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Abstract
This study evaluates alternative groundwater models with different recharge and geologic components at the

northern Yucca Flat area of the Death Valley Regional Flow System (DVRFS), USA. Recharge over the DVRFS
has been estimated using five methods, and five geological interpretations are available at the northern Yucca
Flat area. Combining the recharge and geological components together with additional modeling components that
represent other hydrogeological conditions yields a total of 25 groundwater flow models. As all the models are
plausible given available data and information, evaluating model uncertainty becomes inevitable. On the other
hand, hydraulic parameters (e.g., hydraulic conductivity) are uncertain in each model, giving rise to parametric
uncertainty. Propagation of the uncertainty in the models and model parameters through groundwater modeling
causes predictive uncertainty in model predictions (e.g., hydraulic head and flow). Parametric uncertainty within
each model is assessed using Monte Carlo simulation, and model uncertainty is evaluated using the model
averaging method. Two model-averaging techniques (on the basis of information criteria and GLUE) are discussed.
This study shows that contribution of model uncertainty to predictive uncertainty is significantly larger than that of
parametric uncertainty. For the recharge and geological components, uncertainty in the geological interpretations
has more significant effect on model predictions than uncertainty in the recharge estimates. In addition, weighted
residuals vary more for the different geological models than for different recharge models. Most of the calibrated
observations are not important for discriminating between the alternative models, because their weighted residuals
vary only slightly from one model to another.

Introduction
Groundwater modeling is commonly based on a sin-

gle conceptual model. Yet groundwater environments are
open and complex, rendering them prone to multiple
interpretations and conceptualizations. This is particu-
larly true for regional-scale modeling, in which parameter
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measurements and field observations are sparse relative to
large modeling domains. It is not uncommon for new data
to invalidate prevailing conceptual models, and it is diffi-
cult to select a single appropriate conceptual model (Bre-
dehoeft 2003, 2005). There is a growing tendency among
groundwater modelers to postulate alternative models for
a site. Neuman and Wierenga (2003) elucidated various
situations in which multiple models are needed. The most
often encountered situations are different models of alter-
native descriptions of groundwater processes and inter-
pretations of hydrogeological data (Sun and Yeh 1985;
Carrera and Neuman 1986; Samper and Neuman 1989;
Harrar et al. 2003; Tsai et al. 2003; Ye et al. 2004, 2008a;
Poeter and Anderson 2005; Foglia et al. 2007; Troldborg
et al. 2007; Rojas et al. 2008, 2009; Tsai and Li 2008).
Evaluation of the alternative models becomes inevitable
when the models are all acceptable (to various extents)
given available knowledge and data. Ignoring conceptual
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model uncertainty may result in biased predictions
and/or underestimation of predictive uncertainty. Model
averaging has received increasing attention for assess-
ing model uncertainty (Neuman 2003; Ye et al. 2004;
Hojberg and Refsgaard 2005; Poeter and Anderson 2005;
Refsgaard et al. 2006, 2007), and general purpose com-
puter software that implements model averaging has been
developed (Poeter and Hill 2007). However, the major-
ity of studies on model averaging are limited to synthetic
cases, in which model complexity can be controlled but
is significantly simpler than that of real world conditions.
This study incorporates real world conditions to enhance
our understanding of model uncertainty and the model
averaging methods currently in use for assessing model
uncertainty.

The main purpose of this study is to investigate
two sources of model uncertainty for real world ground-
water modeling under complicated hydrogeological condi-
tions. One source of uncertainty arises from the difficulty
of choosing, from multiple alternatives, an appropriate
model for estimating groundwater recharge (or net infil-
tration). The rationale for using multiple recharge models
is that it may increase reliability of recharge estimates
given recharge model uncertainty (Scanlon et al. 2002).
The other source of uncertainty arises from uncertainty
in geological models due to different interpretations of
geological and geophysical data, a well-known contrib-
utor to model uncertainty. In this study, recharge esti-
mated using different methods and different geological
interpretations is incorporated in a groundwater modeling
framework. This leads to alternative groundwater models,
and they are evaluated simultaneously by using expert
judgment (through expert elicitation) and on-site observa-
tions (through model calibration). The relative importance
of the two sources of model uncertainty to groundwater
flow modeling is discussed; overall model uncertainty is
assessed using a model averaging method as discussed
below.

Propagation of model uncertainty through ground-
water modeling gives rise to predictive uncertainty, as
different models lead to different model predictions (e.g.,
hydraulic head and flow). The predictive uncertainty is
also attributed to propagation of parametric uncertainty.
For each of the models, hydraulic parameters are uncer-
tain due to spatial variability of the parameters and to
paucity of parameter measurements and field observations
used for model calibration. In this study, a large number
of hydraulic parameters are calibrated, and corresponding
parametric uncertainty in the calibrated hydraulic conduc-
tivity is assessed using Monte Carlo methods. As a result,
for each model, predictive uncertainty is reflected by mul-
tiple realizations of model predictions. When alternative
models are considered, predictive uncertainty is quantified
by aggregating predictive uncertainty of each model using
the model averaging method. In other words, the results
of model averaging quantify both model uncertainty and
parametric uncertainty. This attempt of comprehensively
assessing predictive uncertainty for a complex, real world

groundwater model has not been reported previously in
the literature.

