 pw + 𝜌wg)𝜕krw

𝜕s
NadV , (62)

Kau = ∫
NT

a (1 − Sr)bdV , (63)

K1
aw = ∫

NT
a

(
𝜙̃ + 𝜙

Ka
Δpa

)
𝜕Sr

𝜕s
NwdV , (64)

K2
aw = −∫

ET
a ka(𝛁 pa + 𝜌ag)𝜕kra

𝜕s
NwdV , (65)

K1
aa = ∫

NT
a

[
𝜙(1 − Sr)

Ka
−
(
𝜙̃ + 𝜙

Ka
Δpa

)
𝜕Sr

𝜕s

]
NadV , (66)

K2
aa = ∫

ET
a (kraka)EadV + ∫

ET
a ka(𝛁 pa + 𝜌ag)𝜕kra

𝜕s
NadV , (67)

K3
aa = ∫

𝜏

2G
Π̃NT

a Π̃NadV . (68)
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3 CONSTITUTIVE LAWS

The computational model above is general because we do not define any constitutive model for the solid skeleton and a soil-water

characteristic model for the relationship between suction and water content (eg, the degree of water saturation). To close the

numerical model, we briefly introduce an elastoplastic constitutive model for the solid skeleton and a soil-water characteristic

curve. For the constitutive model and the soil-water retention model, the difference from the previous formulations (eg, Borja

et al8) is that in this article pore air pressure is explicitly considered in both models.

3.1 The elastoplastic model for the solid skeleton
The elastoplastic constitutive model for the solid phase is formulated based on an additive decomposition of the total strain of

the solid phase in line with the infinitesimal strain theory.

𝝐 = 𝝐e + 𝝐p, (69)

where 𝝐 is the total strain tensor, 𝝐e and 𝝐p are the elastic strain tensor and plastic strain tensor, respectively. The elastic defor-

mation of the solid phase is determined from a stored energy function Ψ = Ψ(𝝐e).34,77 The effective Cauchy stress tensor is then

obtained from the hyperelastic constitutive equation,

𝝈′ = 𝜕Ψ
𝜕𝝐e . (70)

To express the yield function via the 3 stress invariants of the effective stress tensor 𝝈
′
, we define the mean effective stress p,

the deviatoric stress q, and Lode's angle 𝜃 as

p = 1

3
tr(𝝈′), q =

√
3

2
||s||, 1√

6
cos(3𝜃) = tr(s3)

𝜒3
, (71)

where s = 𝝈
′ − p1 and 𝜒2 = tr(s2). Then we define the yield surface as a function of effective stress, suction stress and degree

of saturation Sr,

F = 𝜁q + p𝜂 ⩽ 0, (72)

where 𝜁 = 𝜁 (𝜌, 𝜃) with 𝜌 as a scaling function determined by the ellipticity of yield surface on the 𝜋 plane, and 𝜂 is the maximum

stress ratio that reads,

𝜂 = (M∕N)
[
1 − (1 − N)(p∕p̄i)N∕(1−N)] and p̄i = (1 − N)(N−1)∕Np̄c for N > 0, (73)

where M is the slope of the critical state line, N defines the shape of the yield function, p̄i is an intermediate plastic variable,78-80p̄c
is the effective apparent preconsolidation pressure, and e is the natural number. The plastic internal variable −p̄c has the physical

significance of being the distance from the origin of the stress space to the ‘nose’ of the yield surface on the compression cap.

To describe the influence of the suction and degree of saturation on the yield surface, we use the notion of a bonding variable

𝜉7,34,81 that reads

𝜉 = f (s)(1 − Sr), f (s) = 1 +
s∕patm

10.7 + 2.4(s∕patm)
, (74)

TABLE 1 Material parameters for the constitutive

model of the solid phase8,78,79

Symbol Value Parameter

𝜅̃ 0.03 Compressibility

p0 −0.1 MPa Reference pressure

𝜇0 20 MPa Shear modulus

M 1.2 Critical state parameter

𝜆̃ 0.11 Compressilibity parameter

N 0.4 Yield surface parameter

h 280 Hardening modulus

𝜈c0 1.80 Reference specific volume

𝜌 7/9 Ellipticity

𝛼 −3.5 Limit dilatancy parameter
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FIGURE 1 A soil water characteristic curve

