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Simulation of field injection experiments in heterogeneous
unsaturated media using cokriging and artificial neural network
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[11 Simulations of moisture flow in heterogeneous soils are often hampered by lack of
measurements of soil hydraulic parameters, making it necessary to rely on other sources of
information. In this paper, we develop a methodology to integrate data that can be
easily obtained (for example, initial moisture content, 6;, bulk density, and soil texture)
with data on soil hydraulic properties via cokriging and Artificial Neural Network
(ANN)-based pedotransfer functions. The method is applied to generate heterogeneous
soil hydraulic parameters at a field injection site in southeastern Washington State.
Stratigraphy at the site consists of imperfectly stratified layers with irregular layer
boundaries. Cokriging is first used to generate three-dimensional heterogeneous fields of
bulk density and soil texture using an extensive data set of field-measured 6;, which carry
signature about site heterogeneity and stratigraphy. Soil texture and bulk density are
subsequently input into an ANN-based site-specific pedotransfer function to generate
three-dimensional heterogeneous soil hydraulic parameter fields. The stratigraphy at the
site is well represented by the estimated pedotransfer variables and soil hydraulic
parameters. The parameter estimates are then used to simulate a field injection experiment
at the site. A relatively good agreement is obtained between the simulated and observed
moisture contents. The spatial distribution pattern of observed moisture content as well
as the southeastward moisture movement is captured well in the simulations. In contrast to
earlier work using an effective parameter approach (Yeh et al., 2005), we are able to
reproduce the observed splitting of the moisture plume in a coarse sand unit that is
sandwiched between two fine-textured units. The simple method of combining cokriging
and ANN for site characterization provides unbiased prediction of the observed moisture
plume and is flexible so that additional measurements of various types can be included

as they become available.
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1. Introduction

[2] An accurate simulation of moisture flow in heteroge-
neous vadose zone soils is often difficult because of a lack
of site-specific soil hydraulic parameters. Because of limits
in measurement techniques, time, and/or budget, measure-
ments of soil hydraulic properties are usually sparse, espe-
cially those of moisture retention and unsaturated hydraulic
conductivity. By contrast, it is generally easier to obtain data
that contain indirect information about spatial structure and
heterogeneity of the parameters. Such data may include
moisture content, textural, geophysical data, soil-water
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pressure head, and other quantitative or qualitative infor-
mation about a site of interest. Various inverse and forward
methods have been developed to combine data of multiple
types and thereby improve predictions of flow and solute
transport in heterogeneous unsaturated media. For example,
Yeh and Zhang [1996] and Zhang and Yeh [1997] developed
a cokriging-based geostatistical inverse method to estimate
saturated hydraulic conductivity and pore size distribution
parameter of the Gardner model [ Gardner, 1958] using soil-
water pressure head and degree of saturation. Later, in
modeling three-dimensional unsteady flow, the method was
improved by including other data types [Li and Yeh, 1999; Yeh
and Liu, 2000; Liu and Yeh, 2004; Hughson and Yeh, 2000].
Although inverse modeling can improve estimation of soil
hydraulic properties, it is computationally expensive (espe-
cially for large-scale problems), because it requires an iterative
solution of Richards’ equation to improve the estimates.

[3] For many practical applications, various computation-
ally efficient forward methods have been developed to
estimate heterogeneous soil hydraulic parameters using a
variety of data types. Rockhold et al. [1996] developed a
method to generate hydraulic properties for flow and
transport modeling at the Las Cruces Trench Site using
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Figure 1. Plan view of the work of Sisson and Lu [1984]
injection test site and well numbering scheme [after Gee
and Ward, 2001].

two types of data. One type of data included initial moisture
contents and pressure heads measured before the start of a
field experiment. The other type of data included the scale-
mean (reference) values for hydraulic parameters deter-
mined from similar media upscaling. Meyer et al. [1997]
developed a Bayesian updating method to improve prior
probability distributions of soil hydraulic parameters
by incorporating sparse on-site parameter estimates. Prior
information of soil parameters obtained from literature and
similar sites was used as one data type in calculating
statistical moments (for example, mean and variance) of
parameter distributions. Wang et al. [2003] simulated large-
scale field infiltration experiments at the Maricopa site near
Phoenix, Arizona, using a hierarchy of models based on
public, generic, and site data. These data were combined
using geostatistical analyses, pedotransfer functions, and
Bayesian updating. Cassiani and Binley [2005] used bore-
hole geophysical logs to identify soil-layering structure and
generated soil hydraulic parameters using prior information
about the parameter ranges as constraints. In the preceding
studies, in general, a combination of a variety of data types
resulted in a better agreement between the observed and
simulated variables of interest.

[4] The objective of this study is to develop a new
methodology to characterize heterogeneity of soil hydraulic
parameters, and simulate an infiltration experiment at the
Sisson and Lu (hereinafter referred to as S&L) site (Figure 1)
at the U.S. Department of Energy’s Hanford Site in Wash-
ington State. The new method combines geostatistics and
Artificial Neural Network (ANN)-based pedotransfer func-
tion (PTF) methods to bridge information from multiple
types of data obtained at the S&L site. One type of data is
comprised of fitted van Genuchten parameters [van Genuchten,
1980] and saturated hydraulic conductivities for 70 core
samples [Khaleel and Freeman, 1995; Khaleel et al., 1995,
Schaap et al., 2003]. These data are, however, insufficient to
fully characterize the three-dimensional structure needed for a
model to simulate the variably saturated flow at the site. Other
types of data include initial moisture content (¢;) measured at
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the start of the field injection experiment, bulk density, and soil
texture. The extensive database of 6; carries the signature of
media heterogeneity at the site. This is evident from 6; measure-
ments, which show that larger moisture content (0) values are
representative of fine-textured media, and smaller 0 values are
representative of coarse-textured media [Ye et al., 2005]. Cross
correlations between the initial moisture content, bulk density,
and soil texture are first established based on available field
data. Cokriging is then used to generate heterogeneous three-
dimensional fields of bulk density and soil texture using the
measured 6; field as secondary information. The bulk density
and soil texture fields are subsequently input into an ANN-
based PTF to generate heterogeneous three-dimensional fields
of saturated hydraulic conductivity and van Genuchten model
parameters. The ANN is based on laboratory measurements of
soil samples obtained at the S&L site [Khaleel and Freeman,
1995; Khaleel et al., 1995; Schaap et al., 2003].

[s] The three-dimensional heterogeneous fields of soil
hydraulic parameter are used to simulate a field injection
experiment conducted by Gee and Ward [2001] at the S&L
site. The moisture movement at the S&L site, to a large
degree, is controlled by media heterogeneity and the imper-
fectly stratified irregular layer boundaries [Ye et al., 2005].
Therefore an important goal in this study is to explore how
well our new method can reproduce, without relying on
time-consuming inverse modeling, the imperfectly stratified
layers and the three-dimensional structure of the observed
moisture plume at the site. The proposed method is viewed
as a forward method, since, different from traditional inverse
methods, it does not require solving Richards’ equation
iteratively. Even though our approach requires fitting sample
variogram and training ANN, it is computationally more
efficient compared to traditional inverse methods.