The study site is the northern Yucca Flat area of
the Nevada Test Site, located within the Death Valley
Regional Flow System (DVRFS), USA (Figure 1). Three
underground nuclear tests were conducted between 1962
and 1966 in the Climax mine granite stock immediately
north of Yucca Flat. Groundwater flow and contaminant
transport modeling is now under way to estimate radionu-
clide flux from the Climax stock to the downgradient
Yucca Flat in support of corrective action investigations
by the U.S. Department of Energy (DOE). This paper
focuses only on the flow modeling in northern Yucca
Flat; the associated transport modeling is described in
Pohlmann et al. (2007) and Reeves et al. (2009). Because
there are only 59 hydraulic head observations in north-
ern Yucca Flat (Figure 1) and boundary conditions in the
area are largely unknown, the groundwater flow model-
ing is conducted within the DVRFS modeling framework
(Belcher et al. 2004) implemented using MODFLOW-
2000 (Harbaugh et al. 2000; Hill et al. 2000). Hereinafter,
the DVRFS modeling framework is referred to as the
DVRFS model. The DVRFS model has been developed
over the last decade on the basis of regional characteriza-
tion of hydraulic, geological, and hydrogeological condi-
tions of the DVRFS. In addition, this MODFLOW model

Figure 1. Map showing boundaries of the Death Valley
Regional Flow System (DVRFS), the Nevada Test Site, and
the northern Yucca Flat (area of detailed geological models).
The figure is modified from Belcher et al. (2004).
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has been calibrated against 4963 observations of head,
head-change, and flow (locations of the head observa-
tions are shown in Figure 1). Using the DVRFS modeling
framework, rather than developing a separate flow model
for northern Yucca Flat, is expected to better constrain the
flow system in northern Yucca Flat.

Complicated hydrogeologic conditions in the DVRFS
lead to significant uncertainties in its recharge and geo-
logical components. To date, recharge at the DVRFS has
been estimated using five methods. In addition, five geo-
logical interpretations (rigorously speaking, hydrostrati-
graphic frameworks) have been developed by Belcher
et al. (2004) and Bechtel Nevada (2006) for northern
Yucca Flat. Several geological interpretations are neces-
sary to reflect nonunique understandings of geological
and geophysical data resulting from the complexity of
the model area. Although a single combination of the
recharge and geological components was used in the
DVRFS model, an expert elicitation suggested that there is
no justification for selecting a single recharge/geological
model and discarding others (Ye et al. 2008a). The five
recharge and five geological components are thus all used
for modeling groundwater flow in northern Yucca Flat.
Although there is no question that other kinds of model
uncertainty exist in the DVRFS, discussion of all sources
of model uncertainty is beyond the scope of this study.
Similarly, this study focuses on parametric uncertainty of
the hydraulic conductivity and ignores other sources of
parametric uncertainty.

The goal of this study is to incorporate the uncer-
tainty in the recharge and geological components into
groundwater flow predictions. As illustrated in the figure
of the Supporting Information, by replacing the recharge
and geological components of the DVRFS model with
the alternatives, a total of 25 alternative groundwater flow
models are produced (as the result of combinations of the
five recharge and five geological models). Plausibility of
the alternative models is evaluated by calibrating the mod-
els against the same observation data and by estimating
probabilities of the individual models using the method
discussed below.

The conventional model averaging method is used
to assess the model uncertainty. If � is the quantity of
interest predicted by a set of K alternative models, then
its distribution conditioned on a dataset D is (Hoeting
et al. 1999):

p(�|D) =
K∑

k=1

p(�|Mk, D)p(Mk|D) (1)

where p(�|Mk, D) is the predictive probability of � for
model Mk , and p(Mk|D) is the posterior probability of
Mk . One way of estimating the posterior model probabil-
ity, the averaging weight, is to use Bayes’ theorem:

p(Mk|D) = p(D |Mk)p(Mk)

K∑
l=1

p(D |Ml)p(Ml)

(2)

where p(D |Mk) is the likelihood of model Mk (a mea-
sure of consistency between model predictions and site
observations D) and p(Mk) is prior probability of Mk .
In this study, instead of using a noninformative equal
prior [p(Mk) = 1/K], informative prior model probabili-
ties are obtained from expert elicitations (Ye et al. 2008a).
This is expected to improve predictive performance of
the model averaging (Ye et al. 2005). In general, the first
two moments of � are used to quantify the uncertainty.
For modelMk , parametric uncertainty is quantified by the
mean, E[�|D, Mk], and variance, Var[�|D, Mk], which
can be obtained using either Monte Carlo simulation or
stochastic methods. The posterior mean and variance

E[�|D] =
K∑

k=1

E[�|D, Mk]p(Mk|D) (3)

Var[�|D] =
K∑

k=1

Var[�|D, Mk]p(Mk|D)

+
K∑

k=1

(E[�|D, Mk] − E[�|D])2p(Mk|D)

(4)

quantify both the parametric and model uncertainty. The
first and second terms on the right-hand side of Equation 4
are the within- and between-model variance, respectively.

