Use **ArcNLET** to Estimate **Nitrogen Load** from **Removed Septic Systems** to Surface Water Bodies in City of Port St. Lucie, City of Stuart, and Martin County

Ming Ye (mye@fsu.edu)
Department of Scientific Computing
Florida State University
Background

- Estimate **nitrogen loads** from **removed septic systems** to surface water bodies in the City of Port St. Lucie (red), City of Stuart (green), and Martin County (orange) located in the St. Lucie River and Estuary Basin.

- The load estimates can be used to calculate credit for **septic tank phase-out projects** in support of the on-going Basin Management Action Plan (BMAP).
Outlines

• Introduction of ArcNLET
 – Rational of developing ArcNLET
 – Functions of ArcNLET and associated software
 – Data requirements of using ArcNLET

• ArcNLET modeling for the City of Port St. Lucie, the City of Stuart, and Martin County

• On-going ArcNLET modeling

• suggestions, and comments
ArcNLET Project Team

• Contract Manager:
 – Rick Hicks (FDEP) (Richard.W.Hicks@dep.state.fl.us)

• Principal Investigator:
 – Ming Ye (FSU) (mye@fsu.edu)
 – Paul Lee (FDEP) (retired in 2012)

• Graduate Students:
 – Fernando Rios (Graduated in 2010)
 – Raoul Fernendes (Graduated in 2011)

• Post-docs:
 – Liying Wang (2010-2012)
 – Huaiwei Sun (2012-2013)
Schematic of an Onsite Sewage Treatment and Disposal System (OSTDS) and Subsurface Nitrogen Transformation and Removal Processes

From Heatwole and McCray (2007)

Soil Processes: Simulated using VZMOD
- Unsaturated flow
- Solute transport
- Nitrification and denitrification

Groundwater Process: Simulated using ArcNLET
- Groundwater flow
- Solute transport
- Denitrification

ArcNLET-MC: Quantify uncertainty of ArcNLET simulations
Why Developing ArcNLET?

• There is no suitable tool for estimating nitrate load to meet TMDL requirements and perform Nitrogen BMAP. Existing tools are either too simple or too complex.
• Develop a simplified model that consider key hydrogeologic processes of groundwater flow and nitrate fate and transport.
• Implement the model by developing a user-friendly ArcGIS extension to
 – Simulate nitrate fate and transport including the denitrification process
 – Consider either individual or clustered septic tanks
 – Provide a management and planning tool for environmental management and regulation
• Disseminate the software and conduct technical transfer to FDEP staff and other interested parties.
What is ArcNLET?

ArcGIS-based **Nitrate Load Estimation Toolkit**

- A simplified conceptual model of groundwater flow and solute transport
- Implementation as an ArcGIS extension
- Calculation of nitrate plume and nitrate load

Compatible with ArcGIS 9.3, 10, and 10.1
Simplified Conceptual Model to consider key hydrogeologic processes involved in nitrate transport:

- **Groundwater flow model** to estimate
 - flow path
 - flow velocity
 - travel time

- **Nitrate transport model** to consider
 - Advection
 - Dispersion
 - Denitrification

- **Load estimation model** to estimate nitrate load
Illustration of simulated nitrate plumes and nitrate load.
Software Download and References

• **ArcNLET**: http://people.sc.fsu.edu/~mye/ArcNLET

• **VZMOD**: http://people.sc.fsu.edu/~mye/VZMOD

• Peer-reviewed publications:

Input Data of ArcNLET

All input data files are in ArcGIS format.

• Locations of septic tanks
• Locations of water bodies
• Topography (DEM: Digital Elevation Model): Process it to obtain water table
• Hydrogeological and transport parameters
 – Smoothing factor (used to process topography)
 – Hydraulic conductivity (from SSURGO)
 – Porosity (from SSURGO)
 – Dispersivity
 – Decay coefficient of denitrification
 – Source load and concentration
Requirements on Potential Users

• The **GUI make it easier** for some with little experience in analyzing groundwater transport problems to apply a solute-transport model to a field problem.

