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Abstract
This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of

water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico,
the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the
quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not
vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps
of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality.
Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of
the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human
contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a)
seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual
precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the
amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to
analyze the variation of groundwater quality controlling processes efficiently and simultaneously.

Introduction
Protection of groundwater resources is imperative

in karst areas where karst aquifers are the only source
of drinking water but vulnerable to contamination.
Techniques of multivariate statistical analysis (e.g., cluster
analysis, principal component analysis, factor analysis,
and discriminants analysis) have been used widely to gain
understanding of water quality with respect to spatial and
temporal variability, hydrochemical facies, flow paths, and
other factors that influence groundwater quality (Suk and
Lee 1999; Thyne et al. 2004; Kim et al. 2005; Woocay
and Walton 2008; Mohammadi 2009; Belkhiri et al.
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2011; Nosrati and Eeckhaut 2012; Srivastava et al. 2012).
Cluster analysis is a multivariate statistical technique used
to classify a dataset into groups so that the data within
each group are similar but different from data within
other groups (Suk and Lee 1999; Davis 2002; Güler
et al. 2002; Thyne et al. 2004; Shrestha and Kazama
2007; Everitt and Hothorn 2011). For temporal analysis,
a common practice is to first apply cluster analysis
sequentially to data of each sampling period, and then
examine the clusters of each sampling period in order to
understand water quality temporal processes (Suk and Lee
1999; Thyne et al. 2004; Hussain et al. 2008). However,
understanding the spatial relation between the clusters and
the temporal variation of the variables affecting water
quality may not be straightforward, which renders the
sequential cluster analysis inefficient to reveal temporal
variation of groundwater quality.

This work presents an approach to use maps and
boxplots of clusters for groundwater quality analysis. The
proposed approach is based on the following observation.
Given a set of clusters classified using Ward method
with Euclidean distance, if water quality data at the
same sampling location do not vary significantly in time,
the data belong to the same cluster. This observation
allows to identify the sample sites where groundwater
quality changes in time and to analyze the temporal and
spatial processes affecting groundwater quality. Instead
of the sequential cluster analysis described above, cluster
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Figure 1. Location of the study area in the State of Yucatan along with average annual precipitation isohyets. The dots
represent the locations of some sinkholes within the ring of sinkholes delimited by the two semicircles (Pérez-Ceballos et al.
2012). Contours of precipitation are adapted from PROCOMAR (2003).

analysis is applied to lumped data of all sampling periods.
This leads to maps (snapshots) of spatially distributed
clusters. Principal component analysis is used to verify the
results of cluster analysis and to derive the variables that
explained most of the variation of the groundwater quality
data. The maps and boxplots of the major ions are used to
analyze the spatial variation of the processes that govern
groundwater quality at a given time. The snapshots show
the spatial variation of water quality at different times, and
the temporal processes variation can be then derived from
the comparison of the snapshots. If water quality changes
significantly with time at a given area, temporal variation
of water quality processes can be revealed by comparing
the chemical characteristics of the clusters to which
that area belong. In other words, the proposed approach
directly links cluster change with the temporal and spatial
variation of processes controlling water quality. While
applying cluster analysis to lumped data has been reported
in literature (e.g., Vega et al. 1998; Wunderlin et al. 2001;
Srivastava et al. 2012), the previous uses are limited
to exploratory analysis with the objective of classifying
water quality data, but do not analyze temporal relations
among spatial distribution of clusters.

This procedure is applied to the water quality data
collected from the karst aquifer in Yucatan, Mexico
(Figure 1). The aquifer is the only source of drinking water
for a population of nearly two million people. This aquifer
is highly vulnerable to contamination, and groundwater
in the upper part of the aquifer is not recommended
for human consumption (Escolero et al. 2000; Marin
et al. 2000; INEGI 2002, 2010). Therefore, understanding
spatial and temporal variability of groundwater quality
in Yucatan is important for protecting the groundwater
resource and the population that depends on it. The

issue of groundwater quality has been addressed from
the chemical and bacteriological points of view in
previous studies (Back and Hanshaw 1970; Doehring
and Butler 1974; Pacheco et al. 2000, 2004; Perry et al.
2002; Delgado et al. 2010). Back and Hanshaw (1970)
concluded that dissolution of carbonate rocks and salt
water intrusion were the major processes controlling
groundwater quality in the Yucatan peninsula. According
to Perry et al. (2002), salt water intrusion extends
more than 100 km from the gulf coast. Doehring and
Butler (1974) found that the mixing with saline water
may be enhanced by high pumping rates from supply
wells. Pacheco et al. (2004) analyzed groundwater quality
of water samples from supply wells in the Yucatan
State, and concluded that groundwater quality was
acceptable. However, they found that at some locations
the concentrations of nitrate, chloride, total hardness,
sodium, and cadmium exceeded the Mexican standards for
drinking water. Domestic and municipal sewage, excreta
and urine residues from domestic animals, and fertilizers
have been identified as the major sources of groundwater
pollutants (Doehring and Butler 1974; Pacheco and
Cabrera 1997; Back 1999; Pacheco et al. 2001).