[6] In this paper, section 2 describes the injection exper-
iment and summarizes previous numerical simulations of
the experiment. In section 3, following a discussion of the
variety of data used in this study, we present an integration
of cokriging and ANN. Results of geostatistical analysis and
heterogeneous fields of soil hydraulic parameters generated
by ANN are discussed in section 4, which also compares
simulated and observed moisture content of the 2000
injection experiment. Conclusions are given in section 5.

2. Description of Field Injection Experiment and
Previous Numerical Simulations

2.1.

[7] The S&L injection site (Figure 1) was originally
designed by Sisson and Lu [1984] within the 200 East Area
of the U. S. Department of Energy’s Hanford Site in
southeastern Washington State. For a description of the
S&L site, the reader is referred to the studies of Ward et
al. [2000], Gee and Ward [2001], Last and Caldwell [2001],
and Last et al. [2001]. The S&L site was used for two field
infiltration experiments: the first one in 1980 [Sisson and
Lu, 1984] and the second one in 2000 [Gee and Ward,
2001]. In the 2000 experiment, moisture content (¢) distri-
bution was measured at the 32 radially and symmetrically
arranged cased boreholes (Figure 1). The initial moisture
contents (#;), measured on 5 May 2000, reflect soil hetero-
geneity, especially the imperfectly stratified layered struc-
ture at the site [Ye et al., 2005]. Injections began on June 1

Description of the 2000 Injection Experiment
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and 4,000 liters of water were metered into an injection
point 5 m below the land surface over six hours. Similarly,
4,000 liters of water were injected in each subsequent
injection on 8, 15, 22, and 28 June. During the injection
period, neutron logging in 32 wells took place within a day
(ie., 2,9, 16, and 23 June) following each of the first four
injections. A wildfire burned close to the field site prevent-
ing immediate logging of the 6 distribution for the fifth
injection on 28 June. Three additional readings of the 32
wells were subsequently completed on 7, 17, and 31 July.
During each neutron logging, moisture contents were moni-
tored in each well at a depth interval of 0.3048 m (1 ft)
starting from a depth of 3.9625 m (13 ft) and continuing to a
depth of 16.764 m (55 ft), resulting in a total of 1,376
measurements in each of the eight observation days over a
2-month period. The extensive and dense data set provides a
unique opportunity to quantify the dynamics of moisture
movement within the vadose zone.

[8] Details on the calibration function for the neutron
measurements are given by Ye et al. [2005]. To ascertain
consistency and accuracy of the neutron readings, the 6; of
the 2000 experiment was plotted against the 6; of the 1980
experiment; the plot (not shown here) yielded an approxi-
mate 1:1 relation, suggesting that the neutron data are
consistent and reliable.

2.2. Previous Numerical Simulations at the S&L Site

[v] Several investigators analyzed, with mixed success,
the effect of heterogeneity on the 1980 moisture plume
using numerical modeling (see summary of Fayer et al.
[1995] and Rockhold et al. [1999]). For the 2000 injection
experiment, Ward et al. [2000] and Gee and Ward [2001]
illustrated three-dimensional distribution of # at the site and
evaluated spatial moments of 6 up to second order, mean
velocity in x, y, and z directions, cumulative travel distance,
and path directions. These analyses illustrate the temporal
variation of the three-dimensional ¢ field and the effect of
stratigraphy on the movement of injected water. Zhang et al.
[2004] developed a combined parameter scaling and inverse
technique (CPSIT), which uses inverse modeling to resolve
the problem of sparse measurements for soil hydraulic
parameters. Parameter upscaling was used to shorten com-
putational time. Ye et al. [2005] conducted a hierarchical
geostatistical analysis of initial moisture content to examine
the large-scale geologic structure for the entire site, and
investigated small-scale features within different layers.
Their variogram analysis shows that the initial moisture
content measurements can be viewed as a stationary field. A
visualization of the three-dimensional moisture plume evo-
lution illustrated the effect of media heterogeneity, espe-
cially the effect of imperfectly stratified layering structure,
on moisture movement. Spatial moment analysis was also
conducted to quantify the rate and direction of movement of
the plume mass center and its spatial spreading. The
resulting ratio of horizontal to vertical spreading at varying
moisture contents suggested moisture-dependent anisotropy
in effective unsaturated hydraulic conductivity, confirming
existing stochastic theories [Yeh et al., 1985a, 1985Db,
1985c]. However, the principal directions of the spatial
moments were found to vary with time as the moisture
plume evolved through local heterogeneities, a feature that
has not been recognized in theories. Using spatial moments
of three-dimensional snapshots of the moisture plume under
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transient flow conditions, Yeh et al. [2005] developed a
simple approach to estimate the effective moisture retention
and the three-dimensional upscaled unsaturated hydraulic
conductivity tensor. The effective parameters reproduced
the general behavior of the observed plume at the site.
However, because Yeh et al. [2005] conceptualized the
heterogencous media as an equivalent homogeneous medi-
um, the simulated ensemble mean behavior did not capture
the highly variable, single realization behavior of the
observed moisture plume. Ward et al. [2006] used a similar
upscaling method, and further adjusted upscaled parameters
using CPSIT. As discussed in Yeh et al. [2005], however,
the upscaled unsaturated hydraulic conductivity tensor has
its limitations in predicting the detailed behavior of plume
dynamics due to the presence of moisture diffusivity lengths
that are smaller compared to correlation scales of heteroge-
neity at the site. A higher resolution model is thus needed to
adequately represent media heterogeneity and its effect on
plume behavior.

3. Methods
3.1. Description of Multiple Data Sets

[10] Seventy data sets are available based on 70 core
samples from six boreholes. Seventeen of them are from
boreholes E-7, E-1, and A-7 [Khaleel and Freeman, 1995;
Khaleel et al., 1995], and 53 from boreholes S-1, S-2, and S-3
[Schaap et al., 2003]. The location of the boreholes is shown
in Figure 1, which shows that S-1, S-2, and S-3 are more
closely spaced than other boreholes. Each data set contains
soil hydraulic properties, including laboratory measurements
of saturated hydraulic conductivity (K, m/day), saturated
moisture content (A, cm>/cm’), residual moisture content
(6,, cm*/cm?), and van Genuchten a (1/m) and n (—). The
latter four retention variables are obtained by fitting moisture
retention data to the van Genuchten model [van Genuchten,
1980]

O 1

Se(’(/}) - 05 _ Hr - (1 + |a1/)|n)1—l/n (1)

where S, is the effective saturation and ¢ is the pressure
head. Another type of data, called pedotransfer variables in
this paper, is included in each data set. It includes bulk
density (BD, kg/m®), gravel content (>2,000 um) (GR, %),
coarse sand content (2,000 to 200 um) (CS, %), fine sand
content (200 to 50 um) (FS, %), silt content (5 to 50 pum)
(SI, %), and clay content (<5 pum) (CL, %). Descriptive
statistics of the 70 data sets are listed in Table 1. The
dominating particle fractions at the site are coarse and fine
sand. The percentage of silt is higher than that of clay, while
gravel percentage is the smallest.