In groundwater modeling, a common practice for
estimating the model likelihood function, p(D |Mk), is
to approximate it using model selection (or information)
criteria: AIC (Akaike 1974), AICc (Hurvich and Tsai
1989), BIC (Schwarz 1978), or KIC (Kashyap 1982).
Definitions of each of the criteria are given as the
supporting information. A general approximation that
includes all criteria can be expressed as:

p(D |Mk) = exp

(
−1

2
ICk

)
(5)

where ICk is any of the four criteria of model Mk . When
the least-square method is used for model calibration, the
first term of the model selection criteria becomes (Poeter
and Anderson 2005; Ye et al. 2008b):

− ln[L(Mk|D)] = N ln σ̂ 2
k,ML = N ln(eT

k ωek/N)

= N ln(SSWRk/N) (6)

where N is number of calibration data D , SSWRk =
eT

k ωek is sum of squared weighted residual of model Mk ,
ek is the vector of residuals (difference between observa-
tions and simulations of modelMk), and ω is the weight
matrix due to measurement error of the observations.
Another way of approximating the likelihood function is
given by the generalized likelihood uncertainty estima-
tion (GLUE) method (see a review by Beven [2006]).
Although multiple expressions are given in Beven and
Binley (1992) and Beven and Freer (2001), this study
uses the likelihood measure

p(D |Mk) = (eT
k ωek)

−E (7)
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where E is a parameter chosen by the user. When E = 0,
all models will have the same likelihood; and when
E → ∞, the best model with the smallest SSWR will
have the posterior model probability of 1. Rojas et al.
(2008) used several other likelihood definitions in the
model averaging context.

In the remaining part of this paper, the alternative
recharge estimation methods and geological interpreta-
tions are briefly described, followed by discussion of the
model calibration results. Before giving the concluding
remarks at the end of this paper, calculation of the pos-
terior probabilities of the groundwater models and effect
of the calibration data on the calculation are elaborated.

Alternative Recharge and Geological
Components

The alternative recharge estimation methods and
geological interpretations are briefly described in this
section; further details are presented in Pohlmann et al.
(2007) and their original publications.

Five Recharge Estimation Methods
The five recharge models of the DVRFS are:

(1) MME (R1): modified Maxey-Eakin method. This
method is based on the empirical Maxey-Eakin
method that estimates groundwater recharge as
a function of precipitation estimates for selected
zones of elevation (Maxey and Eakin 1949), and
is updated using new methodologies and datasets
(Epstein 2004) and an expanded area of coverage
to include the entire Death Valley region.

(2 and 3) NIM1 (R2) and NIM2 (R3): net infiltration meth-
ods with/without runon-runoff. The two methods
employ a distributed-parameter watershed model
for estimating temporal and spatial distribution
of net infiltration and potential recharge (Hevesi
et al. 2003). The difference between the two
methods is that R2 incorporates a surface water
runon-runoff component whereas R3 does not.

(4 and 5) CMB1 (R4) and CMB2 (R5): chloride mass bal-
ance methods with alluvial mask (R4) and both
alluvial and elevation masks (R5) (Russell and
Minor 2002). The two methods estimate ground-
water recharge on the basis of the elevation-
dependent chloride mass balances within hydro-
logic input and output components of individ-
ual hydrologic basins. In R4, recharge in areas
covered by alluvium is eliminated (the alluvial
mask). In addition to the alluvial mask, R5 fur-
ther eliminates recharge in areas below 1237 m
elevation (the elevation mask).

The five methods are based on three different
recharge estimate techniques: an empirical approach
(MME), an approach based on unsaturated-water studies
(NIM1 and NIM2), and an approach based on saturated-
water studies (CMB1 and CMB2). The models reflect dif-
ferent levels of complexity. The empirical MME method

is the simplest one; the NIM methods are the most com-
plicated because they consider the processes controlling
net infiltration and potential recharge. Figure 2 illustrates
the recharge rate estimates of the five methods. The MME
gives the highest recharge estimate, and the NIM models
give the lowest. Because of the runon-runoff component
considered in NIM1, the recharge estimate of NIM1 is
higher than that of NIM2, although spatial patterns of the
recharge estimate are similar in the two methods. Because
of the extra elevation mask considered in CMB2, the
recharge estimate of CMB2 is lower than that of CMB1;
for the same reason, spatial patterns of the recharge esti-
mate are different in the two models (less recharge is
estimated in southern Nevada in CMB2).