• **Users of ArcNLET need to have**
 – Basic knowledge of hydrogeology such as concepts of groundwater flow and solute transport
 – Intermediate level of ArcGIS skills for preparing input files and visualizing software output files

• A model (simple or complex) is **not an end in itself**, but a tool to organize one’s thinking and engineering judgment.

• **Interpretation and improvement of ArcNLET results require**
 – Fundamental understanding of groundwater flow and solute transport
 – Familiarity with site-specific information such as geology and hydrogeology

• It may be useful to **test and tune the model** for several representative sites to find representative parameter values and use them for prediction.
Model Calibration

- The ArcNLET model requires several model parameters that are largely unknown.
- The parameter values may be obtained from literature review, but the values are not site-specific.
- A better way to determine site-specific parameter values is model calibration to adjust the parameter values to match model simulations to site observations of system state variables such as hydraulic head and nitrate concentration.
Manual Model Calibration: Trial and Error

Data → Model Design (Modeling domains, Key processes, Model parameters) → Model Output → Compare

“Intelligent” mechanism for model adjustment
Example Model Calibration

Eggleston Heights with 3,500 OSTDS

- Two neighborhoods in the City of Jacksonville:
 - Eggleston Height
 - Julington Creek
- Relatively large amount of observations of hydraulic head and nitrate concentrations are available.

Average values are used as the calibration targets.
Model Calibration Results: Heads

The smoothed DEM agrees well with the mean observed hydraulic head, because the correlation coefficient (0.93) and the slope of linear regression (1.03) are close to one.
Model Calibration Results: Nitrate Concentrations

• The simulated nitrate concentrations are close to the mean observations.
• Because of the large variability of concentration observations, it happens often that simulated nitrate concentrations deviate from mean observations.
• We consider that the calibration is reasonable if the simulations fall within the inter-quartile of the observed concentrations, which covers 50% of the data.
Challenges: **Uncertainty in Input Parameters and Load Estimates**

Poetry of Donald H. Rumsfeld:
Feb. 12, 2002
Department of Defense news briefing

The Unknown
As we know,
There are *known knowns*.
There are things we know we know.
We also know
There are *known unknowns*.
That is to say
We know there are some things
We do not know.
But there are also *unknown unknowns*,
The ones we don't know
We don't know.

The calibrated parameters are just one possible combination, and there may be other parameter combinations that give similar model fit but different load estimates.
An Illustrative Example

Parameter ranges:
Hydraulic conductivity (K): 0.0864 ~ 30.4992 m/d
Longitudinal dispersivity (α_L): 0.21 ~ 21.34 m
Horizontal transverse dispersivity (α_T): 0.021 ~ 2.134 m
First-order decay coefficient (k): 0.004 ~ 2.27 /d

Parameter set 1
Load=0.15 lb/day
$\alpha_L=2.113$m, $\alpha_T=0.234$m
$k=0.008$/d

Parameter set 2
Load=0.25 lb/day
$\alpha_L=2.113$m, $\alpha_T=0.234$m
$k=0.004$/d

Parameter set 3
Load=0.60 lb/day
$\alpha_L=21.34$m,$\alpha_T=0.021$m
$k=0.004$/d
ArcNLET-MC for Uncertainty Quantification

Recently developed. Have not been released.
The load estimation has **large uncertainty**.

Uncertainty reduction can be achieved if more data and information becomes available.
ArcNLET modeling for the City of Port St. Lucie, the City of Stuart, and Martin County

A technical report has been submitted to FDEP. It can be requested from me or Katie directly.
Acknowledgement

We appreciate technical assistance and data collection provided by:

• Katie Hallas (FDEP)
• Marcy Policastro (Wildwood Consulting)
• Dale Majewski (City of Port St. Lucie)
• Dianne K. Hughes (Martin County)
• William Griffin (City of Stuart)
• Kevin Carter and Steve Kruppa (SFWMD) and their colleagues.
Modeling Procedure