TABLE 2 Material parameters for the flow of pore water and pore air

Symbol Value Parameter

kw 0.5 × 10−6 m/s Saturated permeability of pore water

ka 0.5 × 10−8 m/s Saturated permeability of pore air

S1 0.0 Soil-water retention model parameter

S2 1.0 Soil-water retention model parameter

n 2.0 Soil-water retention model parameter

sa 10.0 kPa Air entry pressure

c1 0.185 kPa Parameter of 𝜉81

c2 1.49 Parameter of 𝜉81

patm 101.3 kPa Atmospheric pressure

FIGURE 2 Relative permeabilities of pore water and pore air

where patm = 101.3 kPa is the atmosphere pressure. The equivalent preconsolidation pressure p̄c is then given by

p̄c = − exp[a(𝜉)](−pc)b(𝜉), (75)

where c(𝜉), a(𝜉) and b(𝜉) are functions of 𝜉.34,81

The plastic flow is assumed as the associative, that is, the plastic potential function is the same as Equation 72. Finally, the

return mapping algorithm with the spectral decomposition in the principal strain space is used to implement this model at the
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material point level (refer to Borja et al8 for details). As a byproduct, the material subroutine also provides the consistent tangent

operator at the material point level. Table 1 shows input parameters for the solid phase under the fully saturated condition.

3.2 Soil-water characteristic curve and relative permeabilities
Soil water characteristic curve (or soil water retention law) is a fundamental law in modeling deformation and fluid flow in

unsaturated soils4,82 that builds a relationship between the water content and water potential. In this article, we use the van

Genuchten equation48 to describe the soil-water characteristic curve as follows:

Sr = S1 + (S2 − S1)
[

1 +
(

s
sa

)n]−m

, (76)

where sa is the air entry value and S1, S2, n, and m = (n−1)∕n are fitting parameters. Let the effective degree of saturation48𝛼 be

𝛼 = Sr − S1

S2 − S1

. (77)

FIGURE 3 Contours of A, initial suction (unit: kPa) assuming zero initial air pressure and B, initial degree of saturation superimposed of sample

#1 on the undeformed mesh

FIGURE 4 Contours of A, volumetric strain and B, shear strain of sample #1 at a nominal axial strain of 5%. Note: The dashed black line

delineates the localized deformation zone and its potential propagation path
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Then, the relative permeabilities of the water phase and the air phase are assumed as1,48

krw = 𝛼1∕2
[
1 −

(
1 − 𝛼1∕m)m]2

, (78)

kra = (1 − 𝛼)1∕2
(
1 − 𝛼1∕m)2m

, (79)

where m is the same material parameter in Equation 76. Figure 1 shows a water retention curve based on the parameters in

Table 2. Figure 2 presents the relative permeabilities of pore water and pore air, respectively.

4 NUMERICAL SIMULATIONS

In this section, we conduct the numerical simulation of unsaturated soil samples under the plane strain condition via the

three-phase computational framework. We first run simulations of 2 samples with an initial heterogeneous state either in suc-

tion or dry density. We investigate the evolution of pore air pressure across the localized zone and its potential impact on the

FIGURE 5 Contours of A, initial pore water pressure (unit: kPa) and B, pore water pressure (unit: kPa) of sample #1 at a nominal axial strain of

5% (arrows represent water flow direction) superimposed on the undeformed sample domain

FIGURE 6 Contours of pore air pressure (unit: kPa, and arrows represent air flow direction) (A), and the drained localization function8 (B) in

sample #1 at a nominal axial strain of 5% superimposed on the undeformed sample domain
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inception of strain localization. Secondly, we compare the numerical results via the three-phase model and the two-phase for-

mulation assuming passive air pressure, respectively. Finally, we conduct the simulations of an unsaturated soil sample with

both coarse and finer meshes to study the mesh sensitivity of the numerical results.