3.2. Spatial Structural Analysis and Cokriging

[11] There are 1,376 measurements of initial moisture
content (#;) in the three-dimensional domain, and they can
be used as a surrogate for site heterogeneity. By contrast, the
soil hydraulic properties and PTF variables (BD, GR, CS,
FS, SI, and CL) are under-sampled (only 70 measurements
are available). We first develop three-dimensional hetero-
geneous fields of the pedotransfer variables (primary varia-
bles) using cokriging, with 6; as the secondary variable.
Each of the PTF wvariables is estimated independently. Since
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Table 1. Descriptive Statistics of the 70 Data Sets (Q1, M, and Q3 are Lower Quartile, Median, and Upper Quartile, Respectively)

Mean Variance Min Ql M Q3 Max
BD (kg/m?) 1575 8877 1394 1513 1580 1634 1870
GR (wt. %) 1.39 7.10 0.00 0.19 0.62 1.53 18.00
CS (wt. %) 76.26 303.34 23.00 70.45 80.79 89.69 97.00
FS (wt. %) 14.93 185.09 1.77 6.57 11.00 18.15 68.00
ST (wt. %) 4.77 25.57 0.00 0.00 3.39 7.78 21.93
CL (wt. %) 2.66 3.90 0.00 1.25 2.50 3.75 7.50
K (m/day) 17.68 449.10 0.12 2.89 10.72 25.78 91.22
0, (vol. %) 34.74 29.20 21.78 30.65 34.06 38.53 47.42
0. (vol. %) 3.09 1.791 0.00 2.357 2.99 3.96 6.719
o (1/m) 9.81 123.46 0.43 3.70 6.70 11.74 62.81
n (=) 2.516 2.674 1.34 1.63 1.913 2.88 11.96

the total number of samples for the PTF variables is the
same, estimating them jointly using cokriging is not expected
to improve results. The estimated PTF variables are subse-
quently used as inputs to the ANN (described in section 3.3)
to generate heterogeneous soil hydraulic parameters.

[12] Denoting Z(xz,) for each of the pedotransfer varia-
bles (BD, GR, CS, FS, SL and CL) at point X, cokriging
Z(Xzp) is a linear combination of the primary variable and the
secondary variable (initial moisture content ; denoted as Y)
via traditional ordinary cokriging [Journel and Huijbregts,
1978]

I
Zeox (X20) E ui(x20)Z(xz,;) + Y(xy,) (2)

i=1 J

J

Vj X7, 0
=1
where u; is weight applied to sample Z at location x; and v; is
weight applied to sample Yat location xy;. Cokriging system
of equations can be found in the work of Journel and
Huijbregts [1978], Yates and Warrick [1987], and Isaaks
and Srivastava [1989]. Cokriging entails variograms -y, and
Yyyof Z and Y, and cross-variograms vy, and v,y between Z
and Y, which quantify spatial variation and correlation of Z
and Y. The variogram and cross-variogram functions can be
calculated via [Journel and Huijbregts, 1978]

X¢) — z(X¢ + h)] (3)

where N (h) is the number of sample pairs separated by
distance vector h, z(x;) is the value of variable z (can be
either Z or Y) at location x;, of the kth data pair, and z(x, + h)
is the value of the same variable at a separation distance of
h of the kth data pair. When i = j, ~y;; indicates the variogram
of variable z; = z;; when i # j, 7;; is the cross-variogram of
variable z; and . While a variogram is always positive, a
cross-variogram can be negative, indicating that, on average,
an increase in one variable corresponds to a decrease in the
other variable. All variograms and cross-variograms are
expressed using intrinsic coregionalization, a special case
of the linear model of coregionalization [Journel and
Huijbregts, 1978]. An intrinsic coregionalization is justified,
since each pedotransfer variable is under-sampled in com-
parison with 6;.

[13] The traditional ordinary cokriging of equation (3) may
severely limit the influence of the secondary variable Y (6;) on

the primary variable Z. A standardized ordinary cokriging
can resolve this problem by rewriting equation (3) as

I

E Xzo

i=1

ZC()K Xz, 0 XZz

—+ vj Xzo ij) myz — mY} (4)

J
Jj=1

where m; and my are the stationary mean of Z and Y (6;).
The standardized cokriging is superior to the traditional
cokriging, and for an in-depth comparison the reader is
referred to Isaaks and Srivastava [1989]. Cokriging requires
that data be stationary with constant mean and covariance
function that depends only on distance between two data
points. This requirement is satisfied for the 6; observations,
as discussed in Ye et al. [2005]. For the pedotransfer
variables, since their measurements are sparse, the statio-
narity is assumed. The assumption is not unreasonable,
since the 6; field can be used as a surrogate for media
heterogeneity. In addition, the correlation of 6; with
pedotransfer variables is strong, as shown in Figure 2 below.

3.3. Artificial Neural Network

[14] Artificial neural network (ANN)-based analysis for
estimating soil hydraulic properties has been used by
several authors [Pachepsky et al., 1996; Schaap and
Bouten, 1996; Minasny et al., 1999; Pachepsky et al.,
1999]. An advantage of neural networks, compared to
traditional pedotransfer functions (PTFs), is that neural
networks require no a priori conceptual model. Near-
optimal, possibly nonlinear relations that link input data
(particle-size data, bulk density, etc.) to output data (soil
hydraulic parameters) are obtained and implemented using an
iterative calibration procedure. Schaap et al. [1998] used
neural network analyses to predict van Genuchten moisture
retention parameters and saturated hydraulic conductivity.
The combination with the bootstrap method [Efron and
Tibshirani, 1993] provided the confidence intervals for the
PTF predictions. For the purposes of this study, we briefly
describe some ANN essentials below; for a detailed descrip-
tion of ANN theory the reader is referred to the work of
Haykin [1994].