For each site, whenever site-specific data are available,

• **Compile historical data** to understand groundwater flow and nitrogen transport at the modeling sites. (Chapter 3)
• **Select calibration data** of hydraulic head and nitrogen concentration to estimate ArcNLET flow and transport model parameters. (Chapter 3)
• **Calibrate the ArcNLET model.** (Chapter 4)
• **Simulate nitrogen transport** at the modeling site, using the calibrated model. (Chapter 4)
• **Estimate the nitrogen load.** (Chapter 4)
• **Conduct Monte Carlo simulation** to address uncertainty in model parameters. (Chapter 5)
Compiled Data: Water Level

The data in the modeling sites are old (measured in the period of 1988-1995), but their average values are still representative of the groundwater conditions of the modeling sites.
Compiled Data: Nitrogen Concentration

- Observations of nitrogen concentrations are extremely scarce.
- Four data are available in the City of Port St. Lucie and one data in Martin County.
- The data at well PG-25 was measured in 1976-1977. The other four data were measured in 2008.

<table>
<thead>
<tr>
<th>Area</th>
<th>Wells</th>
<th>Data source</th>
<th>NO\textsubscript{x}</th>
<th>NH4</th>
<th>TN/DIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Port St. Lucie</td>
<td>SOFLSUS2-19</td>
<td>USGS</td>
<td>0.040</td>
<td>0.220</td>
<td>0.380</td>
</tr>
<tr>
<td></td>
<td>SOFLSUS2-21</td>
<td>USGS</td>
<td>0.021</td>
<td>0.349</td>
<td>0.520</td>
</tr>
<tr>
<td></td>
<td>SOFLSUS2-23</td>
<td>USGS</td>
<td>0.040</td>
<td>0.900</td>
<td>1.260</td>
</tr>
<tr>
<td></td>
<td>PG-25</td>
<td>USGS</td>
<td>0.005</td>
<td>0.283</td>
<td>0.288</td>
</tr>
<tr>
<td>Martin County</td>
<td>SOFLSUS2-17</td>
<td>USGS</td>
<td>0.002</td>
<td>0.210</td>
<td>0.290</td>
</tr>
</tbody>
</table>

More data are necessary to validate the modeling results, improve nitrogen transport modeling, and reduce estimation uncertainty.
Data for ArcNLET Modeling

- All the GIS data needed for ArcNLET modeling are available in the public domain or from local environmental agencies.
- **Local data** are important, e.g., the canals in the City of Port St. Lucie.
Calibration of Flow Model

• Good agreement between smoothed DEM and observed water table elevation was achieved at (a) the City of Port St. Lucie and (b) the City of Stuart.

• There is no water level monitoring data for the four sites in the Martin County.
Calibration of Transport Model

- Reasonably good agreement is achieved for three data: two in the City of Port St. Lucie and one in Martin County (there is no concentration observation in the City of Stuart).
- Overestimation occurred to two data in the City of Port St. Lucie.
Simulated Nitrogen Plumes

A strong correlation is observed between the median values of surface water nitrogen concentration and the nitrogen loads to the corresponding surface water bodies.
Spatial Variability of Nitrogen Plumes

Spatial variability is obvious at different modeling sites, e.g., Seagate Harbor (left) (reduction ratio of 10.8%) and Hobe sound (right) (reduction ratio of 70.5%) in the Martin County.
Factors Controlling Load Estimate

- **Mean length of flow path** (left): long mean length of flow path corresponds to more denitrification and thus less load estimate.

- **Mean velocity** (right): larger mean velocity results in shorter travel time, less denitrification, and thus more load estimate.
Factors Controlling Load Estimate

In the City of Port St. Lucie, the load estimate increases when the drainage condition changes from very poorly drained to excessively drained, because nitrogen transport is faster in well-drained soil than in poorly drained soil.

