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CENTROIDAL VORONOI TESSELLATIONS

e Centroidal Voronoi tessellations (CVT's) are:

— a way to select the location of points

— a way to cluster data

e These two tasks are of substantial interest in lots of applications

e |t turns out that for many of these applications, CVT's do a pretty good job



APPLICATIONS OF CVT'’S - partial list

e optimal quadrature rules

e covolume and finite difference methods for PDE’s
e optimal representation, quantization, and clustering
e finite volume methods for PDE’s

e optimal placement of sensors and actuators

® surrogate optimization

e particle methods

e stippling

e visualization of software metrics

e melodic structure improvement

e mosaic effects for images



e optimal distribution of resources

e cell division

e territorial behavior of animals

e data compression

e image segmentation and edge detection

e multichannel reconstruction

e grid generation

e point distributions and grid generation on surfaces
e meshfree methods

e reduced-order modeling

e hypercube point sampling



TESSELLATIONS

o A tessellation of a set S is a division of the set into a nonoverlapping, covering
collection of subsets {51, 5, ..., Sk}

e Given aset S and an integer K > 2, one divides S into K subsets 51,59, ..., Sk
such that

— no member of a set S; is a member of another set S

— every member of S belongs to one of the sets .S,

OSZ'ﬂSj:@, j#’& and §:U£1§z‘



VORONOI TESSELLATIONS
e Given
—aset S and an integer K > 2

—aset Z = {2;}1, whose elements may or may not belong to S

— a distance function d(-, -) defined for S and Z

e Then, the Voronoi subset or Voronoi cell or Voronoi region V; C S is the set
of all elements belonging to S' that are closer to z; than to any of the other
elements z; C Z, that is,

Vj:{’wES | d(w,zj)<d(w,zi),fi:1,...,K,i7éj}

e We call the set of Voronoi subsets {V7, V5, ..., Vi } a Voronoi tessellation of
S or a Voronoi diagram of S with respect to the given set of generators 2



e Voronoi diagrams have been rediscovered may times and are thus known by

many other names, depending on the application

Voronoi sets =
Dirichlet regions =
Meijering cells =
S-mosaics =
Thiessen polygons =
area of influence polygons =

etc., etc., etc.

e Voronoi diagrams were known to Decartes

Georgi Voronoi



perpendicular
bisector

S = the plane; d(z,w) = Euclidean distance; K =2

The Voronoi regions for two points zy and zo in the plane are the two regions on
either side of the perpendicular bisector of the line segment joining z; and zy



S = a square; d(z,w) = Euclidean distance; K = 10

Voronoi tessellation for 10 randomly selected points in a square



CENTER OF MASS

e Given a domain D in R" and a density function p(w) defined for w € D, the
center of mass or centroid z* of D is given by

. /D wp(w) dw

/D p(w) dw

e Or, given a discrete set of points W = {w;}}L, in R" and a density function
p(w;), 3 =1,..., M, the center of mass z* of W is given by

Z wjp(wj)

Z p(w;)

z

*

Z




Archimedes

e The notion of a center of mass can be generalized in many ways, e.g,

/D p(w) f(d(z",w)) dw = inf / plw) f(d(z,w)) du

zeD*

where f(d(z* — w)) is convex in w



e \We have now defined two different notions:
Voronoi tessellations
and

centers of mass

e Let's bring the two notions together




e Given
—aset S
— a density function p(-) defined over S
—an integer K > 2
— a set of generators Z = {z; £1

— a distance function d(-, -) defined between elements in S and Z

e \We can define the associated Voronoi sets

Vi, i=1,....K

e Once having determined the Voronoi sets, we can define the associated cen-
troids

of each of the Voronoi sets



e In general, the centers of mass of the Voronoi sets do not coincide with the
generators of the Voronoi sets

* .
i #F 2z, 1=1,..., K

The Voronoi regions and their centers of mass (with respect to a uniform
density) for 10 randomly selected points in a square; the generators (the
dots) and the centers of mass (the circles) do not coincide



e We are interested in the very special cases for which
the generators and centers of mass do coincide