Cabrera et al. (2002) analyzed major ions of ground-
water samples from a supply well field and its surrounding
area located in the City of Merida, the capital city of the
State of Yucatan. They concluded that, in the study area,
there was no significant variation in groundwater quality
between seasons (one dry season and one rainy season)
or depths (shallow and 30 to 40 m deep). Pacheco et al.
(2004) analyzed water samples from supply wells located
throughout the entire state of Yucatan. They found that, in
more than half of the towns within the State of Yucatan,
the concentrations of two to three water quality variables
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exceeded the Mexican standards for drinking water. Del-
gado et al. (2010) analyzed groundwater samples from
supply wells to examine whether groundwater can be used
for irrigation. Based on a geostatistical analysis of effec-
tive salinity they divided the aquifer into seven zones,
and concluded that groundwater in only one zone met
the quality requirements for agricultural irrigation. Pérez-
Ceballos et al. (2012) studied groundwater quality in the
Ring of Sinkholes (the boundary of our current study area,
Figure 1) at three periods (dry, rain, and cold-front) and
three depths (0.5, 5.5, and 10 m). By applying multivari-
ate statistical techniques they split the Ring of Sinkholes
into three zones, and concluded that water quality in each
zone did not vary with time.

The conclusions above were based on a limited
amount of data, and the water samples used in the previous
analysis did not have sufficient temporal resolution for
analyzing the variation of groundwater quality temporal
processes in the State of Yucatan. Recently, a campaign
of groundwater sampling was conducted and a total of 288
water samples were collected from the Yucatan aquifer in
four sampling periods over 2 years. Two sampling periods
were for the dry season, and the other two for the rain
season. This comprehensive dataset was of great value
for advancing our understanding of groundwater quality
for the State of Yucatan. The objective of this work is
to analyze the groundwater quality data to determine the
main variables influencing groundwater quality and their
variations in space and time. The proposed approach is:
1) conduct cluster analysis for lumped data, 2) generate
snapshots of groundwater quality clusters, 3) use principal
component analysis to verify the validity of cluster
analysis and to derive the variables that explain most of
the variation of groundwater quality data, and 4) derive
spatial and temporal variation of groundwater quality from
the maps showing the temporal variations of the clusters
and the boxplots of its major components. It is worth
mentioning that this approach of using cluster analysis for
lumped data is not limited to the groundwater quality data
in Yucatan aquifer. It is applicable in other areas because
no assumption is made specific to the aquifer of Yucatan
characteristics.

Study Area and Groundwater Quality Data
The state of Yucatan, Mexico, occupies the central

portion of the Yucatan Peninsula (Figure 1). The aquifer
of Yucatan was developed in a carbonate platform, and
it is composed mainly of limestone, marvel, and gypsum
with high heterogeneity (Doehring and Butler 1974;
Back 1999; INEGI 2002). The study area, known as the
Hydrologic Region of the Ring of Sinkholes (Figure 1),
is located within a semicircular formation of sinkholes,
also known as the Ring of Sinkholes, in the northern part
of the state of Yucatan (Perry et al. 1989; INEGI 2002).
The aquifer is unconfined (except for a narrow band
close to the coastline) and under-laid by saline water
(Doehring and Butler 1974; Perry et al. 2002; INEGI
2010). The thickness of the aquifer is about 55 m at the

south of Merida (Figure 1), the capital and the largest
city of Yucatan hosting about half of the state population
(Doehring and Butler 1974; Back 1999; INEGI 2002,
2010; Perry et al. 2002). The aquifer is highly vulnerable
to contamination, and groundwater of the top 15 to 20
m of the aquifer does not meet the standards for human
consumption (Escolero et al. 2000; Marin et al. 2000;
INEGI 2002).

Groundwater samples were taken from the water sup-
ply wells located within the Ring of Sinkholes (Figure 1)
at a depth ranging from 20 to 40 m. To understand the
variability of the spatial and temporal processes affecting
groundwater quality, a total of 288 groundwater samples
were taken in four sampling periods between 2009 and
2011. The number of samples, for each sampling period,
were 76, 63, 74, and 75, respectively. The first and third
sampling periods were planned to be at the end of the
rainy season and the second and fourth to be at the end of
the dry season. According to Schmitter-Soto et al. (2002)
the rainy season in Yucatan occurs during the months
of June and October. The well locations for sampling
period 1 can be found in Figure 1. Water samples were
collected directly from the supply wells prior to water
disinfection to avoid possible changes in water chemistry.
For each sample the parameters pH, temperature, electric
conductivity, total dissolved solids, and salinity were
measured in the field using a multiparametric sonde
Hach model Quanta. For the measurement of major ion
concentrations samples were collected and preserved
in plastic bottles for laboratory analysis. The measured
ions were calcium (Ca+2), magnesium (Mg+2), sodium
(Na+), potassium (K+), chloride (Cl−), sulfate (SO4

−2),
bicarbonate (HCO3

−), and nitrate (NO3
−). Major ions

were determined using the standard methods described in
APHA, AWWA, WEF (2005). Electrical-balance errors
from the major ions in the samples were calculated as an
indicator of data quality (Deutsch 1997). Although the
common rule is that the electrical-balance errors should be
less than 5% for groundwater samples (Hounslow 1995;
Deutsch 1997), in this study a sample was considered
good if the electrical balance was less than 10%. This
value was chosen to take into account a systematic error
that may be introduced by the use of titration techniques.