VPD: very poorly drained
PD: poorly drained
SPD: somewhat poorly drained
MWD: moderately well drained
WD: well drained
SED: somewhat excessively drained
ED: excessively drained

The number of septic systems corresponding to each drainage condition is given in the parentheses.
Comparison with Literature Data

The nitrogen reduction ratios in this study have a large range but are comparable with the literature data, especially with that of Roeder (2008) obtained in the Wekiva Study.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Site Location</th>
<th>Daily nitrogen loads per septic system (g/d)</th>
<th>Daily nitrogen loadings to surface water per septic system (g/d)</th>
<th>Nitrogen reduction ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roeder (2008)</td>
<td>Wekiva Study Area, FL</td>
<td>21.7</td>
<td></td>
<td>70.0% a</td>
</tr>
<tr>
<td>Valiela et al. (1997)</td>
<td>Waquoit Bay, MA</td>
<td>23</td>
<td>9.87 b</td>
<td>57.1%</td>
</tr>
<tr>
<td>Meile et al. (2010)</td>
<td>McIntosh County, GA</td>
<td></td>
<td></td>
<td>65-85 % c</td>
</tr>
<tr>
<td>This study</td>
<td>Port St. Lucie, FL</td>
<td>23</td>
<td>7.60</td>
<td>67.0%</td>
</tr>
<tr>
<td></td>
<td>Stuart, FL</td>
<td>23</td>
<td>11.4</td>
<td>50.4%</td>
</tr>
<tr>
<td></td>
<td>North River Shores, FL</td>
<td>23</td>
<td>20.3</td>
<td>11.7%</td>
</tr>
<tr>
<td></td>
<td>Seagate Harbor, FL</td>
<td>23</td>
<td>20.5</td>
<td>10.8%</td>
</tr>
<tr>
<td></td>
<td>Banner Lake, FL</td>
<td>23</td>
<td>8.15</td>
<td>64.6%</td>
</tr>
<tr>
<td></td>
<td>Rio, FL</td>
<td>23</td>
<td>4.80</td>
<td>79.1%</td>
</tr>
<tr>
<td></td>
<td>Hobe Sound, FL</td>
<td>23</td>
<td>6.78</td>
<td>70.5%</td>
</tr>
</tbody>
</table>
The septic system removal (actual and hypothetical) is
- absolutely worthy for the North Fork and Basin 4-5-6 sub-basins,
- (somewhat) worthy for the South Fork sub-basins,
- unworthy for C-24, C-23 and C-44/S-135 sub-basins.

<table>
<thead>
<tr>
<th></th>
<th>Basin 4-5-6</th>
<th>C-23</th>
<th>C-24</th>
<th>C-44/S-153</th>
<th>North Fork</th>
<th>South Fork</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of nitrogen load</td>
<td>22.87%</td>
<td>0.03%</td>
<td>1.66%</td>
<td>0.00%</td>
<td>31.20%</td>
<td>10.33%</td>
</tr>
<tr>
<td>from septic systems to BMAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>estimated load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of load reduction</td>
<td>33.67%</td>
<td>0.05%</td>
<td>1.71%</td>
<td>0.00%</td>
<td>17.02%</td>
<td>1.35%</td>
</tr>
<tr>
<td>of removed septic systems to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMAP required reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of load reduction</td>
<td>81.02%</td>
<td>0.06%</td>
<td>3.25%</td>
<td>0.00%</td>
<td>85.75%</td>
<td>25.76%</td>
</tr>
<tr>
<td>to BMAP required reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Uncertainty Analysis: Compare with Field Observations

- A monitoring well is available at the site.
- Random parameters based on literature data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Minimum</th>
<th>Mode</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothing Factor</td>
<td>Uniform</td>
<td>20</td>
<td>N/A</td>
<td>80</td>
</tr>
<tr>
<td>Longitudinal Dispersivity</td>
<td>Normal</td>
<td>1</td>
<td>N/A</td>
<td>100</td>
</tr>
<tr>
<td>Source Plane Concentration</td>
<td>Normal</td>
<td>25</td>
<td>N/A</td>
<td>80</td>
</tr>
<tr>
<td>Decay Coefficient</td>
<td>Lognormal</td>
<td>5.4E-5</td>
<td>N/A</td>
<td>0.015</td>
</tr>
</tbody>
</table>

- Random parameters (hydraulic conductivity) based on site-specific data.