All samples are 5 cm wide and 10 cm high. Except for the mesh sensitivity analysis, the samples are discretized by 200 equal

stabilized trilinear quadrilateral elements. The stabilized low-order (trilinear) quadrilateral elements8,49,71,83 are used to suppress

spurious pore pressure oscillations in the incompressible and nearly incompressible regimes. For the mechanical boundary

conditions, the bottom of each rectangular specimen is fixed in the vertical direction except that the left corner is pinned for

the stability. The lateral sides of each sample are prescribed with constant confining pressure, 100 kPa. A vertical displacement

is assigned on the top of the specimen as a loading protocol. For the fluid flow boundary conditions, zero flux of pore water

and pore air are prescribed on all boundaries. For all samples, the initial pore air pressure is assumed as passive atmospheric

pressure. However, the three-phase framework will track the evolution of pore air pressure in the coupled processes of solid

deformation and fluid flow.

4.1 Compression of heterogeneous samples under the plane strain condition
In this part, we run numerical simulations of 2 unsaturated soil samples under the plane strain condition. A heterogeneous initial

state either in suction or density is prescribed in the sample as described in the succeeding text. To simulate a local drained

condition, we prescribe a displacement loading rate 0.001 mm/s on the top of each sample that may be treated as a quasi-static

FIGURE 7 Snapshots of the contour of pore air pressure (unit: kPa) at the load time step A, 50, B, 150, C, 350, and D, 450, superimposed on the

undeformed mesh
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loading condition (refer to Song and Borja7 for detailed discussions). The temporal increment for each load step is 1 second.

The simulations are terminated when a developed localized deformation zone forms in the sample.

For Case #1, we run simulations of a sample (sample #1) with an initial heterogeneity in the form of suction. For the simplicity,

the initial random suction field is generated by the standard random function on MATLAB. We refer the reader to Meftah et al14

and others84,85 for more complex methods of generating random data for modeling the heterogeneity effect of geomaterials.

There are 231 sample suction points corresponding to 231 nodes in the problem domain. That is, the suction is assigned on the

global nodal point. The range of the initial random suction is [10.02, 14.98] (unit: kPa) with a mean value 12.49 and a standard

deviation 1.45. The initial degree of saturation of each element node in the sample is computed from Equation 76. Note here

we assume that the degree of saturation of each element node is independent of the volumetric strain of the same material point

for the formulation based on the small strain theory (refer to Song and Borja7 for a strain-dependent soil-water retention law).

Figure 3A,B shows the contours of initial suction and initial degree of saturation superimposed on the undeformed mesh of

the problem domain, respectively. Figure 3A represents a heterogeneous state of suction in the sample. Therefore, under the

homogeneous boundary condition and a loading protocol favoring homogeneous deformation, we can expect that the localized

deformation in the sample would be triggered by the initial heterogeneity in suction.

To demonstrate the localized deformation, we report the numerical results at a nominal axial strain of 5%. Figure 4 portrays the

contours of the volumetric strain and shear strain in the sample at the same nominal axial strain of 5%. Firstly, from Figure 4A,

FIGURE 8 Typical global convergence of Newton iterations for sample #1

FIGURE 9 Contours of the initial specific volume (A) and the final specific volume (B) of sample #2 at a nominal axial strain of 5%
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we obviously observe that the a localized deformation zone forms in the sample from the right upper corner to the middle of the

left side of the sample. Furthermore, Figure 4A illustrates that the volumetric strain in the localized deformation zone is smaller

than that outside the localized zone. However, the deviatoric (or shear) strain in the localized zone as shown in Figure 4B is

much greater than that outside the localized deformation zone. As in Borja,86 we may conclude the localized deformation in the

sample is a compaction shear band.

Next, we present the results of pore water pressure and pore air pressure. To demonstrate the evolution of pore water pressure

and pore air pressure, we compare their final states with their initial states, respectively. Figure 5A,B presents the contours

of initial pore water pressure and pore water pressure at a nominal axial strain of 5.0%. From Figure 5, we observe that the

distribution of pore water pressure becomes relatively uniform although we can observe a localized zone in the sample. The

water flows into the localized zone as shown by the flux arrows in Figure 5B. This result may be explained by the fact that

the pore water pressure is smaller (more negative) inside the localized zone than that outside the localized zone. Figure 6A,B

shows the contour of the pore air pressure and the drained localized function34 at a nominal axial strain of 5.0%, respectively.