Five Geological Interpretations
The five geological interpretations in northern Yucca

Flat are:

1. USGS (G1): USGS interpretation (Belcher et al. 2004)
2. BAS (G2): UGTA base interpretation (Bechtel Nevada

2006)

Figure 2. Recharge rate estimates (m/d) of the five recharge
models (R1 to R5): (a) modified Maxey-Eakin method
(MME), (b) net infiltration method with runon-runoff
(NIM1), (c) net infiltration method without runon-runoff
(NIM2), (d) chloride mass balance method with alluvial
mask (CMB1), and (e) chloride mass balance method with
alluvial and elevation masks (CMB2).
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3. CPT (G3): UGTA CP thrust alternative (Bechtel
Nevada 2006)

4. HB (G4): UGTA hydrologic barrier alternative (Bech-
tel Nevada 2006)

5. CPT+HB (G5): combination of the UGTA CP thrust
and hydrologic barrier alternatives (Bechtel Nevada
2006)

Figure 3 illustrates the major differences between
these interpretations in two-dimensional cross sections.
The USGS interpretation (G1), developed by the U.S.
Geological Survey, represents the configuration of hydro-
geologic units in the entire DVRFS. The UGTA base
interpretation (G2), developed by Bechtel Nevada (2006)
as part of the underground test area (UGTA) program of
the Nevada test site, focuses on more local-scale geo-
logical and geophysical data and information than the
DRVFS. As illustrated in the north-south cross section in
Figures 3a and 3b, G1 and G2 differ in both the number
of hydrostratigraphic units and their subsurface configu-
ration. The UGTA alternative interpretations (G3 to G5)
are developed in response to nonunique interpretations
of particular features that may be important to ground-
water flow and contaminant transport in northern Yucca
Flat. Figures 3c to 3f show the difference between the
G2 and its two alternatives. G3 (Figure 3d) incorporates a
different interpretation of the configuration of hydrostrati-
graphic units with respect to the CP thrust fault. The lower
carbonate-rock aquifer (LCA) and upper clastic-rock con-
fining unit (UCCU) are extended eastward to replace the
lower carbonate-rock confining unit (LCCU) and the LCA
located above the LCCU, respectively. As shown in the
next section, the flow field corresponding to G3 is dramat-
ically different from that of G2, due to the configuration
of the CP thrust. G4 (Figure 3f) postulates a barrier to
groundwater flow on the east side of the Climax stock for
the purpose of limiting southward groundwater flow from
northern basins into northern Yucca Flat to be consistent
with observed hydraulic gradients. G5, the combination of
G3 and G4, is not shown in Figure 3. As shown below,
the geological components are more important than the
recharge components for controlling groundwater flow,
and the uncertainty of the former dominates over that of
the latter in the predictive uncertainty.

Model Calibration Results
The 25 groundwater models (resulting from incorpo-

rating the five recharge and five geological components)
are calibrated in a similar manner to the calibration of
the DVRFS model described in Belcher et al. (2004).
Unlike Belcher et al. (2004) who calibrated parameters
distributed throughout the entire DVRFS, only parame-
ters in northern Yucca Flat and its vicinity are calibrated
in this study. The calibrated parameter values (listed in
Pohlmann et al. [2007]) are different (significantly for cer-
tain parameters) for different groundwater models. The
values assigned to other parameters and variables needed

Figure 3. Two-dimensional vertical cross sections illustrat-
ing differences between (a and b) the USGS (G1) and UGTA
base (G2) interpretations, (c and d) the UGTA base interpre-
tation (G2) and the CP thrust alternative (G3), and (e and
f) the UGTA base interpretation (G2) and the hydrologic
barrier alternative (G4). Figures (c) and (e) represent two
cross sections of G2. Coordinates in (a) and (b) are Northing
(meters, UTM Zone 11, NAD27) and elevation (meters).

for the calibration (e.g., convergence criteria and weight-
ing matrix, ω) are adopted from the DVRFS model. There-
fore, the model calibration of this study can be viewed as
a further calibration of the DVRFS model. Given the new
information and data included in the geological models
and the local optimization method used in MODFLOW-
2000, as discussed in the supporting information, the
new calibration improves the calibration and reduces the
SSWR of the DVRFS model. Nevertheless, fixing the cal-
ibrated parameters from the DVRFS model is a limitation
in this study, and it would be more accurate to calibrate all
parameters to which simulations of the alternative mod-
els are sensitive. For further discussion of the calibrated
parameters and their effect on model simulations, readers
are referred to Pohlmann et al. (2007).

To compare the residuals of the 25 groundwater
models in northern Yucca Flat, all residuals of the 59
observations are plotted together in Figure 4 in a manner
that allows for comparison of residuals for each of the
five recharge models within a single geological model.
Weights were applied to the two types of observations
(head and head changes) to render them dimensionless
for comparison. The figure shows that, for any geological
interpretations, most of the residuals are nearly the same
for all the recharge estimation methods, except for five
observations of head and two observations of head-
change. For the two head-change observations (with
indices 58 and 59 in Figure 4), their residuals for most
of the 25 models are nearly the same, except for the
combinations of G3R3, G1R2, and G1R3. The residuals
of the five head observations (with indices 43, 44, 48, 49,
and 50 in Figure 4) are significantly different for all of
the 25 models, suggesting that head observations are more
sensitive than head-change observations to the alternative
models. This is also seen in Table S2 of the supporting
information, which shows that the SSWR of the head
observations varied more dramatically than that of the
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Figure 4. Weighted residuals of the 50 observations of head (index from 1 to 50) and 9 observations of head change (index
from 51 to 59) for all of the 25 models. The residuals for different recharge models are plotted together for a single geological
model.

head-change observations for different alternative models.
Therefore, Figure 4 suggests that the head observations
play a more important role of discriminating the models
than the head-change observations.