<table>
<thead>
<tr>
<th>Soil Zone FID</th>
<th>Minimum</th>
<th>Mode</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.629</td>
<td>7.949</td>
<td>12.18</td>
</tr>
<tr>
<td>8</td>
<td>12.18</td>
<td>18.14</td>
<td>24.36</td>
</tr>
<tr>
<td>9</td>
<td>12.18</td>
<td>18.14</td>
<td>24.36</td>
</tr>
</tbody>
</table>
The simulated concentration at the monitoring location follows a lognormal distribution, which is attributed to the lognormal distribution of the first-order decay coefficient of denitrification, the most influential parameter to nitrogen concentration.

- The histogram indicates that, with the parameter distributions considered in this study, it is significantly more likely for the model to simulate low concentration values than to high values.
- This is consistent with the low nitrogen concentration of 0.29 mg/L observed at the monitoring well, suggesting that the calibrated model is likely to reflect nitrogen transport at the calibration site.
The estimated loads corresponding to the calibration data is relatively large. The overall positive correlation indicates that larger nitrogen concentration corresponds to larger load. However, larger load estimate may be still possible for low concentration, because uncertainty in the load estimate increases when the simulated concentration decreases. The uncertainty can be reduced by collecting more field observations (e.g., continuous monitoring at the well), as more monitoring data can remove the realizations that cannot simulate the monitoring data.
Use of Monitoring Data

For Calibration:
- Are the one-time measurements of nitrogen concentration representative of nitrogen concentration in time?
- Are the measurements at the several locations representative in space?
- The model calibration can be updated by assimilating the new data.

For Uncertainty Reduction:
- If observed nitrogen concentrations are continuously higher than the simulated value, the bottom figure indicates that the load estimate will be higher with smaller uncertainty.
- If the opposite, we can update the modeling results by removing the realizations that give higher concentration, which will also reduce the uncertainty and give more certain load estimate.
Conclusions

• **Data and information** needed to establish ArcNLET models for nitrogen load estimation are readily available in the modeling areas.

• Although there is no groundwater monitoring network, historical data are available from public-domain databases (e.g., DBHYDRO and USGS websites). However, **calibration data is limited**.

• After calibrating the ArcNLET flow and transport models, **model simulations can reasonably match corresponding field observations**.

• ArcNLET estimated nitrogen loads in the modeling sites vary substantially in space, and the **spatial variability** is useful to management of nitrogen pollution.

• The load estimates can be used directly to facilitate BMAP planning.

• Uncertainty in the load estimate is different at different sites. The overall positive correlation between the load estimate and the simulated concentration at the three sites of MC simulation indicates that **larger nitrogen concentration corresponds to larger load**.

• In the context of site monitoring, if higher concentrations are continuously observed at the monitoring well, the load estimate should be larger than the deterministic estimate given by the calibrated model.
Questions, Suggestions, and Comments?
ArcNLET Functions: Graphic User Interface
Simplifications and Limitations in Groundwater Flow Modeling

Simplifications:
- Treat water table as subdued replica of topography (Process topographic to approximate shape of water table)
- Use Dupuit assumption to simulate 2-D, horizontal groundwater flow

Limitations:
- Steady-state flow
- 2-D flow instead of fully 3-D flow
Simplifications and Limitations in Nitrate Transport Modeling

EPA BIOCHLOR model

\[
\frac{\partial C}{\partial t} = \alpha_l v \frac{\partial^2 C}{\partial x^2} + \alpha_{Th} v \frac{\partial^2 C}{\partial y^2} + \alpha_{Tv} v \frac{\partial^2 C}{\partial z^2} - v \frac{\partial C}{\partial x} - kC
\]

Dispersion \hspace{1cm} Advection Decay \hspace{1cm} Denitrification

\[
C(x, y, z, t) = \frac{C_0}{8} F_1(x, t) F_2(y, x) F_3(z, x)
\]
Simplifications and Limitations in Nitrate Transport Modeling

• **Simplifications:**
 – Analytical solution of transport model with uniform flow
 – Linear kinetic reaction for denitrification process