The 10 dots are simultaneously the generators of the Voronoi tessellation and the
centers of mass (with respect to a uniform density) of the Voronoi cells



e We call a tessellation with the property
zi==z, 1=1,...,K

a centroidal Voronoi tessellation or CVT

e We call the generators of a centroidal Voronoi
tessellation CV'T generators or CV'T points

e Centroidal Voronoi tessellations are very special Voronoi tessellations

— they must be constructed



THE CONSTRUCTION PROBLEM FOR CVT’S

—aset .S, aninteger K > 2,
a density function p(-), a distance function d(-,-)

— K elements {2}, and K sets {V;}£,

- {Vi}fil tessellates S

simultaneously
— the regions {V;}1, are the Voronoi regions for the generators {z;} 1,

— the elements {2;}, are the centers of mass of the regions {V;}£



e Note that, in general, one does not have uniqueness

Two two-point centroidal Voronoi tessellations of a square



Three regular tessellations of the plane



A CVT OF THE SQUARE WITH MORE POINTS

256 generators

uniform density

Centroidal Vioronoi

Random sampling



CVT’S OF THE SQUARE HAVING NONUNIFORM DENSITY

density with peak in middle

Random sampling
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density with peak at a corner 256 generators
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e Clearly, even for a uniform density and the Euclidean metric, there are many
possible CVT's for a square

e For example, here are three 16-point CVT's of the square

e Which CVT will a computer give you?



e Starting from any CVT, you will end up with a CVT that is as hexagonal as
possible

e Why hexagons? Because they possess a certain optimality property (more on
this later)



CVT’S FOR DISCRETE SETS

e For discrete data sets, we can view CV'T's as a clustering algorithm,

—i.e., a method for subdividing a set into subsets, each of which contains
elements with a closely related attribute

e In its simplest form, CVT clustering reduces to the very well-known k-means
clustering algorithm (also known as vector quantization)

— thus, CVT can be viewed as a generalization of k-means clustering

e There are, of course, many applications where clustering is important; we will
discuss some of these later



SOME PROPERTIES OF CVT’S

Centroidal Voronoi tessellations as minimizers

Given

e O CRY
® a positive integer K

e a density function p(-) defined on Q
Let

o {z;}, denote any set of K points belonging to

e {V;} £ denote any tessellation of ) into K regions



Let
]:((zi,‘/;),izl,...,K):Z/ p(¥)ly — zi|* dy
i=1 Y YEV:

Then, a necessary condition for F to be minimized is that {V;}%, and {z;}1,
form a centroidal Voronoi tessellation of {2



o If O € RY is bounded, then F has a global minimizer

e Assume that p(-) is positive except on a set of measure zero in {2

—then z; # z; for i # j

e For general metrics, existence is provided by the compactness of the Voronoi
regions; uniqueness can also be attained under some assumptions, e.g., con-
vexity, on the Voronoi regions and the metric

e There are many additional results available for the discrete case

— many of these are in the nature of limiting results as the sample size
Increases



Gersho’s conjecture (proven in 2D under assumptions)
e For any density function, as the number of points increases, the distribution
of CVT points becomes locally uniform

— this means that if one looks at small enough patch and a large enough
number of points, a CVT point distribution will look uniform, regardless
of how nonuniform it is globally

e Gersho's conjecture is a key observation that helps explain the effectiveness
of CVT's (more on this later)
e Locally in 2D, CVT Voronoi regions are always congruent regular hexagons

—that is, locally, CVT points are always vertices of congruent equilateral
triangles

— locally, dual Delaunay CVT grids are always congruent equilateral triangles

e In higher dimensions, the basic cell of a CVT is not known

—in 3D, computational studies indicate that it is a truncated octahedron



The truncated octahedron and the paper cutout for its construction

From: http://www.ul.ie/ " cahird /polyhedronmode/truncatel.htm

http://mathworld.wolfram.com/TruncatedOctahedron.html



Truncated octahedra tessellating R?

From: N.-K. Khumbah, Mathematical Quantization for Massive Data Sets, Ph.D
dissertation, George Mason University, 2000



Boundary conformity of CVT points

e Under the CVT algorithm, points are repelled by other points

— this results in good spacing between points

e CVT points are also repelled by the boundary

— this results in the points conforming to the boundary



......

