Estimation of Nitrate Load from Septic Systems to Surface Water Bodies Using ArcNLET: an ArcGIS-Based Nitrate Load Estimation Toolkit

Ming Ye (mye@fsu.edu), Fernando Rios, Liying Wang
Department of Scientific Computing, Florida State University

Richard W. Hicks and Paul Z. Lee
Section of Groundwater and Springs Protection
Bureau of Watershed Restoration
Florida Department of Environmental Protection

Supported by Project WM956 of FDEP
Schematic of an Onsite Sewage Treatment and Disposal System (OSTDS) and Subsurface Nitrogen Transformation and Removal Processes

Approximately one-third of the population of Florida utilizes OWTS for wastewater treatment. (Ursin and Roeder, 2008, FDOH)

Ninety percent of the water used for drinking comes from the groundwater. (FDEP, 2006)

From Heatwole and McCray (2007)
Due to nitrification in the vadose zone, OSTDS can generate NO$_3$-N concentration at the water table from 25 to 80 mg N/L in most situations (McCray et al., 2005).

Denitrification \(\text{NO}_3 \rightarrow \text{N}_2 \) (gas) … has been identified as basic factor contributing to the generally low levels of nitrate found in the groundwater of the southeastern United States (Fedkiw, 1991).

From Heatwole and McCray (2007)
Motivations

Traditional estimate of nitrate loading (e.g., in TMDL) may ignore

- Nitrate from normally working septic systems
- Denitrification process in groundwater occurring between drainfield and surface water body
- Effect of spatial locations of septic systems on nitrate load
Motivations

• **Consequence**
 – Under-estimation of nitrate load by ignoring working septic systems
 – Over-estimation of nitrate load by ignoring denitrification

• **Sophisticated numerical models** have been developed to study fate and transport of nitrate from septic system, but they may not be the most suitable tool for certain types of estimation (e.g., in TMDL) for the following reasons:
 – Burden for general users to set up model runs
 – Trained professional to operate the models and interpret modeling results
 – Large input and calibration data and long time of model execution and calibration
Project Goal

Goal: To develop a *simplified model* and software to support the TMDL and other environmental projects.

- It should be *scientifically defensible* under scrutiny.
- It should be *user-friendly, easy to use, and GIS-based* to incorporate location information for both septic tank cluster and surface water receiving nitrate load.
- It should be *available in public domain*, to be used by all parties, including the challengers and for comparison reasons.
Conceptual Model

Consider key hydrogeologic processes involved in nitrate transport:

- **Groundwater flow model** to estimate
 - flow path
 - flow velocity
 - travel time
- **Nitrate transport model** to consider
 - Advection
 - Dispersion
 - Denitrification
- **Load estimation model** to estimate nitrate load

Overlapped plumes
Estimation of Nitrate Load

\[M_{\text{in}} = M_{\text{out}} + M_{\text{dn}} \]
\[M_{\text{out}} = M_{\text{in}} - M_{\text{dn}} \]

- \(M_{\text{out}} \) (M/T): nitrate load to rivers
- \(M_{\text{in}} \) (M/T): nitrate from septic tanks to surficial aquifer
- \(M_{\text{dn}} \) (M/T): nitrate loss due to denitrification

\[M_{\text{dn}} = R_{\text{dn}} V_{g} \]

\(R_{\text{dn}} \) (M/T/L^3): denitrification rate
\(V_{g} \) (L^3): volume of groundwater solution, estimated from groundwater flow and reactive transport modeling
ArcNLET

The software is developed as an extension of ArcGIS 9.3 and ArcGIS 10

Free download at http://people.sc.fsu.edu/~mye/ArcNLET/

Example of simulated nitrate plumes
Filed Application at Eggleston Heights and Julington Creek Neighborhoods, Jacksonville, FL

Eggleston Heights with 3,500 OSTDS Julington Creek with 2,000 OSTDS

Reasons of selecting the two sites:
• Nitrate due to septic systems is believed to be one of the reasons of nutrient enrichment in surface water bodies (Leggette et al., 2004)
• Relatively large amount of observations of hydraulic head and nitrate concentrations are available.
Observations of Hydraulic Head and Nitrate Concentration

- The observed water tables are relatively stable.
- It is reasonable to assume steady-state flow.
- The mean values are used as calibration targets.