• **Limitations:**
 – Only consider nitrate (a new module is being developed to simulate ammonium)
 – Pseudo-3D model
 – Steady state model
 – Use of empirical or calibrated value of decay coefficient
Application at Eggleston Heights and Julington Creek Neighborhoods, Jacksonville

Eggleston Heights with 3,500 OSTDS Julington Creek with 2,000 OSTDS

Reasons of selecting the two sites:

- Nitrate due to septic systems is believed to be one of the reasons of nutrient enrichment in surface water bodies (Leggette et al., 2004)
- Relatively large amount of observations of hydraulic head and nitrate concentrations are available.
Victor Baker, the former President of the Geological Society of America, Member of Academy of Sciences, once said:

“Allowing the public to believe that a problem can be resolved ... through elegantly formulated ... models is the moral equivalent of a lie.”

Leonard Konikow (2011, Ground Water): “the secret to successful solute-transport modeling may simply be to lower your expectations.”
Challenges of Applications

• Keith Beven (2001): The Dalton Lecture
 How far can we go in distributed hydrological modeling?

 “The principles are general and we have at least a qualitative understanding of their implications, but the difficulty comes in the fact that we are required to apply hydrological models in particular catchments, all with their own unique characteristics.”

• For a fixed model structure, model outputs are determined by model parameters. However, in most applications, there is no site-specific measurements of model parameters.
Monte Carlo Method to Address Parametric Uncertainty

- Identify random parameters X and their distributions $p(x)$ (uncertainty characterization)
- Draw samples (x) from the distributions
- Run the model, $y = f(x)$, for each sample
- Obtain probability density function, $p(y)$ of desired predictions
What do we have?

- SSURGO database for Duval County that contains hydraulic conductivity and porosity
- Observations of hydraulic head and nitrate concentration
- Evidence of denitrification

What do we need?

- Smoothing factor
- Dispersivity
- Decay coefficient of denitrification
- Source plane size and concentration
Schematic of an Onsite Sewage Treatment and Disposal System (OSTDS) and Subsurface Nitrogen Transformation and Removal Processes

From Heatwole and McCray (2007)

Soil Processes: Simulated using VZMOD
- Unsaturated flow
- Solute transport
- Nitrification and denitrification

Groundwater Process: Simulated using ArcNLET
- Groundwater flow
- Solute transport
- Denitrification

ArcNLET-MC: Quantify uncertainty of ArcNLET simulations
• Share data files of ArcNLET such as raster files of DEM, hydraulic conductivity and porosity.
• Model parameters for various soil types.
• Estimate nitrate load to groundwater for multiple septic tanks.
Illustration for sandy soil
Random Parameter and Their Distributions

Maximum, minimum and representative values of hydraulic conductivity is derived from soil data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Max</th>
<th>Representative</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>hy_con23</td>
<td>TRIANGULAR</td>
<td>3.6593</td>
<td>7.9488</td>
<td>12.1976</td>
</tr>
<tr>
<td>hy_con65</td>
<td>TRIANGULAR</td>
<td>3.6593</td>
<td>7.9488</td>
<td>12.1976</td>
</tr>
<tr>
<td>hy_con71</td>
<td>TRIANGULAR</td>
<td>0.122</td>
<td>0.6705</td>
<td>1.2198</td>
</tr>
<tr>
<td>hy_con73</td>
<td>TRIANGULAR</td>
<td>0.122</td>
<td>0.6705</td>
<td>1.2198</td>
</tr>
<tr>
<td>hy_con116</td>
<td>TRIANGULAR</td>
<td>3.6593</td>
<td>7.9488</td>
<td>12.1976</td>
</tr>
<tr>
<td>hy_con117</td>
<td>TRIANGULAR</td>
<td>0.122</td>
<td>0.6705</td>
<td>1.2198</td>
</tr>
<tr>
<td>hy_con120</td>
<td>TRIANGULAR</td>
<td>1.2198</td>
<td>6.696</td>
<td>12.1976</td>
</tr>
<tr>
<td>hy_con164</td>
<td>TRIANGULAR</td>
<td>0.122</td>
<td>0.6912</td>
<td>1.2198</td>
</tr>
<tr>
<td>hy_con165</td>
<td>TRIANGULAR</td>
<td>12.1824</td>
<td>21.3408</td>
<td>30.4992</td>
</tr>
<tr>
<td>C_0</td>
<td>NORMAL</td>
<td>25</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>\alpha_x</td>
<td>NORMAL</td>
<td>0.21</td>
<td></td>
<td>21.34</td>
</tr>
<tr>
<td>k_{den}</td>
<td>LOGNORMAL</td>
<td>0.004</td>
<td></td>
<td>1.08</td>
</tr>
<tr>
<td>smthF</td>
<td>UNIFORM</td>
<td>20</td>
<td></td>
<td>80</td>
</tr>
</tbody>
</table>