3.3.1. Feed-forward Artificial Neural Network

[15] Feed-forward ANNs are most often used to detect
patterns in data sets for which no clear underlying physical
model exists. A multilayer feed-forward ANN has an input
layer (with J nodes corresponding to input variables x;
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through x;), a hidden layer (with K nodes), and an output
layer (with L nodes corresponding to output variables y,
through y;). The optimal number of “hidden” nodes, K, is
problem-dependent and, generally speaking, more hidden
nodes allow more complex patterns to be modeled, but also
lead to longer optimization times and problems with over-
parameterization (OP). The mathematical operations inside
the network include two matrix-vector multiplications. At
each hidden neuron k& = 1 through K, each input x; is
weighted, summed, and biased (with a value b) to produce
a single value, Sy

J

Sk = Zj:] (WieXj) + bi ()
where the coefficients in each layer are positioned in the
matrix and vector elements wy; and by, respectively. Similar
operations occur at the output nodes / = 1 through L, with
matrices and vectors with elements wy; and b,, respectively.
The values S; and S; in hidden and output nodes are
transformed by a monotonic “activation” or ‘‘transfer”
function, ¢, that can be easily evaluated [Hecht-Nielsen,
1990]. In our case, we use a hyperbolic tangent for the
nodes in the hidden layer and a linear function for the nodes
in the output layer. The hyperbolic tangent, which produces
an output between —1 and 1, is given by

Sk Sk

et —e

oS = e

(6)
The linear activation function for the output nodes is simply
@(S) =S (7

With (7) it becomes possible to generate output values y;
through y; outside the range of nonlinear transfer functions,

thus avoiding the need to scale output parameters [Schaap
and Bouten, 1996].

[16] The optimal values for the ANN coefficients (the
matrices W and Wy, and vectors By and B;) are obtained
via the Levenberg-Marquardt algorithm [Demuth and Beale,
1992]. The objective function which minimizes the squared
residuals over all output variables is

N L
O(Wyk, By, W, B;) = Z Z (tns(Wik, Bi, Wi, By) — f,/,‘,;)z (8)
n=1 [=1
where N is the number of samples, L is the number of
parameters (with » and / as index); ¢ and # are observed and
predicted variables (hydraulic parameters), respectively.
3.3.2. Preventing Overparameterization

[17] A frequently occurring problem with ANNSs is their
tendency to overparameterize if ANN calibration is carried
out for too many iterations. Overparameterization (OP)
occurs because of the large number of adjustable ANN
coefficients that may lock on to noise and data artifacts that
are not part of the underlying (and often unknown) physical
phenomenon that led to the data set. Typical for over-
parameterized ANNs is that they perform well for their
calibration data sets but that they exhibit degraded perfor-
mance for independent data. In particular, OP occurs for
relatively small data sets such as ours with 70 samples and
can be identified by the presence of ANN coefficients with
large values [MacKay, 1992].

[18] There are two main methods to prevent OP or over-
training. “Early stopping” is a method where the ANN
calibration procedure is performed for a limited number of
iterations. This can be done by setting a maximum number
of iterations that is known to yield an acceptable result, or
by evaluating an independent data set during the iterations
and force the ANN calibration to stop when the perfor-
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mance is optimal on the independent data set [Schaap et al.,
1998]. Bayesian regularization [MacKay, 1992] is a more
graceful method that prevents internal ANN coefficients
from becoming too large by including the norm of the
coefficients into the objective function:

N L
Oy, B, Wia, Br) = > >~ (taj (Wi, Be, Wi, BY) — 1))’
=1
a)w? )

n=1

+(1

I~

where w is the mean of the ANN coefficient matrices (W,
and W,,) and vectors (B, and B)), and the parameter « is a
problem-dependent weighing factor between 0 and 1, set
automatically by the ANN toolbox of MATLAB [Demuth
and Beale, 1992].

[19] To evaluate the performance of the ANN calibrated
with Bayesian regularization, we divided the data set into
calibration and independent test sets. To this end, the
bootstrap data selection algorithm of Efion and Tibshirani
[1993] is used to generate 1,000 pairs of calibration and
testing data sets out of the original data set of 70 samples.
Calibration data sets of size 70 are generated out of the
original data set (also of size 70) by random drawing with
replacement. Because, on average, only about 63% of the
original data is present in each calibration data set (some
samples are left out, whereas others are present multiple
times), the remaining 37 percent of the samples can be used
as an independent test data. An ANN model is calibrated
against each calibration data set and tested against the
corresponding independent data set. One thousand models
are thus calibrated and tested this way and mean errors are
computed. For completeness we note that the formal use of
the bootstrap method is to generate uncertainty information
about estimated parameters [Efron and Tibshirani, 1993].
For reasons of brevity, however, such an analysis is not
carried out in this study, as it is considered of secondary
importance. Here the bootstrap data selection algorithm
merely provides a convenient way to generate data sets to
compare the performance of ANN-based PTFs on their
calibration data and independent test data. Future work
may consider the uncertainty in the PTF prediction [Schaap
et al., 1998] and evaluate its effects, along with other
sources of uncertainty, on simulated flow at the S&L site.

4. Results and Discussions
4.1. Analysis of Spatial Variation and Correlation

[20] Variogram analysis is used to investigate the spatial
variation and the correlation between 6; and the pedotransfer
variables (BD, GR, CS, FS, SI, and CL). While horizontal
and vertical variograms of 6; can be calculated [Ye et al.,
2005], horizontal variograms (and cross-variograms) of the
pedotransfer variables cannot be obtained because their
measurements are mainly from boreholes S-1, S-2, and S-3
that are closely spaced in the lateral direction (Figure 1).
The variogram analysis is thus limited to the vertical
direction. Because of the predominant layered stratigraphy
at the S&L site [see Ye ef al., 2005, Figure 2], it is not
unreasonable to assume that the spatial variation and corre-
lation revealed from the three vertical boreholes are valid
over the entire site. Since 6; at the three boreholes is not
available, 6; values at three neighboring boreholes H-6,
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H-4, and G-3 (Figure 1) are used. For measurements of
the pedotransfer variables at half-foot intervals, the corres-
ponding #; is approximated by averaging 6; above and
below the measurements, since 6; is measured at one-foot
interval. For each pedotransfer variable, a total of 53 pairs
of 0; and the primary variable are used for spatial cor-
relation analysis.

[21] The variation in the vertical and the correlation of
bulk density (BD) with initial moisture content (6;) are first
analyzed. Figures 2a—2c illustrate the variation of BD and 6,
with elevation at the three boreholes, respectively. Spatial
correlation between the two variables is significant, espe-
cially at boreholes S-2 and S-3 (Figure 1). Three sample
vertical variograms and cross-variograms of BD and 6; at
the three boreholes are evaluated and then averaged to yield
a mean sample vertical variogram and cross-variogram via
[Journel and Huijbregts, 1978]

Vv.mean (1) (10)

= ZNk(h)%,k(h)/ ZNk(h)
=

k=1

where K = 3 is the number of vertical variograms, 7,,;, at the
three boreholes, and Ni(h) is the number of data pairs
corresponding to a vertical lag distance 4 of the kth
elementary variogram. The mean variograms and the cross-
variogram are smoother than the elementary ones, and are
shown in Figures 2d—2f. The three variograms are of the
same shape and exhibit a hole-effect, reflecting periodicity
of the fine and coarse material in the stratified media [Ye et
al., 2005]. The mean vertical cross-variogram (Figure 2f)
shows a positive correlation between BD and 0;.