- The observed concentrations have large fluctuation due to complicated nitrogen transport and transformation mechanisms.
- No trend is observed.
- The mean value and ranges between upper and lower quartile are used as the calibration targets.
Isotope Signature of Denitrification

Indication of denitrification occurrence (Chen and Mcquarrie, 2005):
- Linear relationship
- Slope close to 0.51

\[
y = 0.4532x - 0.4525 \quad R^2 = 0.7348
\]

\[
y = 0.5517x - 0.5661 \quad R^2 = 0.9518
\]

\[\delta^{18}O \text{ vs. } \delta^{15}N \text{ at Julington Creek and Eggleston Heights (Sep & Oct, 2010).}\]
Model Calibration: Trial and Error

Data → Model Design
Modeling domains
Key processes
Model parameters → Model Output

"Intelligent" mechanism for model adjustment → Compare
Global Sensitivity Analysis

Two parameters most critical to simulated nitrate concentration at selected locations of the plume

<table>
<thead>
<tr>
<th>x(m)</th>
<th>y(m)</th>
<th>0.0001</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>C₀, v</td>
<td>k, v</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>C₀, v</td>
<td>k, v</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>C₀, v</td>
<td>k, v</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>C₀, v</td>
<td>k, v</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>k, v</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>α₁, k</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>α₁, k, α₁</td>
<td>k, α₁</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>α₁, k, α₁</td>
<td>k, α₁</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>α₁, k, α₁</td>
<td>k, α₁</td>
<td>k, α₁</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
</tr>
</tbody>
</table>

The parameters α₁ and α₂ are highlighted due to their critical impact on nitrate concentration at selected locations.
The simulated nitrate concentrations are
- Close to the mean observations at seven out of 13 wells, and
- Fall within the minimum and maximum ranges of the observed concentrations.

Julington Creek

The simulated nitrate concentrations are
- Close to the mean observations, and
- Fall within the inter-quartile of the observed concentrations.
Nitrate Loads Estimation for Eggleston Heights Neighborhood
Challenges: Uncertainty in Input Parameters and Load Estimates

Poetry of Donald H. Rumsfeld:
Feb. 12, 2002
Department of Defense news briefing

The Unknown
As we know,
There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.
But there are also unknown unknowns,
The ones we don't know
We don't know.
Challenges: Uncertainty in Input Parameters and Load Estimates

Computer models are useful tools, but input parameters for models are not readily obtained and largely unknown.

Cumulative frequency of denitrification rate
Statistics based on 53 data from literature

Median: 0.025
Range: 0.004 – 2.27

“All inputs used in estimation of inputs and loadings are uncertain to some extent.”

“Significant uncertainties have been identified throughout this report.”

McCray et al. (2005, Ground Water)
Challenges: **Uncertainty in Input Parameters and Load Estimates**

Estimation of nitrate load for Whatcom County in Washington State

11,619 septic tanks in the study area

Boxplots of the load estimates

Lakeshore Example

Parameter ranges:
Hydraulic conductivity (K): 0.0864 ~ 30.4992 m/d
Longitudinal dispersivity (α_L): 0.21 ~ 21.34 m
Horizontal transverse dispersivity (α_T): 0.021 ~ 2.134 m
First-order decay coefficient (k): 0.004 ~ 2.27 /d

Parameter set 1 (Default)
Load=0.15 lb/day
$\alpha_L=2.113$ m, $\alpha_T=0.234$ m, $k=0.008$ /d

Parameter set 2
Load=0.25 lb/day
$\alpha_L=2.113$ m, $\alpha_T=0.234$ m, $k=0.004$ /d

Parameter set 3
Load=0.60 lb/day
$\alpha_L=21.34$ m, $\alpha_T=0.021$ m, $k=0.004$ /d
Uncertainty Quantification and Reduction

• In management decision making, it is sometime more important to identify and quantify the uncertainty than to attempt to predict a deterministic value of a decision variable.

• **Site-specific** knowledge/information/data is most effective to reduce predictive uncertainty.

• **Probabilistic Predictions:**

 ![Probability Distribution Plot]

 • **Risk** of exceeding the regulatory criterion can be easily calculated.

 • This **uncertainty assessment** is accepted in policy (EPA 1997; NRC 2003).