Calculation of Posterior Model Probabilities
Calculation of the posterior model probability using

Equation 2 requires the prior model probability and the
model likelihood function. The prior probabilities of the
25 models are elicited from two independent expert
panels for the recharge and geological models, respec-
tively. Details of the expert elicitation are given in Ye
et al. (2008a). The prior model probabilities, plotted in
Figure 5, reflect the panelists’ beliefs regarding relative
plausibility of each model, considering their consistency
with available data and knowledge. For the recharge esti-
mation methods, the NIM1 method (R2) has the largest
prior probability, indicating that the experts had the most
confidence in this method. The confidence is based on
the method’s comprehensive incorporation of the pro-
cesses controlling net infiltration and potential recharge.
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Figure 5. Prior and posterior probabilities of the 25 models.
The posterior model probabilities correspond to equal and
unequal prior model probabilities.

Not surprisingly, for the geological interpretations, the
UGTA base interpretation (G2 or BAS) has the largest
prior probability. The CPT alternative (G3) is considered
less plausible than the HB alternative (G4) based on drill-
hole and geophysical data. As a result of combining the
geological and recharge components, model G2R2 has the
largest prior probability of 8.4%, about twice as large as
the average prior probability of 4% (recall that summa-
tion of the prior probabilities of the 25 models is 100%).
Figure 7 shows that the prior model probabilities are gen-
erally evenly distributed among the 25 models, indicating
that there is no justification for selecting a single model
(and discarding others) based on the prior judgment from
one modeler or a group of modelers.

Table 1 lists the model selection criteria calculated
based on the model calibration results using the method
of Ye et al. (2008b) as well as the posterior model
probabilities estimated using Equations 2 and 5. The table
lists only the results for models associated with geological
interpretations G2 and G3, because the probabilities of
all other models are calculated to be near zero. For all
the model selection criteria, only two of the 25 models
receive non-negligible probabilities. AIC, AICc, and BIC
select models G3R5 and G3R2. The probability of G3R5
is larger than that of G3R2, although the SSWR of G3R2
is smaller than that of G3R5. The reason is that G3R2 has
two more calibrated parameters than G3R5. KIC selects
models G3R2 and G2R3. Model G2R3 is selected because
its log determinant of the Fisher information matrix is
significantly smaller than that of model G3R5, despite the
fact that the SSWR and number of calibrated parameters
of G2R3 are larger than those of model G3R5. From a
theoretical point view, calculation of the model selection
criteria using observations only in northern Yucca Flat
may not be appropriate for this study because model
calibration is conducted for the entire DVRFS. In this
case, it is unknown whether the theoretical basis of the
model selection criteria is sound, especially for the penalty
terms (e.g., the 2Nk term of AIC and NklnN term of BIC)
of the criteria.
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Table 1
The AIC, AICc, BIC, and KIC Values and Corresponding Model Probabilities for Models Associated with the

Two Geological Models (G2 and G3) and All Recharge Models

MME (R1) NIM1 (R2) NIM2 (R3) CMB1 (R4) CMB2 (R5)

UGTA base model (BAS or G2)
AIC 98.33 68.74 57.10 62.51 75.63
p(Mk |D) (%) 0 0 0 0 0
AICc 101.21 73.32 61.68 65.39 78.51
p(Mk |D) (%) 0 0 0 0 0
BIC 112.87 87.44 75.80 77.05 90.17
p(Mk |D) (%) 0 0 0 0 0
ln|F| 3.53 −13.95 −21.13 −6.33 −5.61
KIC 64.99 12.51 −4.54 23.56 35.84
p(Mk |D) (%) 0 0.02 33.83 0 0

UGTA CP thrust alternative model (CPT or G3)
AIC 84.11 39.98 77.59 55.56 39.37
p(Mk |D) (%) 0 42.36 0 0.02 57.61
AICc 86.99 44.56 82.18 58.44 42.25
p(Mk |D) (%) 0 23.88 0 0.02 76.10
BIC 98.65 58.68 96.29 70.10 53.91
p(Mk |D) (%) 0 8.43 0 0.03 91.54
ln|F| 3.76 −7.01 −19.70 −4.49 −3.94
KIC 52.69 −4.92 14.26 19.27 5.56
p(Mk |D) (%) 0 65.92 0 0 0.23

Note: Probabilities of other models are zero, and thus are not listed.