From Figure 6A, we observe that pore air pressure is nonzero in the sample under the global undrained condition. Furthermore,

FIGURE 10 Contours of (A) volumetric strain and (B) shear strain in sample #2 at a nominal axial strain of 5.0%. Note: The dashed black line

delineates the localized deformation zone and its potential propagation path

FIGURE 11 Contours of pore water pressure (A) and pore air pressure (B) in sample #2 at a nominal axial strain of 5%. Note: The unit in the

contour legend is kPa
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Figure 6A demonstrates that pore air pressure in the localized zone have a relatively smaller value than that outside the localized

zone in the sample. This fact is also corroborated by the phenomenon that the pore air flux into the localized zone as shown

by the flux arrows in Figure 6A. Figure 6A,B shows that the localized zone of pore air pressure is consistent with the localized

deformation zone in the sample as demonstrated by the similarity of the contour patterns in both figures. To study the evolution

of pore air pressure in the sample during the loading process, we present the snapshots of the contour of pore air pressure at 4

load steps in Figure 7. These 4 snapshots of the contour of pore air pressure share the same contour legend. The pore air pressure

in these snapshots is nonzero in the sample, as it may be expected for the simulation under a global undrained condition of pore

water and pore air. Also, the distribution of pore air pressure in the sample becomes heterogeneous from its initial homogeneous

state (ie, the atmospheric pressure). Moreover, Figure 7A shows that pore air pressure at some nodal points is negative. Clearly,

those observed phenomena cannot be captured by a two-phase computational framework assuming passive air pressure. Note

that the absolute pore air pressure equals to the summation between the value of the contour and the atmospheric pressure.

Finally, Figure 8 illustrates typical global convergence profiles of Newton iterations. Figure 8 demonstrates that the simula-

tions have a quasi-quadratic convergence rate for sample #1 that is a typical characteristic of Newton's method. We achieve this

optimal convergence rate by implementing a global consistent tangent operator and a local consistent tangent operator from the

material subroutine via the classic return mapping algorithm for computational plasticity.58,86

For Case #2, we run simulations of an unsaturated soil sample (sample #2) with an initial heterogeneous state in the specific

volume and a uniform suction in the sample. The initial state of the specific volume is also generated by the random function on

FIGURE 12 Snapshots of the contour of pore air pressure (unit: kPa) at load steps of A, 100, B, 200, C, 300, and D, 450
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MATLAB. The sample points of the heterogeneity in the specific volume are assigned in the sample by an element-by-element

fashion (ie, all Gauss points of the same element have the same specific volume) that is different from the method used for

sample #1. Because there are total 200 equal elements in the sample, we only need to generate 200 sample points for the specific

volume. That is, each element has a uniform initial specific volume. The initial water pressure in the sample is prescribed as

−10 kPa, and pore air pressure is assumed as zero. Figure 9A shows the contour of a realization of initial specific volume in the

sample. The range of the specific volume shown in Figure 9A is [1.55, 1.72] with a mean value 1.64 and a standard deviation

0.048. In the numerical model, for all Gauss points in each element, we assume they share the same initial specific volume. To

show a relatively developed localized deformation zone in sample #2, we report the numerical results at a nominal axial strain

of 5%. Figure 9B shows the contour of the heterogeneous specific volume of the sample superimposed on the undeformed mesh

at a nominal axial strain of 5%.

Figure 10 shows the contours of the volumetric strain and shear strain in sample #2 at a nominal axial strain of 5%. From

Figure 10A,B, we observe that a compact shear band forms in the sample from the left corner to the upper left side of the

sample. Figure 11 shows the contours of pore water pressure and pore air pressure in the sample at a nominal axial strain of

5.0%. From Figure 11A, we observe that pore water pressure inside the localized deformation zone is smaller (negative) than

that outside the localized zone. Similarly, pore air pressure within the localized deformation area is smaller than that outside

the localized area. To study the evolution of pore air pressure in the loading process, we present the snapshots of the contour

FIGURE 13 Typical global convergence of Newton iteration for sample #2

FIGURE 14 Contours of water pressure, A, from three-phase model, B, from the two-phase model assuming passive air pressure at an axial

nominal strain of 5% for sample #1
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of pore air pressure in sample #2 at 4 loading steps as shown in Figure 12. In Figure 12, we use different contour legends for

each contour of pore air pressure to better capture the heterogeneity and evolution of pore air pressure in the sample. Figure 12

clearly demonstrates that pore air pressure is nonuniform in the problem domain through the loading process. At the load step

of 300, a banded zone of lower pore air pressure forms from the lower left corner to the upper right side of sample #2. This

banded zone is consistent with the localized deformation zone in the sample as shown in Figure 10.