 • **Decision-makers** make decisions.
Conclusions

• ArcNLET, the ArcGIS-based software has been developed for simulation of nitrate transport and estimation of nitrate load from septic systems to surface water bodies.
• The software is user friendly and easy to operate.
• After being calibrated, ArcNLET can yield acceptable simulations of field observations and reasonable load estimates.
• The software is based on a simplified conceptual model of nitrate transport, and should be used as a screening tool for load estimation.
• It is free for download at http://people.sc.fsu.edu/~mye/ArcNLET/.
• A software training workshop was given in July to 15 people, and another one is scheduled in fall. Email mye@fsu.edu if interested.
• On-going work is to quantify and reduce predictive uncertainty of the load estimate.
Questions?
Modeling Procedure: Data Preparation

• \(N_t = N_0 - R_{dn} V_{aq} \)

• Input the topographic map of the selected site.

• Input the map of septic tank locations. The location can be obtained from the county property appraiser’s office. If the actual location of the septic tank on each property lot is unknown, the center of the property polygon will be used as the septic system location.

• Delineate boundary line of target surface water body (e.g., a lake and/or a stream) based on the topographic map. The boundary line can be of any shape.

• Delineate parameter zones of hydraulic conductivity, percent of soil organic carbon, porosity, and dispersion coefficients to incorporate heterogeneity of the aquifer. These hydraulic properties can be obtained from literature and/or field/laboratory experiments.
Modeling Procedure: Estimation

- Determine **hydraulic gradient** along the flowpath from each septic system to the boundary line.
- For each septic system, calculate the **travel time** for each segment based on the Darcy’s law. The travel time varies for each segment of each septic system.
- For each septic system, calculate **aquifer volume** within which denitrification would occur using the analytical solution of Domenico and Robbins (1985).
- Calculate **N loss** for each septic tank.
- Calculate **nitrate load** to the target surface water for each septic tank.
- **Sum the load for all the septic tank.**
Groundwater Flow Modeling

Assumptions and Approximations:

- Steady-state flow
- Ignore mounding on top of water table
- Use Dupuit assumption to simulate 2-D groundwater flow
- Treat water table as subdued replica of the topography
- Process topographic data and approximate hydraulic gradient using the topographic gradient
Outputs of Groundwater Flow Modeling

- **Flow paths** from each septic tank to surface water bodies
- **Flow velocity** along the flow paths. Heterogeneity of hydraulic conductivity and porosity is considered.
- **Travel time** from septic tanks to surface water bodies
Denitrification

Denitrification refers to the biological reduction of nitrate to nitrogen gas.

\[\text{NO}_3^- + \text{Organic carbon} \rightarrow \text{NO}_2^- + \text{Organic carbon} \rightarrow \text{N}_2 + \text{CO}_2 + \text{H}_2\text{O} \]

\[\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{NO} \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2 \]

Denitrification ... has been identified as basic factor contributing to the generally low levels of nitrate found in the groundwater of the southeastern United States (Fedkiw, 1991).

A fairly broad range of heterotrophic anaerobic bacteria are involved in the process, requiring an organic carbon source for energy as follows

\[y = 0.442x + 0.0194 \]
\[r^2 = 0.8286 \]

Anderson (1989)
Nitrate Transport Modeling

EPA BIOCHLOR model

\[\frac{\partial C}{\partial t} = \alpha_{v} \frac{\partial^{2} C}{\partial x^{2}} + \alpha_{T_h} \frac{\partial^{2} C}{\partial y^{2}} + \alpha_{T_v} \frac{\partial^{2} C}{\partial z^{2}} - v \frac{\partial C}{\partial x} - kC \]

Dispersion \hspace{2cm} Advection Decay \hspace{2cm} Denitrification

\[C(x, y, z, t) = \frac{C_0}{8} F_1(x, t) F_2(y, x) F_3(z, x) \]
Outputs of Nitrate Transport Modeling and Calculation of Nitrate Load

- Apply the analytical solution to each septic tank.
- Obtain the nitrate plume of the entire area.
- Calculate mass of inflow and denitrification.
- Calculate load to rivers

\[
M_l = M_{in} - M_{dn} \\
M_{dn} = R_{dn} V_g
\]
Development of the ArcGIS Extension

• All the development is within ArcGIS, including pre-processing, post-processing, and computation.

• We developed a user-friendly interface using Visual Basic.
 – The .NET framework is used to expedite development.

• The software development is for ArcGIS 9.3.
 – The software can be updated with newer version of ArcGIS.