Multivariate Statistics
This section first explains briefly cluster and

principal component analysis. The following expla-
nations assume that the data set is composed of M
observations O1, O2, . . . , OM , and N measured vari-
ables X 1, X 2, . . . , X N . Therefore, the i -th observation,
Oi = (x i1, x i2, . . . , x1N ), is a vector, where x ij is the
value of the j -th variable in the i -th observation. Each
observation represents a sampling well at a given time,
and the measured parameters for this study correspond
to the physicochemical characteristics and major ion
concentrations described in the previous section.

Hierarchical cluster analysis with the Ward method is
an agglomerative technique. The method starts by treating
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each observation as a cluster. Each successive step,
clusters are merged according to the Ward criterion, i.e.,
the minimization of the error sum of squares (ESS) defined
bellow. Suppose that at step k , there are N k clusters.
Given cluster Al with nl observations (l = 1, . . . , N k ), the
ESSl for Al is defined as the sum of the squared Euclidean
distance of each element in Al from the mean value:

ESSAl
=

nl∑

i=1

(
Oi − O

) (
Oi − O

) ′ (1)

where Oi (i = 1, . . . , nl ) is the i -observation of cluster
Al , Ō the corresponding mean value of all the observations
in Al , and T indicates the transposed vector. The total ESS
over all the clusters at this step is defined as

ESS =
Nk∑

l=1

ESSAl
(2)

At the beginning of the cluster algorithm, ESS = 0,
as ESSl is zero for all l . In the next step, all possible
cluster combinations are considered and the corresponding
ESS is calculated for each combination. According to the
Ward’s method, the pair of clusters that give the smallest
increment in the value of ESS are merged. In other words,
the Ward’s criterion is to minimize ESS within the clusters
at each step (Ward 1963; Davis 2002). The procedure of
merging continues until only one cluster is formed. When
the procedure is complete, a dendrogram is created, and
it shows the degree of dissimilarity of the clusters. For
the Ward method, the dissimilarity between two clusters
is defined as

√
2�ESS, where �ESS is the increment in

the ESS caused by merging two clusters, this means that
if cluster C is generated by merging clusters A and B
then �ESS = ESSC − ESSA − ESSB . In the dendrogram,
the horizontal axis is for all the observations used in
the analysis and the vertical axis shows the dissimilarity
(Kaufman and Rousseeuw 1990; Davis 2002; Everitt and
Hothorn 2011). By using the dendrogram, one can decide
the number of clusters to use for further analysis. The
decision on the number of clusters to use is subjective;
however, it can be supported using other techniques
(Thyne et al. 2004; Woocay and Walton 2008). Thyne
et al. (2004) justified their decision on spatial coherence
and inverse geochemical modeling. Woocay and Walton
(2008) used the biplots of principal components to justify
the selection of the number of clusters. In this study,
while the number of clusters is determined empirically,
we discuss a procedure that may help to determine the
the optimal number of clusters to use. Biplots are used to
verify our selection.

Principal component analysis is used to reduce the
dimensionality of a problem by selecting a new set of
variables, which has lower dimensionality, but account
for most of the variance of the original variables. Principal
component analysis is an orthogonal transformation of the
system axes. The new set of variables, called principal
components, are the axes of the transformed system and

linear combinations of the original variables (Johnson and
Wichern 2007; Everitt and Hothorn 2011). Suppose and
� is the sample covariance of the measured variables
X 1, X 2, . . . , X N . If λi and ei (i = 1, . . . , N ) are the
eigenvalues and eigenvectors of �, respectively, with
λ1 ≥ λ2 ≥ . . . ≥ λN then the new variables (principal
components) are given by