Although it is legitimate to conduct model averaging
using the model probabilities given by the four model
selection criteria, using only 2 of the 25 models for
model averaging does not appear to adequately support the
main purpose of this study: incorporating model uncer-
tainty in simulations of flow and radionuclide transport
from the Climax stock area to downgradient Yucca Flat.
Figure 6 plots the simulated flow rate of the six models
that are considered the most plausible using the GLUE
methodology discussed below. The figure shows apparent
differences in flow patterns simulated by geological inter-
pretations G2 and G3. The large flow rate at the bottom
of Figures 6a and 6c for G3 (UGTA CP Thrust alterna-
tive) corresponds to the LCA unit extending eastward in
G3 (Figures 3c and 3d). One would expect to average
the flow rates simulated by the two geological models,
whereas AIC, AICc, and BIC select only G3R2 and G3R5
associated with geological model G3. Although the two
geological models (G3R2 and G2R3) are selected by KIC,
KIC still discards all other models. Figure 7 shows that
the flow rates simulated by the 25 calibrated models are
significantly different, and the simulated values of mod-
els G3R2, G3R5, or G2R3 are higher than the average.
Therefore, using only two model results for averaging
may result in underestimation of predictive uncertainty
and bias the predictions, the two problems that model
averaging intends to avoid.

Given that the calibration metrics (SSWR) are sim-
ilar, the GLUE method is used to calculate the poste-
rior probabilities of the 25 models (through Equations 2

and 7). The results plotted in Figure 5 show two sets of
posterior probabilities for equal (1/25 = 4%) and unequal
(obtained from the expert elicitations) prior probabilities.
The GLUE posterior model probabilities are more evenly
distributed than those of IC-based model selection cri-
teria; all models receive probabilities within a generally
comparable range, the largest and smallest values being
14% and 1%, respectively. Therefore, using the GLUE
model probability for averaging the simulated flow avoids
the problems above caused by using the IC-based model
probabilities. However, it is worth mentioning that the
GLUE model probabilities are exclusively based on the
goodness-of-fit (the SSWR) without taking into account
model complexity.

Figure 5 also shows the effect of prior probability on
posterior model probability. Because recharge estimation
method R2 (NIM1) and geological interpretation G2
(UGTA base model) are ranked the highest from the
expert elicitation, the posterior probabilities associated
with R2 and G2 are higher when they are calculated using
the unequal prior model probabilities than when using
the equal priors. For example, the posterior probability of
model G2R2 increases from 6% to 13% when the unequal
prior probability is used. It is also important to note that
the magnitudes of prior and posterior model probabilities
are not always proportional. For instance, the elicitation
judged R1 (MME) to be the second best recharge model,
whereas the posterior probabilities of models associated
with R1 are very low. This is also the case for the
geological models, because the best calibration resulted
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Figure 6. Cell-by-cell flow crossing the front face of MODFLOW cells (i.e., Qy, m3/day) predicted at the southern boundary
(x − z cross section) of northern Yucca Flat by models (a) G3R2, (b) G2R2, (c) G3R5, (d) G2R5, (e) G2R3, and (f) G2R1.
G2 and G3 are the UGTA base model and its CPT alternative. R1, R2, R3, and R5 are MME, NIM1, NIM2, and CMB2
recharge models, respectively. The x - and z -coordinates are Easting (meters, UTM Zone 11, NAD 27) and elevation (meters).

0

20000

40000

60000

80000

100000

120000

R1 (MME) R2 (NIM1) R3 (NIM2) R4 (CMB1) R5 (CMB2)

F
lo

w
 r

at
e 

(m
3 /d

)

G1 (USGS) G2 (BAS) G3 (CPT) G4 (HB) G5 (CPT+HB)

Figure 7. Simulated flow rates from the northern Yucca Flat
area into Yucca Flat. Each cluster represents the flow rate
of the five geological models for a single recharge model.

from G3 (the UGTA CP thrust alternative) not from G2
(the UGTA base interpretation) that was rated highest in
the elicitation. Quantitative analysis regarding the effect
of prior model probability on model predictions will be
studied in the future.

Effect of Calibration Data on Model
Discrimination

Figure 8 is a scatterplot of the weighted residuals of
head and head-change observations in northern Yucca Flat
given by the six most plausible models selected by the
GLUE model probabilities (model probability gradually
decreases from G3R2 of Figure 8a to G2R1 of Figure 8f).
In these plots, the symbol size is proportional to the
magnitude of the residuals. Head contours at the top
layer of the domain are also plotted. The figure shows
that, in the trough area (in blue) where hydraulic head
is low, the magnitude of the residuals is similar. This is
also observed in Figure 4 where these residuals vary only
slightly for different models. Because model probabilities
based on these residuals are similar, calibration against
these data is not critical to discriminate between the
alternative models. In contrast, observations in the area
north of the low-head area are critical, because their
values change significantly for the different models. For
example, the residual at the location highlighted by
the blue circle in Figure 8a increases gradually from
Figures 8a to 8f. Correspondingly, the model probabilities
gradually decrease from model G3R2 in Figure 8a to
G2R2 in Figure 8f.
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Figure 8. Scatterplots of residuals of heads and head-changes and contours of hydraulic head at the top layer in the northern
Yucca Flat area simulated by models (a) G3R2, (b) G2R2, (c) G3R5, (d) G2R5, (e) G2R3, and (f) G2R1. G2 and G3 are the
UGTA base model and its CPT alternative. R1, R2, R3, and R5 are MME, NIM1, NIM2, and CMB2 recharge models,
respectively. The x - and z -coordinates are Easting and Northing (meters, UTM Zone 11, NAD 27). Size of the scatters is
scaled with magnitude of the residuals.