• Final product is an installation file that installs the ArcGIS extension on PC.
Summary of Model Inputs and Outputs

• Model Inputs
 – Flow module: DEM, Water bodies, Hydraulic conductivity, and Porosity
 – Transport module: Source nitrate concentration, Dispersivity, and Decay coefficient
 – Denitrification module: none

• Model Outputs
 – Flow module: Flow velocity and path
 – Transport module: Nitrate plume
 – Denitrification module: Amount of nitrate load
Use LiDAR Data to Update NHD Data
Heterogeneous Hydraulic Conductivity

The hydraulic conductivity data is derived from the vertical permeability data download from Soil Data Mart, USDA NRCS National Soil Survey Center.
Heterogeneous Porosity

The porosity data is derived from “the estimated volumetric soil water content at or near zero bar tension” data download from Soil Data Mart, USDA NRCS National Soil Survey Center.
Observations of Hydraulic Head

- Four monitoring wells
- Monitoring data from 2005 to 2009
- Water table is relatively stable

Date (mm/dd/yy)

Hydraulic head (m)
Observations of Nitrate Concentration

- Monitoring data from 2005 to 2010
- Observations vary but without apparent increasing or decreasing trends
- Isotope data indicate that effect of lawn fertilizer on concentration is negligible.
Sensitivity Analysis

- What control plume size and nitrate concentration?
- Nominal parameters:
 \[C_0 = 40 \text{mg/L}, \, v = 0.15 \text{m}, \, \alpha_x = 2 \text{m}, \, \alpha_y = 0.2 \text{m}, \, \text{and} \, k = 0.008/\text{d} \]
- Corresponding concentration

The outer contour line is for \(C = 0.1 \text{mg/L} \)
Sensitivity to k at Different Horizontal Cross-Sections

- k is important to concentration simulation.
- The sensitivity varies dramatically in space.

<table>
<thead>
<tr>
<th>y</th>
<th>Sensitivity along y cross sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>0m</td>
<td></td>
</tr>
<tr>
<td>5m</td>
<td></td>
</tr>
<tr>
<td>10m</td>
<td></td>
</tr>
<tr>
<td>15m</td>
<td></td>
</tr>
<tr>
<td>20m</td>
<td></td>
</tr>
<tr>
<td>25m</td>
<td></td>
</tr>
</tbody>
</table>
Global Sensitivity Analysis

Two most critical parameters to simulated nitrate concentration at every location.

<table>
<thead>
<tr>
<th>x(m)</th>
<th>y(m)</th>
<th>0.0001</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>C₀, v</td>
<td>k, v</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>C₀, v</td>
<td>k, v</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>C₀, v</td>
<td>k, v</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>C₀, v</td>
<td>k, v</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>/</td>
<td>k, v</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>/</td>
<td>aᵧ, k</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>/</td>
<td>aᵧ, k</td>
<td>k, aᵧ</td>
<td>k, aᵧ</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>/</td>
<td>aᵧ, k</td>
<td>aᵧ, k</td>
<td>k, aᵧ</td>
<td>k, aᵧ</td>
<td>k, v</td>
<td>k, v</td>
<td>k, v</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>/</td>
<td>aᵧ, k</td>
<td>aᵧ, k</td>
<td>k, aᵧ</td>
<td>k, aᵧ</td>
<td>k, aᵧ</td>
<td>k, aᵧ</td>
<td>k, v</td>
</tr>
</tbody>
</table>
Calibration Results: Heads

Smoothed DEM agree well with mean observed hydraulic head
• correlation coefficient of 0.93 and
• the slope of linear regression close to 1.

![Graph showing smoothed DEM and mean value of head measurements](image)
Calibration Results of Hydraulic Gradient

The smoothed DEM agree well with the observed water table shape with a linear correlation coefficient of more than 0.9 and slope of the linear regression close to 1.0.
Estimated Source Input Mass Flux and Loads

• Based on the summary report of Anderson (2006) for Florida, average source input mass flux is estimated as 20 g/sep/day.

• For Eggleston Heights, the estimated source input mass flux from 3495 septic systems is 115.4kg per day (33g/sep/day), about 92.5% of which is lost due to denitrification and 7.5% contributes to the loads to surface waterbodies.

• For Julington Creek, the estimated source input mass flux from 1924 septic systems is 59.4kg per day (31g/sep/day), about 97.6% of which is lost due to denitrification and 2.4% contributes to the loads to surface waterbodies.
Estimated Nitrate Load at Julington Creek
Prospective Research

- Continue developing the software to meet other needs of DEP environmental management and regulation.
- Consider nitrification process (e.g., nitrification and plant up-take) in the vadose zone.
- Apply this software to different sites to provide guidelines for environmental management and regulation.

Due to nitrification in the vadose zone, OSW can generate NO$_3$-N concentration at the water table from 25 to 80 mg N/L in most situations. (McCray et al., 2005)