[22] Since the sample vertical variograms and the cross-
variogram (Figures 2d—2f) are of similar shape, they all are
fitted to a dampened hole-effect model [Deutsch and
Journel, 1998]

y(h) = ¢o + ¢[1.0 — exp(—3h/d) cos(hm/a)] (11)
where ¢, is nugget, c is sill, d is the distance at which 95%
of the hole-effect is dampened out, and «a is the distance to
the first peak and represents the average vertical dimension
of layering [Pyrcz and Deutsch, 2003]. The variograms are
fitted using a generalized least squares method to minimize
the objective function [Cressie, 1991]

N
o(p) = S WAl () — A ()] (12)
i=1

where N is the number of lag distances, v* is the fitted
variogram, w” is the weight for each lag, based on the
number of data pairs for the variogram calculation, and p =
(co, ¢, d, a) is the parameter vector. The fitted models are
shown in Figures 2d—2f. The value for a is about 2.5 m for
the variograms and cross-variogram, suggesting that the
average dimension of layered structure at the site is about
2.5 m [Pyrcz and Deutsch, 2003], which is again consistent
with the finding of Ye et al. [2005].

[23] Figure 3 illustrates the sample vertical variograms
and cross-variograms for all pedotransfer variables (BD,
GR, CS, FS, SI, and CL) and initial moisture content (6;).
The sample cross-variograms for GR-6; and CS-6; are
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Figure 3. Vertical variograms (a)—(f) for (a) bulk density (BD), (b) gravel (GR), (c) coarse sand (CS),
(d) fine sand (FS), (e) silt (SI), (f) clay (CL) percentages and cross-variograms (g)—(l) of the pedotransfer

variables and initial water content (6;).

negative, indicating that the presence of a coarser fraction
(gravel and coarse sand) at the site is negatively correlated
with 6;. Although the hole-effect model appears to be the
desired one to fit the sample vertical variograms and cross-
variograms, there is no physical reason that such a model is
appropriate in the horizontal direction. This is due to the fact
that periodicity is not observed in lateral directions, where,
instead, extensive continuous layering is present [Last et al.,
2001]. Cokriging using hole-effect models fitted from
sample vertical variograms gives unreasonable results in
the sense that periodicity tends to appear in the lateral
directions. Therefore other variogram models (for example,
spherical, exponential, and Gaussian) are needed to properly
describe spatial variability in both horizontal and vertical
directions.

[24] Similar to the work of Ye et al. [2005], the sample
variogram of 6¢; is fitted to an exponential model with

geometric anisotropy, which has a sill of 7.36, a horizontal
range of 37.76 m, and a vertical range of 1.72 m. Note that
the values of the sill and ranges are slightly different from
those manually fitted by Ye et al. [2005]. Since it is
reasonable to use the same variogram model to fit all sample
variograms and cross-variograms (see the preceding sec-
tion), the vertical variograms and cross-variograms in
Figure 3 are fitted to the exponential model; the vertical
range for initial moisture content is used. Fitted variogram
models are shown in Figure 3. Because of the sparse
measurements of pedotransfer variables, representative hor-
izontal sample variograms and cross-variograms of the
pedotransfer variables and 6; cannot be calculated. Their
horizontal ranges are assumed to be the same as those for
;. This assumption is not unreasonable, since the dominant
heterogeneity feature at the S&L site is the imperfectly
stratified vertical layering structure. This assumption results
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Figure 4. Three-dimensional cokriged heterogeneous fields of pedotransfer variables: (a) bulk density
(BD) and percentages of (b) gravel (GR), (¢) coarse sand (CS), (d) fine sand (FS), (e) silt (SI), and (f) clay

(CL).

in an intrinsic coregionalization of variogram models. It is
worth mentioning that fitting the variograms in Figure 3
using hole-effect models yields a better fit. However, as
mentioned before, using the fitted hole-effect model for
cokriging gives unreasonable results with periodicity in the
lateral direction.

4.2. Cokriging to Generate Heterogeneous Fields of
Pedotransfer Variables

[25] Using the 1,376 measurements of 6; as the secondary
variable, cokriging is performed using the numerical routine
COKB3D of GSLIB [Deutsch and Journel, 1998]. Hetero-
geneous fields for the pedotransfer variables (BD, GR, CS,
FS, SI, and CL) are generated. Values of m; and my in
equation (4) are assigned as means of the pedotransfer
variables listed in Table 1, assuming that they are unbiased.
Mean initial moisture content is 8.46% for all 6; measure-
ments. Because cokriging is independently conducted for
each of the pedotransfer variables, there is no guarantee
that, for each cokriging block, the actual sum of soil texture
percentages would be 100%. In our results, for all cokriging
blocks, the minimum and maximum difference between the
actual sum and 100% is —12% and 14%, respectively, and
the mean difference is 2%. This indicates that the cokriging

results are reasonable. The soil texture percentages are
normalized by the sum of cokriged percentages, and the
resulting three-dimensional fields are shown in Figure 4.
The effect of imperfectly stratified layering structure is
clearly noticeable, and is similar to that of 6. Figure 5
compares the spatial variability of measured pedotransfer
variables at borehole location S-1 (Figure 1) and the
cokriged variables at the nearest cokriging point (0.18 m
away from S-1). Note that the vertical intervals of the
cokriging values are also different from those of measure-
ments. It is evident from Figure 5 that some of the extreme
values are not captured well by the cokriging. This is not
surprising due to the well-known smoothing effect of
(co)kriging. It is also possible that some thin lenses of
fine sediments and other small-scale heterogeneities are
not adequately represented by cokriging. Nonetheless, the
bulk of the measurements are represented well, indicating
that cokriging is a viable approach to represent the S&L
site heterogeneity using 6; measurements as secondary
information.

4.3. Development of ANN Pedotransfer Functions

[26] Two types of ANN models are developed. The first
one uses all available input variables (BD, GR, CS, FS, SI,
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Figure 5. Comparison of cokriged (solid line)
borehole S-1 (location shown in Figure 1).

and CL) to predict 6,, 6,, log(a), log(n), and log(Ky),
whereas the second one conducts principal component
analysis on the input data and uses transformed data from
the three, two, or single most important principal compo-
nents (referred to as PC3, PC2, and PC1, respectively). Both
methods are evaluated for six ANN topologies with one to
six hidden nodes. As discussed in section 3.3, the perfor-
mance of each ANN is evaluated for both independent
calibration and testing data. Mean root mean square errors
are calculated for the retention characteristic and the loga-
rithm of saturated hydraulic conductivity data for all samples
in the calibration and testing data sets. For moisture retention,
root mean square errors RMSEg (cm®/cm?) for a calibration
or testing data set of NV samples retention characteristic is

N M;
1

1 : / 2
RMSER = ; i ,:21 [0 (P:,1);) — 6]

(13)

where M; is the number of retention points in the ith
characteristic, ' is calculated moisture content given
estimated van Genuchten parameter P; (i.e., 0,, 0, «, and n)
at pressure head v, and 0; is the observed moisture content
at pressure head 1);. Likewise, the RMSEy (without units
due to log transformed Kj) for log(Kj) is

N

1
RMSEg = | > llog(K?) — log(K;)”
i=1

(14)

where K. and K, are estimated and measured saturated
conductivity values, respectively.