This finding is important for guiding data collection
for further discrimination between alternative models and
for reducing model uncertainty. For this study, collecting
more data in the trough area (in blue) would not help
discriminate the models, because they would not reveal
more information about differences between alternative
models. Instead, more data upgradient of the trough area
should be collected, because observations in this area vary
significantly for different models. Future studies that focus
on the development of statistical measures that quantify
the amount of information supplied by the new data are
warranted.

Assessment of Predictive Uncertainty
Both parametric and conceptual model uncertainty is

assessed in this study. Parameter estimates obtained from
the least-square (or maximum likelihood) inverse model-
ing are subject to uncertainty, because of insufficient data
and data error. The parameter estimation uncertainty is
measured by the parameter estimation covariance matrix

(Hill and Tiedeman 2007):

V (θ̂) = s2(X T ωX )−1 (8)

where X is sensitivity of matrix evaluated at the parameter
estimate, θ̂, and s2 is calculated error variance

s2 = eT ωe
N − Nk

(9)

The covariance matrix, given as a byproduct of model
calibration in MODFLOW-2000, is different for differ-
ent models. According to the maximum likelihood theory
(Berger 1985), the parameter estimates follow a multi-
variate normal distribution, whose mean and covariance
are the calibrated parameters, θ̂, and the covariance matrix
V (θ̂), respectively. This allows generating random param-
eters for Monte Carlo simulations to assess the parametric
estimation uncertainty of each model. After calculating
the mean and standard deviation of head and flow rate of
each model, the model averaging is implemented using
Equations 3 and 4 to estimate the posterior mean and stan-
dard deviation.

Figures 9a to 9c plot the mean head simulations in
northern Yucca Flat given by the averaged model and by
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Figure 9. Mean and standard deviation of head simulations of (a and d) model averaging and models (b and e) G3R2 and
(c and f) G3R5. (g to i) are for the standard deviation of (g) posterior, (h) within-model, and (i) between-model variance of
head simulations. G3 is the CPT alternative model. R2 and R5 are NIM1 and CMB2 recharge models, respectively. The x -
and z -coordinates are Easting and Northing (meters, UTM Zone 11, NAD 27).

models G3R2 and G3R5. A similar plot of the five most
plausible models (having a sum of GLUE probabilities of
48.9%) is given as supporting information. The plotted
results are for the final stress period and the top layer
of the simulation domain. Although the general spatial

patterns of the mean heads are similar for the individual
models (high heads in the north and low heads in the
south), significant differences in mean heads are observed
between models (Figures 9b and 9c). The spatial patterns
of individual models are preserved in the posterior mean
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heads of the averaged model (Figure 9a) to different
extents, depending on individual model probabilities. For
example, the high mean heads simulated in the southeast
corner by models G3R5 are not reflected in the posterior
mean heads of the averaged model, because this model
has a relatively lower probability. This aspect of model
averaging is expected to avoid biased predictions that
might result from using a single model.

Figures 9d to 9f are plotted in the same manner
as Figures 9a to 9c, but for the standard deviations
of heads simulated by model averaging and by the
two individual models. The figure shows that, unlike
the posterior mean of the averaged model, the spatial
pattern of the posterior standard deviation is significantly
different from that of individual models, and that the
posterior standard deviation is larger throughout the
entire area. This results from between-model variance
(Equation 4) that is incorporated when averaging multiple
models. As shown in Figures 9g to 9i, the spatial pattern
and magnitude of the standard deviation of posterior
head variance are dominated by those of the between-
model variance, as compared with the within-model
variance. This demonstrates that model averaging avoided
underestimation of the magnitude and spatial distribution
of the predictive uncertainty. The same conclusions can
be drawn for the predictive uncertainty of flow rate,
and the results and discussions are referred to Pohlmann
et al. (2007).