Yi = ei1X1 + ei2X2 + . . . + eiNXN , (3)

where eij , also called loadings, is the j -th components of
eigenvector ei . The yi values of the principal components
Y i are called scores. The new set of variables are uncor-
related and var(Y i ) = λi for i = 1, . . . , N . Therefore, one
can choose a subset of variables {Y i , i = 1,2, . . . , P},
with P<=N , that explain most of the variation of the
original variables {X j , j = 1,2, . . . , N }. There are multiple
ways to determine the number of principal components to
be retained for further analysis (Kaiser 1960; Johnson and
Wichern 2007). As the main objective of principal compo-
nent analysis was to confirm the selection of the number of
clusters, in this study we use only the first principal com-
ponents that help to define the different clusters (Thyne
et al. 2004). The number of principal components used
for further analysis is based on the minimum number of
components required to delineate the different clusters in
the biplots. A biplot is a two-dimensional plot with two
principal components as axes. The bottom and left axes
are used for the scores, shown as a scatter plot, and the
top and right axes are for the loadings, shown as scaled
arrows from the origin (Woocay and Walton 2008). The
loadings are scaled for visualization, the main interest is in
their direction (Woocay and Walton 2008). A biplot allow
a simultaneous analysis of the relation between principal
components, the original variables, and the data (Woocay
and Walton 2008).

The two techniques of multivariate statistical analysis
have been widely used in hydrology. Suk and Lee (1999)
divided the system under study into different hydrochemi-
cal regimes. They applied cluster analysis to factor scores
to reduce the effects of misclassification caused by out-
liers and multicollinearity. Seasonal variation is deducted
from the results of cluster analysis after applying the
analysis to data of each season sequentially. Thyne et al.
(2004) developed a methodology to characterize water-
shed hydrology. For understanding temporal variation, the
authors applied the sequential method to runoff and base-
flow conditions separately. Woocay and Walton (2008)
applied sequentially principal component analysis and k -
means cluster analysis to groundwater quality data for
a better understanding of groundwater flow and evolu-
tion. The authors used biplots to understand the processes
affecting the groundwater chemical composition. By the
use of biplots and digital elevation maps of the princi-
pal components, flow paths, and interactions of ground-
water with surface water and geologic features were
inferred. Other studies have used the cluster analysis for
lumped data of all the sampling periods, but their anal-
ysis is limited for classifying water samples into groups
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(Vega et al. 1998; Wunderlin et al. 2001; Srivastava et al.
2012), not for analyzing temporal and spatial variation of
groundwater quality from the distribution of the clusters.

Methods
This section describes the proposed approach for clus-

tering analysis to understand the processes affecting spa-
tial and temporal groundwater quality and their variation.
The first step prior to the multivariate statistical analysis is
to reduce the data size by eliminating the variables that do
not provide important information of groundwater quality.
The variable elimination is based on two criteria: the Pear-
son correlation coefficient and the coefficient of variation.
When two variables have a high correlation coefficient
(more than 90%) only one is kept. Variables highly
correlated may introduce errors in the computations and
interpretation of results for principal component analysis
(Johnson and Wichern 2007). The variables with very low
(less than 5%) coefficient of variation, in space and time,
are considered to be almost constant and thus excluded
from the statistical analysis. After removing the unimpor-
tant variables for the analysis, the data are log transformed
and standardized. While the log-transformation is not
necessary for the analysis, it helps make the data closer
to normality and provides better statistical results, as sug-
gested by Güler et al. (2002). The standardization removes
the impacts of data units on the statistical analysis.

Hierarchical cluster analysis was applied to the
log transformed and standardized data. Based on the
observation that, if water quality data at the same sampling
location do not vary significantly in time the data belong to
the same cluster, cluster analysis was applied to the entire
dataset. The Ward’s method cluster together samples that
have little water quality variation in time and space,
allowing to derive spatial and temporal variation of the
processes affecting the groundwater quality data. It is
important to notice that the observation depends on the
dissimilarity level chosen to form the clusters. If the
dissimilarity is close to zero then the number of clusters is
the same as the number of data and the observation is not
true. In the other extreme if only one cluster is selected
then all the data will be on the same cluster independent
of the data values. Once the cluster analysis is complete,
the dendrogram is used to select the number of clusters for
further analysis. The decision of the number of clusters
is empirical but justified later using principal component
analysis (Thyne et al. 2004; Woocay and Walton 2008).
Principal component analysis was applied to the log
transformed data to verify the result of cluster analysis
and to identify the main variables that explain most of
the variation of groundwater quality. This was achieved
by using biplots of the first principal components. The
number of principal components selected for further
analysis is based on the number of principal components
required to distinguish the different clusters on the biplots.
Based on the selected principal components, the main
variables affecting the groundwater quality were obtained.
After the validation of cluster analysis result, spatial

distribution of clusters is plotted in maps. One map
per sampling period was generated, and these maps are
snapshots of the distribution of the water quality in the
study area. All parameters were plotted using boxplots
grouped by cluster. The boxplots provide information
about the main characteristics of each cluster, and allows
a direct comparison of differences among clusters. Using
the maps and boxplots, spatial and temporal variation of
the governing processes of groundwater were analyzed. At
the end of this analysis we discuss the procedure followed
to decide the optimal number of clusters to use.

The software R (R Core Team 2015; Rstudio Team
2015) was used to perform the statistical analysis and
the statistical results are plotted using the packages of
GGPLOT2 and RGDAL (Wickham 2009; Bivand et al.
2015). Other maps were generated using QGIS (QGIS
Development Team 2015).