[27] The neural network results are listed in Table 2. First,
the results show that the root mean square errors (RMSE)
for calibration data set are always lower than those for the
validation data set. This may indicate that the ANNSs are still
somewhat overparameterized. Similar results were found in
the work of Schaap et al. [1998]. It should be noted,

L )

and measured (square) pedotransfer parameters at

however, that the calibration and validation results for the
PCI models are relatively close. Second, the RMSEs are
relatively low: probably a result of use of a uniform data set
from a single site. The RMSE in Rosetta [Schaap et al.,
2001] was about 0.068 cm*/cm?® for a large heterogeneous
data set, whereas validation errors in this study are as low as
0.039 cm’/cm’, indicating a better performance. Third, it
appears that the ANN results based on the one to three
principal components (PC1 through PC3) are somewhat
better (by 5 to 10%) than the model that uses all six
untransformed input variables.

[28] The optimum validation results for the retention
characteristic are reached for PC2 with four hidden nodes,
even though several other PC2 and PCl models have
RMSEy values that are close to 0.039 cm®/cm® (the mini-
mum); standard errors for each of these models are approx-
imately 0.0005 cm®/cm® (data not shown). The optimum
model for K is PC2, with two hidden nodes (RMSEy is
0.4722); PC3, with one hidden node, is a close second.
Standard errors are generally on the order of 0.01 (results
not shown). It therefore appears that no model can be
identified that has an optimal performance for both retention
parameters and K. A good compromise is PC2, with three
hidden nodes, which is used to generate heterogeneous soil
hydraulic parameter fields described below.

4.4. ANN to Generate Heterogeneous Soil Hydraulic
Parameter Fields

[29] Using heterogeneous pedotransfer variables generat-
ed by cokriging, the ANN-PTF is employed to generate
heterogenecous fields of the soil hydraulic parameters: satu-
rated hydraulic conductivity, K, and the van Genuchten
water retention parameters. Figure 6 illustrates the three-
dimensional parameter fields for the soil hydraulic para-
meters (the residual moisture content is not included for
convenience of presentation). Figure 6 again exhibits the
imperfectly stratified layering structure present at the S&L
site. Similar to Figure 5, Figure 7 compares spatial
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Table 2. Artificial Neural Network Calibration (Cal) and Validation Errors (Val) for Four Models With One to Six Hidden Nodes®

Hidden Nodes 1 2 3 4 5 6
Untransformed
VG-cal 0.0434 0.0387 0.0353 0.0348 0.034 0.0333 em’/em’
VG-val 0.0461 0.0436 0.0419 0.0427 0.0444 0.0449 cm’/em?
Ks-cal 0.386 0.339 0.316 0.261 0.253 0.233 -
Ks-val 0.521 0.536 0.553 0.581 0.599 0.620 -
Transformed (PC1)
VG-cal 0.0414 0.0386 0.0379 0.0374 0.0375 0.0366 cm’/em®
VG-val 0.0432 0.0417 0.0412 0.0394 0.0397 0.0394 em’/em’
Ks-cal 0.469 0.467 0.468 0.457 0.461 0.447 -
Ks-val 0.499 0.504 0.495 0.506 0.509 0.528 -
Transformed (PC2)
VG-cal 0.0415 0.0383 0.0357 0.0328 0.0325 0.0322 cm’/em’
VG-val 0.0439 0.041 0.0398 0.0390 0.0394 0.0396 cm’/em®
Ks-cal 0.415 0.413 0.388 0.368 0.376 0.372 -
Ks-val 0.494 0.472 0.504 0.548 0.525 0.536 -
Transformed (PC3)
VG-cal 0.0422 0.0382 0.036 0.0339 0.0325 0.0327 cm’/em’
VG-val 0.0448 0.0419 0.0406 0.040 0.0411 0.0417 cm’/em®
Ks-cal 0.417 0.401 0.364 0.347 0.340 0.334 -
Ks-val 0.477 0.504 0.521 0.551 0.558 0.594 -

#“Untransformed” refers to models where all six input variables are input to the ANNs. PC1, PC2, and PC3 are the cases where transformed one, two, or

three principal component variables were input to the ANNs.

variability of the measured and ANN-generated soil
hydraulic parameters at borehole location S-1 (Figure 1).
Although mean values of the ANN estimates agree well
with those based on measurements (data not shown), the
figure shows that spatial variability of ANN-generated
parameters is smaller. This may be due to three reasons.
First, the inputs of the ANN, the cokriging results, are
smooth, and, as shown in Figure 5, some extreme values are
not captured. Second, measurement and fitting errors for
soil hydraulic parameters are not accounted for by the
derived ANN model. For example, Table 1 shows that the
upper quartiles for all parameters are significantly smaller
than their maximums. And finally, the ANN models have
limitations in their performance as indicated by the RMSE

values. This suggests that the six pedotransfer variables
(BD, GR, CS, FS, SI, and CL) may not convey all the
information needed to estimate the soil hydraulic para-
meters, which essentially leads to limited output ranges.

4.5. Numerical Simulation of the 2000 Injection
Experiment

[30] The generated soil hydraulic parameters are used to
simulate the 2000 injection experiment at the S&L site.
Simulated and observed moisture contents are compared to
evaluate accuracy and robustness of our methodology in
characterizing heterogeneous soil hydraulic parameters.
The planar area of the simulation domain is 18 x 18 m to
include the entire sampling area depicted in Figure 1.

(b)

o (1/m)

(d)
K, (mid)

S00

Figure 6. Three-dimensional soil hydraulic parameter fields for (a) saturated water content (6;), (b) van
Genuchten «, (¢) van Genuchten n, and (d) saturated hydraulic conductivity (Kj).
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Figure 7. Comparison of ANN-generated (solid line) and estimated (square) (a) saturated water content
(6y), (b) van Genuchten a, (c) van Genuchten n, and (d) saturated hydraulic conductivity (K;) based on

borehole S-1 samples.
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Figure 8. (a-1 and b-1) Three-dimensional fields of observed (a-1) and simulated (b-1) water content on
2 June 2000; (a-2 and b-2) three-dimensional fields of observed (a-2) and simulated (b-2) water content
on 31 July 2000. (c-1 and c-2) simulated and observed water content on 6/2 and 7/31. Pearson’s linear
correlation coefficients (r) are calculated for the two simulation times.
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Figure 9. Comparison of simulated (dashed) and observed (solid) moisture content on 23 June 2000 at
16 boreholes, where water contents are directly simulated at grid nodes. Root-mean square-error (RMSE)
and Pearson’s linear correlation coefficients () are calculated for each borehole.