Concluding Remarks
This paper evaluates two sources of model uncer-

tainty for groundwater flow modeling in northern Yucca
Flat of the DVRFS. Uncertainty in the recharge and geo-
logical model components results from different tech-
niques for recharge estimation and different interpreta-
tions of geological and geophysical data, respectively. The
uncertainty assessment is conducted in a flow-modeling
framework by replacing the recharge and geological com-
ponents of the DVRFS model with the alternative com-
ponents. This results in 25 groundwater model combi-
nations. These models are calibrated against the obser-
vations distributed over the entire DVRFS, and the cal-
ibration results in northern Yucca Flat are used for the
uncertainty assessment. All four model selection crite-
ria (AIC, AICc, BIC, and KIC) select two models as
the most plausible and discard the other 23. However,
using only two models is not considered adequate for
this study because the 25 model predictions are signif-
icantly different and elimination of most of the alter-
native models may underestimate predictive uncertainty
and bias the predictions. Instead, GLUE probabilities
are used as they are more evenly distributed across
all of the 25 models. The model averaging results are
superior to those of individual models, as the former
avoids the potential for biased predictions and underes-
timation of uncertainty. The magnitude and spatial dis-
tribution of the posterior variance is dominated by the
between-model variance, which is significantly larger than

the within-model variance corresponding to parametric
uncertainty.

Uncertainty in the geological interpretations has a
more significant effect on groundwater flow simulations
than that in the recharge estimation methods. Different
geological interpretations result in dramatically different
flow patterns, whereas the effect of the recharge estima-
tion methods is restricted to the top layers of the domain.
For example, the different configurations of the CP thrust
in geological interpretations G2 and G3 give entirely dif-
ferent flow patterns from the top to the bottom of the
simulation domain. In addition, given a single recharge
estimation method, the weighted residuals vary signif-
icantly from one geological model to another; on the
contrary, the variation between multiple recharge esti-
mation methods for a given geological interpretation is
smaller. Most observations cannot be used to effectively
discriminate between the alternative groundwater models
because their residuals are similar in all models. Instead,
the difference of model fit (measured by the SSWR)
between different models is caused by a few observations
(e.g., five head observations in this study). This finding
is important for guiding data collection for further eval-
uation and reduction of the model uncertainty because
it is more efficient to target areas where data collec-
tion will most effectively discriminate between alternative
models.

Although GLUE probabilities are used here for model
averaging, this does not suggest that GLUE is theoreti-
cally superior to the model selection criteria. Comparing
predictive performance of GLUE and each model selec-
tion criteria requires running cross-validation (Ye et al.
2004; Foglia et al. 2007) for real world models, which
is beyond the scope of this study. Real world models
clearly present significant challenges to existing tech-
niques for model averaging. One important issue is how
to evaluate the model selection criteria. It is unknown
whether the theoretical bases of the criteria are still valid
if calibration data are different from the data used for
calculating the criteria. In addition, it is still an open
question as to whether one can select one or two mod-
els from several alternatives, on the basis of statistical
criteria, for a site with complicated hydrogeologic condi-
tions but sparse observations. Another issue is how model
probabilities developed during flow modeling apply to
subsequent transport modeling. This problem is resolved
empirically in Pohlmann et al. (2007) and Reeves et al.
(2009). Finally, the relative magnitudes of prior and
posterior model probabilities are inconsistent. Although
this is not surprising, the effect of using the informa-
tive prior probability on model predictions has not been
quantified.

Acknowledgments
This research was supported in part by the U.S.

Department of Energy, National Nuclear Security Admin-
istration Nevada Site Office under contract DE-AC52-
00NV13609 with the Desert Research Institute (DRI). The

NGWA.org M. Ye et al. GROUND WATER 11



first author conducted part of the research when he was
employed by DRI. The first author is also supported in
part by NSF-EAR grant 0911074.

Supporting Information
Supporting Information may be found in the online

version of this article:

The supporting information includes the definitions
of the four model selection criteria, the procedure of
developing the 25 alternative groundwater models and of
assessing the model uncertainty, the reduction of SSWR in
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Table S1. The sum of squared weighted residuals
(SSWR) of the four types of observations for the USGS
geological model (G1) and the five recharge models. N

is the number of observations of each type, and DVRFS
is the SSWR of the original DVRFS model reported by
Belcher et al. (2004). The observations are distributed
throughout the entire DVRFS.

Table S2. The sum of squared weighted residuals
(SSWR) of the two types of observations for the five geo-
logical and the five recharge models. N is the number of
observations of each type, and DVRFS is the SSWR of the
original DVRFS model reported by Belcher et al. (2004).
The observations are distributed within the northern Yucca
Flat.

Figure S1. Mean heads of (a) model averaging and
models (b) G3R2, (c) G2R2, (d) G3R5, (e) G2R5, and
(f) G2R3. G2 and G3 are the UGTA base model and
its CPT alternative. R2, R3, and R5 are NIM1, NIM2,
and CMB2 recharge models, respectively. The x- and z-
coordinates are Easting and Northing (meters, UTM Zone
11, NAD 27).

Figure S2. Standard deviation of head predictions
of (a) model averaging and models (b) G3R2, (c) G2R2,
(d) G3R5, (e) G2R5, and (f) G2R3. G2 and G3 are the
UGTA base model and its CPT alternative. R2, R3,
and R5 are NIM1, NIM2, and CMB2 recharge models,
respectively. The x- and z-coordinates are Easting and
Northing (meters, UTM Zone 11, NAD 27).
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