Results and Discussion
Several variables were excluded from the statistical

analysis based on Pearson correlation coefficient and
the coefficient of variation, as described above. The
parameters pH and temperature were not considered for
cluster analysis because the coefficient of variation for
pH and temperature was less than 5% in all the sampling
periods. On the other hand, the correlation coefficients
between Cl− and the variables of salinity, total dissolved
solids, electrical conductivity and sodium were higher
or equal than 0.90 for all the sampling periods and
depths. Therefore, only Cl− data were retained for further
analysis. As a result, the multivariate statistical analysis
was conducted for the following variables: Ca+2, Mg+2,
K+, HCO3

−, Cl−, SO4
−2, and NO3

−.

Cluster Analysis
Figure 2 shows the dendrogram of cluster analysis for

the selected variables. For this study a dissimilarity value
of about 15 was selected which splits the dendrogram into
five clusters. This means that, the last two elements joined
in a clusters had a dissimilarity value smaller than 15. No
other two clusters are merged if the dissimilarity value was
larger than 15. The selection on the number of clusters
was based on a visual analysis of the dendrogram and
supported with principal component analysis. However,
at the end of this section we discuss a procedure that
help to decide the optimal number of clusters. To verify
the results of the cluster analysis, clusters were plotted
into biplots using principal components as shown in
Figure 3. While Figure 3a, for PC1 and PC2, shows
that the data corresponding to clusters 3 and 5 are
apparently overlapping, the two clusters have substantial
difference in Figure 3b for PC1 and PC3. Therefore,
three principal components are enough to verify cluster
analysis in the sense that two clusters can be distinguished
when they are plotted in the biplots. The first three
principal components (PC1, PC2, and PC3) explained
75% of the total variation of the original dataset (39.63%,
18.72%, and 17.19% respectively). The biplots were also
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used to extract the main variables that explain most
of groundwater quality data variance. The loadings of
PC1 plotted in Figure 3 showed that the groundwater
quality is dominated by Cl− and SO4

−2, whose loading
values were −0.51 and −0.48, respectively. Similarly,
the loadings of PC2 and PC3 indicated that NO3

− and
HCO3

− were dominant factors, and their loading values
were 0.68 and −0.69, respectively. Therefore, PC1 can be
related to saltwater intrusion, which had been reported as a
controlling factor of the groundwater quality in the study
area (Back and Hanshaw 1970; Perry et al. 2002). PC2
can be related to contamination by sewage and agricultural
fertilizers. This agrees with the finding of Pacheco et al.
(2004) that nitrate concentrations were above the Mexican
standards for drinking water in 11% of the analyzed
samples from supply wells in the Yucatan aquifer. Back
and Hanshaw (1970) reported local contamination of
groundwater by sewage; however, they concluded that
it was not a dominant factor of groundwater quality.
Results of this study showed that contamination, by
sewage and agricultural fertilizers, are now a dominant
factor of groundwater quality. PC3 can initially be related
to dissolution of the carbonate minerals in the Yucatan
aquifer. Although Ca+2 (−0.2) and Mg+2 (−0.34) have
low loadings in PC3 they have high loading (0.5 and
−0.65, respectively) in PC4, which explained 11.9%
of the total variation. Therefore PC3 and PC4 together
highlight the karstic nature of the aquifer. Although only
three components were required to explain the variation
of the clusters, we decided to consider PC4 because of
its importance in the karstic nature of the aquifer. It
is noted that the two major ions, Ca+2 and HCO3

−,
characteristic of a karstic aquifer, were not related to the
same principal component. This may be explained by the
spatial distribution of the two major ions due to their
genesis and chemical behaviors. Ca+2 in groundwater
is mainly due to dissolution of carbonate rocks and
have preference to form ion complexes with sulfates
(Morel 1983; Deutsch 1997; Perry et al. 2002). HCO3

−
in groundwater has two sources, dissolved carbon dioxide
and dissolution of carbonate rocks (Morel 1983; Appelo
and Postma 2005; Ibanez et al. 2007). The interaction of
groundwater with the carbonate rocks has been reported
as a controlling factor of groundwater quality in the study
area (Doehring and Butler 1974; Back and Hanshaw
1970). Ibanez et al. (2007) estimated that 0.77% of the
CO2 generated in soils ends in groundwater and concluded
that this small amount has a significant impact in the
groundwater chemical composition. The main sources of
CO2 identified by Ibanez et al. (2007) were respiration
processes and decomposition of organic matter, which are
dependent on the temperature and seasonal conditions.
Therefore PC3 can be related to precipitation and PC4
to the dissolution of carbonate rocks. Back and Hanshaw
(1970) reported that rain was not a significant controlling
factor of the groundwater quality in Yucatan. However,
this results suggest that rain is a dominant variable of
groundwater quality. This result is further confirmed in
the groundwater temporal variation section.