Although moisture contents were measured to a depth of
16.775 m, the vertical dimension of the simulation domain is
15.24 m. This is due to the fact that movement of the injected
water is hindered by the second layer of fine-material, and the
moisture content below the depth of 15 m essentially remains
unchanged in the 2000 injection experiment [ Ye et al., 2005].
In other words, location of the domain bottom has
negligible effect on simulation results, as long as it is
several meters away from the second layer of fine material.
This is confirmed by our simulated vertical flux, which is
nearly zero at the domain bottom. The simulation domain is
discretized into a grid with 259,200 uniform elements, each
of which is of 0.25 m (Ax) x 0.25 m (Ay) x 0.3048 m
(Az). Such a discretization ensures that the moisture
contents for the 16 orthogonally aligned borehole sites
starting with A, C, E, and G (Figure 1) are simulated directly.
The same grid is also used in generating the heterogeneous
pedotransfer variables by cokriging and the soil hydraulic
parameters by ANN.

[31] The 2000 injection experiment is simulated using the
MMOC code [Srivastava and Yeh, 1992], which was also
used in our earlier work [Yeh et al., 2005]. The pre-injection
tensiometer measurements are not available at the S&L site.
The initial pressure head needed for the simulation is
therefore based on equation (1), wherein 6; is estimated
using kriging and the ANN-derived soil hydraulic para-
meters described in section 4.4. Constant head boundary
conditions are assumed for all sides of the simulation
domain with pressure head equal to the estimated initial
head. A prescribed head boundary condition for lateral
boundaries is preferred over a no-flow boundary condition,
because the simulation results near the boundaries are
impacted by the time the injected water starts to leave the
flow domain. The constant head boundary allows the
injected water exiting the simulation domain, and is thus
more realistic than the no-flow boundary. The anisotropy

(K}, / K,) for the local-scale horizontal (Kj,) to vertical (K,)
saturated hydraulic conductivity at the site is unknown, and
a range between 2 and 60 has been used by other
researchers [Sisson and Lu, 1984; Pace et al., 2003; Zhang
et al., 2004; Ward et al., 2006; Mayes et al., 2003]. A value
of 10 is used in our simulations, based on the Hanford Site
inverse groundwater modeling [Cole et al., 2001].

[32] Figure 8 compares observed (Figures 8a-1 and 8b-1)
and simulated (Figures 8a-2 and 8b-2) moisture content on
2 June 2000 (the first observation date) and 31 July 2000
(the last observation date). Note that no € measurements
were made above an elevation of 11.275 m. Results at other
observation times are similar and are not shown. Figure 8
shows that the overall shape and local variation of the
observed moisture plumes are simulated well. The goodness
of fit is also measured by Pearson’s linear correlation
coefficients (# = 0.8 for 6/2 and 0.6 for 7/31) between the
simulated and observed moisture contents (Figures 8c-1-—
8c-2). Furthermore, the effect of imperfectly stratified
layering structure on moisture movement is captured well,
as shown in Figure 8. The injected water spreads in the top
layer of fine material at an elevation of about 9 m. The
vertical movement of the injected water is retarded by the
bottom layer of fine material at an elevation of about 5 m.
Between these two layers of fine materials is a layer of coarse
material, where the plume splits. Such a separation of the
plume beneath the top layer of fine material is well represented
in the simulation. Such a separation is also achieved by
Kowalsky et al. [2005] using inverse modeling in conjunction
with use of both neutron probe and cross borehole radar data.
In their study, inverse modeling using only neutron data did not
result in the plume separation. However, our method yields a
similar plume separation with incorporation of only the
neutron data. In addition, our forward method does not require
solving the Richards’ equation iteratively, and is more
computationally efficient than traditional inverse methods. It
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Figure 10. Comparison of observed (filled symbol and solid line) and simulated (open symbol and
dashed line) (a) first and (b) second moment of moisture plume.

is worth noting that in our earlier work [Ye# et al., 2005], we
conceptualized the heterogeneous media at the S&L site as an
equivalent homogeneous medium. Thus we essentially
simulated the ensemble mean behavior and, unlike results
shown in Figure 8, did not capture the highly variable, single
realization behavior of the observed moisture plume and its
splitting within the coarse-textured layer that is sandwiched
between two fine-textured layers [see Yeh et al., 2005,
Figure 9]. Note that a 5-layered model, based on measured
data on core samples, was also considered (results not shown
here). Compared to the observed plume and unlike results
shown in Figure 8, the layered model plume was regular and
resulted in a much more uniform spread of the injected water,
because each layer was assumed to be homogeneous. Also,
unlike results shown in Figure 8, the layered model
simulations resulted in a rather mild splitting of the plume.
[33] Besides the results shown in Figure 8 which include
the smoothing effect of contouring [Isaaks and Srivastava,
1989], the spatial variability of simulated 6 is examined at
each borehole. Figure 9 compares the observed and
simulated 6 on 23 June 2000 (the last measurement date
following injections) at each of the 16 borehole sites starting
with A, C, E, and G (Figure 1). Since the boreholes are
aligned horizontally and vertically with the simulation
nodes, the 6 values are simulated directly at these boreholes.
Similar results (not presented here) were obtained for the
other 16 boreholes at other observation times. Root-mean
square-error (RMSE) and Pearson’s linear correlation
coefficient () values are calculated for each borehole site,
and presented in Figure 9. These statistics indicate that the
simulated and observed moisture contents agree reasonably
well. The RMSE ranges from 1.49 to 4.56% with an
average of 3.18%, which are comparable with those
obtained through inverse modeling (for example, 2.59%
of Zhang et al. [2004] and 1.87% of Ward et al. [2006]).
The r» values range from 0.36 to 0.87 with an average of

0.60, indicating that the overall moisture content variation
in the vertical direction is captured reasonably well.

[34] Spatial moments (up to the second order) of the
simulated as well as the observed moisture difference are
calculated in a manner similar to that of Ye et al [2005].
Denoting Og4i;r = 0—06; as the moisture content difference
between moisture content at an observation time and the
initial moisture content, we report the spatial moments of 6
differences [Aris, 1956]

+o00 “+o00 —+00 o
)= [ [ [ ountrzovytaa 03

[35] The zeroth, first, and second spatial moments corre-
spond to i +j + k=0, 1, and 2, respectively. The zeroth
moment (M) represents the changes in moisture storage
within the domain. The normalized first moments,

Xe = Myoo/Mooo Yo = Moro/Mooo  Ze = Moor /Mooo (16)
represent the location (X, Y., Z.) of the mass center of the

plume at a given time. The spread of the plume about its
center in principal directions is

2 Mo

- 2 Moo
xx
Mooo

_ 2 Moo 72
P Mooo

zz MOOO C (17)
The mean moisture plume and its spreading can provide
more insights than Figures 8 and 9 into the overall shape of
the simulated moisture plume.