Finally, Figure 13 shows the typical global convergence profiles of Newton's method for sample #2. From Figure 13, we

conclude that the optimal convergence rate is obtained for the numerical simulation of sample #2.

4.2 Comparison with results obtained from the pseudo three-phase formulation
In this part, we compare the numerical results above with that from the two-phase model by assuming passive pore air pressure

throughout the sample domain. We rerun the simulation of samples #1 and #2 via the two-phase model (ie, constant atmospheric

pressure) under the same initial and boundary conditions and the same loading rate.

FIGURE 15 Contours of volumeric strain, A, from three-phase model, B, from the two-phase model assuming passive air pressure at an axial

nominal strain of 5% for sample #1

FIGURE 16 Contours of deviatoric strain, A, from three-phase model, B, from the two-phase model assuming passive air pressure at an axial

nominal strain of 5%
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We first compare the results from both frameworks for sample 1. Figure 14 shows the contours of pore water pressure in

the sample from both models at the same nominal axial strain of 5%. We observe from Figure 14 that the absolute value

of pore water pressure predicted from the three-phase model is smaller than that from the two-phase model. Furthermore,

Figure 14 demonstrates that for sample 1, pore water pressure from the two-phase model is more uniform than the result from

the three-phase model. Figure 15 shows the contours of volumetric strain from the simulations via both computational models,

respectively, at a nominal axial strain of 5%. From Figure 15, we observe the distribution and the range of the volume strain

based on both models are not identical. It turns out the volume strain from the three-phase model is more localized than that from

the two-phase model. Figure 16A,B shows the contours of the shear strain in the sample via both frameworks, respectively, at a

nominal axial strain of 5%. From Figure 16A,B, we observe both frameworks can simulate the localized deformation sample#

under the same initial and boundary conditions. However, the three-phase model predicts a larger shear strain in sample #1 than

the two-phase model does.

Next, we present the simulation results of sample #2 from the two-phase model and compare them with the results from the

three-phase model. Figure 17A,B shows the contours of pore water pressure from the two-phase model and three-phase model,

FIGURE 17 Contours of water pressure, A, from two-phase model assuming passive air pressure, B, from the three-phase model at an axial

nominal strain of 5%

FIGURE 18 Contours of A, volumetric strain and B, shear strain from the two-phase model assuming passive air pressure at an axial nominal

strain of 5%
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respectively, at the same nominal axial strain 5%. From Figure 17A,B, we observe that the contour of pore water pressure from

both models shares a similar pattern. However, the absolute value of pore water pressure from the three-phase model is smaller

than that predicted from the two-phase model. Refer to the pore air pressure in sample #2 at the same axial strain as shown in

Figure 11B, the smaller absolute value of negative pore water pressure from the three-phase model can be explained by the fact

that the suction is partially transferred to the positive pore air pressure in the three-phase model. However, the two-phase model

assuming the passive pore air pressure cannot capture the evolution of pore pressure in the coupled multiphysical processes.

Figure 18A,B presents the contours of volumetric strain and shear strain in sample #2 at a nominal axial strain of 5%. From

Figure 18, we observe that both volume strain and deviatoric strain show similar localized patterns from the left corner to the

middle of the right side of the sample. The result from the two-phase model is consistent with that predicted from the three-phase

model as illustrated in Figure 10. However, the two-phase model cannot simulate the evolution of pore air pressure in the sample.

In summary, by comparing the numerical results obtained by both formulations, we demonstrate that the triphasic formulation

can capture more physical information such as the heterogeneity of pore air pressure and the air flow in the pore space than the

equivalent two-phase formulation. Furthermore, the variation of pore air pressure captured by the three-phase model may be

important for modeling localized deformation triggered by initial heterogeneous suction (eg, sample #1).