Distributions of LHS Samples
Identify Influential Model Parameters

Parameters k_{den}, C_0, α_x, and hy_con165 are the most influential parameters to the load estimate.
Uncertainty Reduction by Field Observations

- The parametric uncertainty can be reduced dramatically by incorporating the field observations into model calibration.
- Take the first-order decay coefficient as an example.

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.004</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Histogram of k_{den}
Uncertainty Reduction of Load Estimation

Load estimates before incorporating field observations.

Histogram of Total Load

- Mean: 1334.48
- Median: 1225.43
- Standard Deviation: 652.61
- Minimum: 177.62
- Maximum: 5655.87
- Realizations: 2000
- 95th percentile: 2581.89
- 5th percentile: 513.28

Load estimates after incorporating field observations.

- Mean: 1504.24
- Median: 1466.39
- Standard Deviation: 257.08
- Minimum: 1048.57
- Maximum: 2078.18
- Realizations: 19
On-going and Future Research

- Analyzing monitoring data collected with SJRWMD support to better understand hydrogeology and nitrogen dynamics in neighborhoods of Jacksonville (e.g., controlling factors of nitrogen concentrations)
- Validating ArcNLET using existing and new data such as groundwater baseflow collected by the City
- Supporting FDEP on an effort of selecting representative sites to better characterize model parameters
- Developing new functions of ArcNLET, e.g., simulating ammonium concentrations
- Applying ArcNLET to other sites in Florida
On-going and Future Research

• Analyzing monitoring data collected with SJRWMD support to better understand hydrogeology and nitrogen dynamics in neighborhoods of Jacksonville (e.g., controlling factors of nitrogen concentrations)

• **Validating** ArcNLET using existing and new data such as groundwater baseflow collected by the City

• Supporting FDEP on an effort of selecting **representative sites** to better characterizing model parameters

• Developing **new functions** of ArcNLET, e.g., simulating ammonium concentrations

• Applying ArcNLET to other sites in Florida
Summary of Load Estimation

<table>
<thead>
<tr>
<th></th>
<th>City of Port St. Lucie</th>
<th>City of Stuart</th>
<th>Martin County</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>North River Shores</td>
</tr>
<tr>
<td>Total Load (kg/d)</td>
<td>42.48</td>
<td>1.665</td>
<td>8.346</td>
</tr>
<tr>
<td>Total load (lbs/yr)</td>
<td>34206.5</td>
<td>1340.7</td>
<td>6720.5</td>
</tr>
<tr>
<td>Number of Septic Systems</td>
<td>5592</td>
<td>146</td>
<td>411</td>
</tr>
<tr>
<td>Load per Septic System (g/d)</td>
<td>7.60</td>
<td>11.40</td>
<td>20.31</td>
</tr>
<tr>
<td>Nitrogen Reduction Ratio (%)</td>
<td>67.0</td>
<td>50.4</td>
<td>11.7</td>
</tr>
</tbody>
</table>
Compiled Data: Surface Water Quality

- Dale Majewski from the City of Port St. Lucie provided the surface water quality data measured at 21 stations.
- The data from fourteen stations, located in the septic tank removal area, were analyzed.
- At all the stations, the TN concentrations are higher than the TMDL target for most of the monitoring period.
- This is mainly caused by the high TKN concentrations, which are significantly higher than NO\textsubscript{x} concentrations.