[36] Figure 10 shows the plume center [equation (16)]
and its spatial variance [equation (17)] for simulated and
observed moisture contents at seven different times. The
calculated moments for the observed moisture plume are
slightly different from those of Ye et al. [2005], because the
coordinate system is changed and new variogram para-
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meters are used based on the automated variogram fitting
method. While the simulated X, and Y. agree well with the
observed values, the simulated Z. is smaller than the
observed Z, during the redistribution period after injections
ceased on 28 June 2000. Compared to the observed data,
this indicates a faster downward movement of the simulated
moisture plume. For the second moment, while the
simulated o2, and afy agree well with the measured values,
the simulated o2, is smaller than the observed value. This
indicates a smaller spreading in the z direction for the
simulated plume, compared to the observed plume. With the
simulated Z. smaller than the observed Z., the simulated
moisture movement is faster than that observed in the
vertical direction, and less moisture is retained within the
profile during downward movement. At the S&L site, fine
over coarse sequences produce a series of natural capillary
breaks that could impede vertical flow and promote lateral
flow within the fine textured layers until the water entry
pressure of the coarser soils is exceeded. As the injection
progressed, water penetrated the upper coarse layer and
started to spread above and in the deeper fine-textured layer.
It is possible that the alternate fine and coarse-textured
layering is not captured optimally by the cokriging and
ANN based on the available data. It is also possible that
sediment layers thinner than the simulation grid scale had an
additional effect on the vertical infiltration process. Such
layers were occasionally observed in the field [Last and
Caldwell, 2001; Schaap et al., 2003], but could not be
adequately sampled.

5. Conclusions and Future Research

[37] Using cokriging and Artificial Neural Network
(ANN), we develop a new method to generate heterogeneous
soil hydraulic parameters based on a variety of data. The
method is applied at the S&L site of the U.S. Department of
Energy’s Hanford Site. The hydraulic parameters generated
are used to simulate the 2000 field injection experiment
within the imperfectly stratified media at the S&L site. The
soil hydraulic properties data include laboratory measure-
ments of saturated hydraulic conductivity and van Genuchten
moisture retention parameters obtained from 70 core samples.
Another type of data used, also referred to as pedotransfer
(PTF) variables, are bulk density (BD) and percentages of
gravel (GR), coarse sand (CS), fine sand (FS), silt (SI), and
clay (CL) measured for the same 70 core samples. The data
set also includes 1,376 observations of initial moisture
content (#;) before the 2000 injection experiment started.

[38] The vertical spatial structure of the pedotransfer
variables and the spatial correlation between 6; and each
pedotransfer variable is described using vertical variograms
and cross-variograms. The layering structure at the site is
captured in the vertical variograms and cross-variograms,
indicating that these measurements carry significant
information about media heterogeneity. Spatial correlation
between 6; and each PTF variable is evident in the vertical
cross-variograms. Using the variograms and cross-vario-
grams, heterogeneous fields of the pedotransfer variables
are generated using cokriging, in which 6; is used as the
secondary variable. The imperfectly stratified layering
structure is captured well in the cokriged fields of the
pedotransfer variables. Statistics (mean, minimum, and
maximum) for the cokriged estimates compare well with
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those for the measurements; the vertical spatial variability of
the measured data is reproduced well in the cokriged fields.

[39] A site-specific Artificial Neural Network (ANN)-
based PTF is developed and a Bayesian method is used to
prevent overparameterization. The ANN uses the cokriged
heterogeneous fields of pedotransfer variables as input to
generated heterogeneous fields of the soil hydraulic param-
eters. An imperfectly stratified layering structure is present
in the ANN-generated fields. While the mean estimates for
the soil hydraulic parameters are close to those for measured
parameters, ranges of the ANN-generated values are smaller
mainly due to smoothed cokriging results, noisy data, and
limitations of the ANN models in predicting the soil
hydraulic parameters.

[40] It should be noted that, rather than using ANN, we
also attempted estimating soil hydraulic parameters directly
using 6; as the secondary variable during cokriging.
However, this resulted in negative values for several van
Genuchten parameters. We attributed this to the nonlinear
relationship between moisture content and the van Gen-
uchten parameters. The nonlinear relationship cannot be
captured by cokriging, which is essentially a linear
interpolation technique. Therefore we used the two-step
procedure, i.e., estimating PTF variables using 6; as the
secondary variable during cokriging and then using ANN to
estimate the hydraulic parameters.

[41] Reliability of the generated three-dimensional fields
of soil hydraulic parameters is evaluated by simulating the
2000 field injection experiment at the site. The spatial
distribution patterns of the moisture plume at different
observation times are reproduced well, as examined visually
and by Pearson’s linear correlation coefficient. Based on
computed RMSE and correlation coefficient, a relatively
good agreement is observed for simulated and observed
moisture content spatial variation at different borehole sites.
Unlike our earlier work which used an equivalent homoge-
neous medium approach to model the heterogeneous media
and thus essentially modeled the mean ensemble behavior,
this work was able to model the highly variable nature of the
observed moisture plume and its splitting within the coarse-
textured layer that is sandwiched between two fine-textured
layers. The simulated downward movement of the injected
water is slightly faster and has a smaller spatial spreading
than that observed. This indicates that moisture retention in
the z direction is underestimated. Nonetheless, the compar-
ison shows a relatively good agreement for the moisture
plume centers and the spatial spreading in the x and y
directions. Overall, the heterogeneous soil hydraulic para-
meter estimates yield relatively good simulation results for
the 2000 injection experiment, although site measurements
used to determine initial and boundary conditions are sparse.

[42] Our new method of generating heterogeneous soil
hydraulic parameters has significant potential implications.
The proposed method is generic and can be extended to
include other site measurements of varying types through
cokriging. For example, if more measurements of pedo-
transfer variables are available, they can be incorporated in
the cokriging to generate more realistic fields. If the dense
initial moisture content data set is not available at other
sites, other easily obtained geophysical measurements [for
example, electrical resistance tomography, Yek et al., 2002;
Liu and Yeh, 2004, and ground-penetrating radar, Kowalsky
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et al., 2005] may be used as the secondary variable for
cokriging. Although it requires fitting variogram models
and training ANN, the proposed method is a forward one,
since, different from traditional inverse methods, it does not
solve the Richards’ equation iteratively. Nonetheless, our
simulation results, with a much less computational burden,
are comparable with those obtained from traditional inverse
modeling [e.g., Zhang et al., 2004; Kowalsky et al., 2005;
Ward et al., 2006].

[43] Uncertainty analysis may be needed in future to
facilitate science-based decision making and help focus
limited resources on site characterization and remediation.
One source of uncertainty is cokriging estimation uncer-
tainty reflected in cokriging variance. On the other hand,
parametric uncertainty due to parameter spatial variability
has not been explored. The ANN uses a bootstrap method to
estimate uncertainty of the estimated ANN coefficients. In
future, uncertainty analysis will be conducted to estimate
uncertainty bounds for simulated variables of interest. It
would also be useful to extend the cokriging and ANN
methods to incorporate measurement error.
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