Figure 2. Dendrogram of cluster analysis applied to all the
sampling periods and the seven major ions: Ca+2, Mg+2, K+,
HCO3

−, Cl−, SO4
−2, and NO3

−. The dashed line represent
the level of dissimilarity chosen to identify the five clusters
selected for further analysis.

Spatial Variation
The clusters identified above are plotted in Figure 4

to analyze the spatial and temporal variability of the
groundwater quality governing processes. The box-and-
whisker plots for all major ions, including sodium for
comparison purposes, are presented in Figure 5. As shown
in Figure 4, cluster 1 is located in the west boundary
of the study area and at sampling locations close to the
coastal line (Figure 4a, 4c, and 4d). For sampling period
two (Figure 4b), only some data in cluster 1 are located
close to the coast. This cluster is characterized by the
highest values of all the ions but NO3

− (Figure 5). The
high values of Cl−, Na+, K+, and SO4

−2 are attributed to
saltwater encroachment (Perry et al. 2002; Pérez-Ceballos
et al. 2012). The samples on the west boundary are also
influence by groundwater rich in SO4

−2 coming from
an evaporite region at the south border of Yucatan and
Quintana Roo states which moves toward the west part of
the study area through the Ticul fault (Perry et al. 2002).
Cluster 2 corresponds to a zone located at the center of
the study area with some elements at the east side of
the study area (Figure 4). It is noted that this cluster has
fewer elements for sampling period two than for other
sampling periods. Figure 5 shows that the concentrations
of Ca+2, Mg+2, Cl−, Na+, K+, and SO4

−2 are smaller in
cluster 2 than in cluster 1, suggesting that cluster 2 is less
affected by saltwater intrusion and the groundwater rich
in sulfates. The sampling locations of cluster 3 are those
located in the east side the study area. The only exception
is that the data of the second sampling period occupy
a larger area extending towards the center of the study
area. Figure 5 shows that, for cluster 3, the concentrations
of Ca+2, Mg+2, Na+, K+, Cl−, SO4

−2, and HCO3
− are
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Figure 3. Biplots of the first principal components. (a) PC1 vs. PC2. (b) PC1 vs. PC3.

smaller than those of clusters 1 and 2, except that nitrate
concentrations are slightly higher. The fact that cluster
3 has lower ion concentrations may be explained by the
spatial distribution of average annual precipitation in the
study area. As shown in Figure 1, most of the precipitation
occurs in the east area of the State of Yucatan (INEGI
2002). Cluster 4 is located in two zones in the study area,
one at the east and one at the west (Figure 4a, 4c, 4d).
However, cluster 4 is located mainly in the west zone
for the data of the second sampling period (Figure 4b).
Cluster 4 is characterized by the highest values of NO3

−
and the lowest of Mg+2 (Figure 5). The zone at the west
(Figures 4a, 4b, and 4c) is located over Merida, the biggest
city in the State of Yucatan. Pacheco (2013) found that
the east of the state had high annual loading of nitrogen
due to extensive use of fertilizers, and the west had
also high loading of nitrogen due livestock production,
specifically pig farms. Therefore, this cluster can be
associated with local contamination zones caused by the
urbanization, disposal of untreated sewage, and excessive
use of agricultural fertilizers (Pacheco and Cabrera 1997;
Graniel et al. 1999; Pacheco 2013). Cluster 5 is present
all over the study area during the second sampling period
(Figure 4b), especially at certain locations occupied by
the data of clusters 1 and 2. Note that this cluster is
present only in the second sampling period. The average
concentrations of Ca+2 and HCO3

− are significantly lower
than those of the other four clusters (Figure 5). These
may be explained by the distribution of the precipitation
in 2010, more details will be discussed below.

This analysis reveals the zones of influence of the
different variables identified from principal component
analysis. Cluster 1 shows the spatial extent of the sea
water intrusion and the water coming from the south, rich
in sulfates. However, it does not have the capability to
separate the zones of influence of such processes. Clusters
2 and 3 have similar characteristics which are not affected
by seawater intrusion or contamination. The average
annual distribution of rain in the study area (Figure 1)
causes the main differences between these clusters with

cluster 3 having smaller concentrations of the ions. Thus,
these zones represent the natural groundwater conditions
of the aquifer only affected by the interaction of water
with the rocks of the aquifer and the average annual
distribution of precipitation. These processes were related
to PC4 and PC3, respectively. Cluster 4 corresponds to
the influence zones of the PC2 which was related to
anthropogenic contamination. Cluster 5 that is present
only in the second sampling period will be discussed in
more detail the next section.