FIGURE 19 Contours of the initial specific volume in the A, coarse mesh and in the B, finer mesh

FIGURE 20 Contours of pore air pressure from the simulations via the A, coarse mesh and via the B, finer mesh at an axial nominal strain of 5%
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4.3 Mesh sensitivity analysis
The numerical simulations presented in this article is based on the mixed finite element method. The finite element method has

pathological issues in simulating localized deformation in materials as discussed in De Borst et al.22 To test the mesh sensitivity

of the numerical results presented here, we conduct simulations of sample #2 with a finer mesh as shown in Figure 19A.

All simulations are conducted with the three-phase model. Figure 19A,B shows that the contours of initial specific volume

superimposed on the coarse mesh and finer mesh, respectively. The finer mesh is generated from the coarse mesh by vertically

dividing each element in the coarse mesh into 2 equal elements. Both equal elements are assigned with the same initial specific

volume as the corresponding element in the coarse mesh has.

Figure 20A,B shows the contours of pore air pressure from the simulations via both meshes, respectively. From Figure 20A,B,

we do not observe a significant difference between the results from both meshes although the results from the finer mesh

have a higher resolution. Figure 21A,B portrays the contours of volumetric strain in sample #2 from the simulations via the

coarse mesh and finer mesh, respectively. From Figure 21, we can identify subtle difference between both numerical results.

For example, the contour of the volumetric strain from the simulation via the finer mesh shows a narrower localized zone from

the left bottom corner to the middle of the right side of the sample. In this zone, the volumetric strain is smaller than that

outside the localized zone. However, the contour of the volumetric strain from the simulation via the coarse mesh shows a wider

FIGURE 21 Contours of volumetric strain from the simulations via the A, coarse mesh and via the B, finer mesh at an axial nominal strain of 5%

FIGURE 22 Contours of deviatoric strain from the simulations via the A, coarse mesh and via the B, finer mesh at an axial nominal strain of 5%.

Note: The dashed black line delineates the localized deformation zone and its potential propagation path
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localized zone. This mild contrast shown in Figure 21 demonstrates that the numerical results have a mild sensitivity on the

mesh. Figure 22A,B presents the contours of shear strain from the simulations via the coarse and finer meshes, respectively, at

a nominal axial strain of 5%. Figure 22 demonstrates that the similar contours of shear strain are obtained from the simulations

via both meshes. Figure 23 shows the load curves from the simulations via both meshes. From Figure 23, we observe that both

curves are overlapped in the earlier stage of the load process. However, the load curve for the fine mesh shows a mild softening

effect on the later stage of the loading process (ie, the axial strain greater than 3.5%). Finally, Figure 24 shows the optimal

convergence rates obtained at sample load steps for the simulations with the finer mesh.

4.4 Remarks on the mild mesh sensitivity
The physical reason behind this observed mild mesh sensitivity may be related to the rate dependent term (ie, generalized Darcy's

law) in the mass balance equations of pore water and pore air. An internal length scale that serves as a natural regularization

parameter87 could exist in the mixed finite element formulation for multiphase porous media39,88 such as the one formulated

in this article. However, as discussed in Zhang and Schrefler,39 this internal length scale may be dependent on the intrinsic

permeability of the fluid phase. We refer the reader to the previous studies39,41,89,90 for further discussions on this subject.

FIGURE 23 Load curves of sample #2 from the simulations via the coarse mesh and the finer mesh, respectively

FIGURE 24 Typical global convergence of Newton iteration for the simulations of sample #2 with the finer mesh
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5 CONCLUSION

In this article, we formulate a three-phase computational framework for solid-water-air coupling in unsaturated porous media

to investigate strain localization in such a solid-water-air system. To obtain an optimal convergence rate, we derive a global

consistent tangent operator that includes a local consistent tangent operator at the material point level. This three-phase model

is implemented via stabilized low-order mixed finite elements.Via this three-phase model, we study the evolution of pore air

pressure within unsaturated soil samples involving strain localization triggered by the initial material heterogeneity either in

density or suction. The pore air pressure in the samples becomes heterogeneous in the loading process under a global undrained

condition. We highlight the significance of the pore air phase in computational modeling of strain localization in unsaturated

soils. We find that the pore air pressure within the compact shear band formed in the samples is smaller than the pore air pressure

outside the localized zone. Numerical results imply that the three-phase model is physically more appropriate to simulate the

inception of strain localization in unsaturated soils than the two-phase formulation assuming constant pore air pressure.
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