Temporal Variation
Figure 4 is used to analyze the temporal variation

of groundwater quality by paying special attention
to the changes of the cluster locations with time, as
the temporal changes of the cluster locations reflect
groundwater quality variation. There are some details
about the precipitation that are important to mention and
help to explain the temporal variation of clusters. The
rainy season in Yucatan occurs between June and October
(Schmitter-Soto et al. 2002). The Köppen-Geiger climate
classification suggests that a month is dry if the total pre-
cipitation is less than 60 mm (Peel et al. 2007). Therefore,
during 2010 the rainy season started in April and ended
in September (Figure 6). Moreover, sampling period 2
planned to be at the end of the dry season was during the
rainy season of 2010. Sampling period 3 was performed
in dry months (October and November 2010); however,
its chemical composition can be considered to be repre-
sentative of the rainy season because the sampling was
performed right after the rain season. Sampling period 4 is
the only period performed in a dry season. Only 17 sam-
ples were taken during the first week of June 2011. The
spatial distribution of the clusters are similar for sampling
periods 1, 3, and 4 (Figure 4a, 4c, and 4d). Therefore,
groundwater quality do not varies significantly over these
sampling periods and the average chemical composition is
given in Figure 5. Recall that the three sampling periods
include two dry seasons and one rain season. This is
considered to be the stable configuration of groundwater
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Figure 4. Spatial distribution of the five clusters selected for further analysis. (a) First sampling period, September to
November 2009. (b) Second sampling period, April to June 2010. (c) Third sampling period, October to November 2010.
(d) Fourth sampling period, May to June 2011.

Figure 5. Box and whisker plots for the major ions. Sodium was not used for the analysis, it is presented for comparison
purposes. The open circle represents the average parameter value.

quality of the aquifer. A significant change in the spatial
distribution of the clusters is observed for the second
sampling period. As shown in Figure 4b, clusters 1, 2 and
4 have fewer wells in the second sampling period than in
the other three sampling periods. In addition, a new clus-
ter (cluster 5) appears. Comparing sampling periods 1 and
2, some data in cluster 5 replaced data in clusters 1 and 2.
In addition, in the east part of the study area, the location
resulting in high nitrate concentrations in cluster 4 is
occupied by data of low nitrate concentrations of cluster 3.

One hypothesis to explain the groundwater quality
changes in sampling period 2 is that the precipitation
during sampling period 2 was higher and caused the
movement of water westwards. Corresponding, the data
of cluster 3 spread to the west and data of cluster 1 were
diluted, which forms the new cluster 5. The hypothesis is
supported by the following facts. First, cluster 4 is absent
in the east part of the study area for sampling period 2,
and that the concentrations of Ca+2, Mg+2, Na+, K+,
Cl−, SO4

−, and HCO3
− in cluster 5 decreased by a factor
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Figure 6. Average cumulative monthly precipitation in the
State of Yucatan for the years 2009, 2010, and 2011.

of a half when comparing its concentrations with cluster
1. The only exception is the nitrate concentration, and
this may be attributed to high nitrate concentrations in
the top of the aquifer. Second, by examining the average
cumulative monthly precipitation plotted in Figure 6
for each month during 2009, 2010, and 2011, we can
see that sampling period 2 was carried out during the
rainy season of 2010 and this may explain why the
cluster 3 increases its influence towards the center of the
study area and the dilution effect of cluster 5. However,
the presence of cluster 4 at the west suggests that the
distribution of the precipitation is also important. The
distribution of the precipitation in April and June of
2010 is presented in Figure 7. The precipitation pattern
shown in Figure 7 is different from the average annual
precipitation, larger precipitation occurred in the west
part of the Yucatan State. Therefore, cluster 5 is formed
by groundwater samples from the east which had lower
concentrations because of the amount of rain, and in
the west because of the amount of precipitation and
changes in the spatial distribution of the precipitation.
Therefore, the amount and spatial patterns of precipitation
are dominant variables of groundwater quality temporal
variation in Yucatan. Cabrera et al. (2002) concluded
that groundwater quality is not different in dry and rain
seasons. Their study area was smaller (a zone at the
south of Merida used to supply water to the city) and this
behavior is also observed in sampling periods 3 and 4.
However, because of the temporal and spatial resolution
of the data used, this study leads to a different conclusion:
precipitation cause variations in groundwater quality.

Optimal Number of Clusters
Finally, we discuss a procedure that may help to

determine the optimal number of clusters. This empir-
ical procedure starts with analyzing two clusters and
sequentially increasing the number of clusters in the
analysis. For this discussion Figures 2 to 4 can be used as

reference for the dendrogram, biplots, and spatial distri-
bution respectively. To start, we chose two clusters based
on Figure 2. One cluster was cluster 1, and the other
cluster was formed by merging clusters 2 to 5. The biplots
showed that only the first principal component is required
to justify this selection (Figure 3a). From the boxplots
and the maps we identified the influence of the seawater
intrusion, and all the properties of cluster 1 discussed in
the previous section. We also derived the properties of the
second cluster. To decide if the analysis should finish at
this step, we did the same analysis for the case with three
clusters. For this case we obtained the following clusters:
cluster 1, cluster 5 and a cluster formed by merging
cluster 2 to 4. Note that cluster 1 had the same elements,
and thus all the information gained from the previous step
about this cluster remains valid. At this step the first three
principal components were required to justify this selec-
tion of clusters. As new information was gained in this
step, we continued with the analysis with four and five
clusters by gradually adding cluster 4, cluster 3, and clus-
ter 2 to the analysis. Note that three principal components
are still required for these steps. Adding a sixth cluster
divided cluster 2 into two clusters with slight differences
in calcium and magnesium. The selection of six clusters
required four principal components given that principal
component 4 was related to calcium and magnesium. We
decided that five was the optimal number of clusters for
this study because: 1) PC4 only explained 11.9% of the
total variation of the data and 2) due to the karstic nature
of the aquifer. The two clusters formed by splitting cluster
2 cannot be interpreted with the existent information, this
may serve as the basis for future studies. We decided that
five was the optimal number of clusters for this study.

Conclusions
The analysis of spatial patterns and temporal dynam-

ics are important for the design of groundwater protection
schemes, especially for karst aquifers that are vulnerable
to contamination. An approach is developed to simulta-
neously analyze spatial and temporal variability of the
processes governing groundwater quality. This approach
was applied to the karstic aquifer of the state of Yucatan.
Results of this work increase the knowledge about how
precipitation and human contamination impact groundwa-
ter quality in Yucatan. Without anomalous precipitation
events, the spatial variability of groundwater quality is
stable and can be classified into four zones indicating the
spatial influence of the different variables. The zone at the
west (cluster 1) and the coastal area is characterized by
the influence of sea water intrusion and the influence of
water from the south rich in sulfates. The zone at the east
(cluster 3) has the best water quality caused by the aver-
age annual distribution of precipitation. The zone in the
middle (cluster 2) has higher concentrations of the all ions
when compared to cluster 3 and there is no evidence of
the affectation from seawater intrusion or anthropogenic
contamination. Therefore clusters 2 and 3 are the zones
with a natural composition of the water only influenced by
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Figure 7. Distribution of the precipitation in the state of Yucatan. (a) April 2010. (b) June 2010.

carbonate rocks dissolution/precipitation and the average
annual distribution of precipitation respectively. There
are two localized contamination zones (cluster 4), one
at the west and one at the east characterized by having
the highest nitrate concentrations: one at the west under
the biggest city of the Yucatan and one at the east under
an agricultural zone. For the temporal variability the
proposed approach allows to conclude that the ground-
water quality is not steady in time. From the analysis
of the snapshots of spatial variability of water quality,
is concluded that the changes in time are influenced by
the amount and distribution of precipitation. Those two
factors cause the dilution of water samples belonging to
other clusters and the formation of the cluster 5.

This study develops an approach to analyze the
spatial and temporal variation of groundwater quality. The
proposed approach of using cluster analysis for lumped
data is proven to be useful for a simultaneous and efficient
analysis of spatial and temporal variability of groundwater
quality. We also discuss a procedure that can be used
to decide the number of clusters to use. The proposed
methodology is applicable to other areas given that no
assumption is made about the groundwater in Yucatan.

Acknowledgments
J. P. A. would like to thank CONACYT and the

Government of the State of Yucatan, Mexico for the
financial support to the research project: YUC-2008-
C06-108520. M. Y. was supported by NSF-EAR Grant
1552329. All the authors thank the Bruce Lafrenz and
one anonymous reviewer for their insightful comments.

Authors’ Note: The author(s) does not have any conflicts
of interest or financial disclosures to report.

References
APHA, AWWA, and WEF. 2005. Standard Methods for

the Examination of Water and Wastewater , 21st ed.
Washington, D.C.: APHA-AWWA-WEF, 2005.

Appelo, C.A.J., and D. Postma. 2005. Geochemistry, Ground-
water and Pollution , 2nd ed. CRC Press.

Back, W. 1999. The Yucatan Peninsula, Mexico. In Karst
Hydrogeology and Human Activities , ed. D. Drew, and
H. Hotzl, 13–30. Rotterdam, Netherlands: International
Association of Hydrogeologists, A.A. Balkema.

Back, W., and B. Hanshaw. 1970. Comparison of chemical
hydrogeology of the carbonate peninsulas of Florida and
Yucatan. Journal of Hydrology 10: 330–362.

Belkhiri, L., A. Boudoukha, and L.A. Mouni. 2011. Multi-
variate statistical analysis of groundwater quality data.
International Journal of Environmental Research 5, no. 2:
537–544.

Bivand, R., T. Keitt and B. Rowlingson. 2015. rgdal: Bindings
for the Geospatial Data Abstraction Library. R package
version 1.0-4. http://CRAN.R-project.org/package=rgdal
(accessed June 2016).

Cabrera, A., J. Pacheco, E. Cuevas, J. Ramirez, M. Comas, and
A. Camara. 2002. Hidrogeoquimica del Agua que Subyace
a la JAPAY I, en Mérida, Yucatán, México. Ingenieria 6:
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