-------

Uniform CV'T point distributions



........

Non-uniform CV'T point distributions



ALGORITHMS FOR CONSTRUCTING CVT'S

Lloyd’s method

0. Start with some initial set of K points {z}2,

1. Construct the Voronoi tessellation {V;}£, of Q) associated with the points
K
{zitiss

2. Construct the centers of mass of the Voronoi regions {V;}# | found in Step
1; these centroids are the new set of points {z;} 1,

3. Go back to Step 1, or, if you are happy with what you have, quit

e Steps 1 and 2 can both be costly to effect



McQueen’s method (random sampling and averaging)

e Start with some initial set of K points {2;}2, (K =4 in the sketch)



e Sample another point w

e Determine which of the z;'s is closest to to w (it is 23 in the sketch)



e Find the average of w and the z; closest to it

average of w and z,



e Replace the z; by the average point

the new z, is the average
of w and the old z,



e Continue the process, that is,

— sample points w
— find the closest z;
— average w and that z;

— replace that z; by the average

except

— we keep track of how many times each point has been previously updated

— when we do the averaging, we weight the old point according the number
of times it has been previously updated

e For example, suppose z» had already been updated 12 times (counting the
intial positions as the first update); then

w + 29

— instead of the new 29 <«

w + 1222
13

— we have the new 29



since z, had previously updated,
the new z, is the weighted
average of w and the old z,



e McQueen's method doesn’t require the construction of Voronoi sets or centers
of mass

— despite this, the points produced by McQueen's method converge to the
generators of a centroidal Voronoi tessellation

e The convergence of McQueen's method is very slow, that is, it takes many
steps (millions) to obtain a set of CVT points from an initial set of points

— the problem with McQueen's method is that it samples only a single point
before it averages



New method

e sample lots of points before averaging

e good for parallel computing



e Sample lots of points (thousands) and group (cluster) them according to
which is the nearest z;

® sampled points nearest z;
® sampled points nearest z,
® sampled points nearest z3
® sampled points nearest z,4



e Find the average of each of the clusters

® average of points nearest z,
® average of points nearest z,
® average of points nearest z;
@ average of points nearest z,4



e The new z;'s are a weighted average of the old z;'s and the corresponding
cluster averages



e Parallel versions of the new method exhibit near-perfect scalability
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Speedup of a parallel implementation of the new algorithm for three different
density functions

e We have, in fact, developed a two parameter family of effective, probabilis-
tic methods for generating CVT's in general regions and with general point
density distributions



e There exist other deterministic method for constructing CVTs, including New-
ton and multigrid methods



GENERALIZATIONS OF CVT

e CVT's for other metrics

e CVT's for other types of generators

e Constrained CVT's for placing some or all the points on a surface
e Constrained CVT's for fixing the position of some points

e CVT's for anisotropic point distributions



CVT’'S OF THE SQUARE FOR OTHER METRICS

CVT for the L' metric



CVT for the L* metric (approximating the L™ metric)



CVT for the triangle metric



CVT'’S OF THE SQUARE FOR GENERALIZED GENERATORS

CV'T with lines; left: initial configuration; right: CV'T configuration



CV'T with points and lines; left: initial configuration; right: CV/'T configuration
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Examples of a CV'T with with generators being circles, i.e., having nonzero area



CVT’'S WITH POINTS ON THE BOUNDARY

e For most grid generation applications, one needs points on the boundary

— for the basic CVT method, the boundary repels points so that CVT points
never lie on the boundary

e However, generalized CVTs can be defined to have some of the points lie on
the boundary — there are three ways to do this

1. a set of fixed points on the boundary can be specified, and then a gener-
alized CVT method will optimally place the interior points

2. a set of points on the boundary can be specified, and then another gener-
alized CVT method will optimally place points in the interior and optimally
slide the boundary points

3. no points on the boundary are specified, and then another generalized CVT
method will optimally place points in the interior and on the boundary



e We usually take the third approach because it produces the best point distri-
butions
e The key steps in, e.g., a Lloyd's method approach, are to:

— after each iteration, determine the boundary Voronoi regions, i.e., those
Voronoi regions that intersect the boundary, then the following steps are
carried out, with later steps excluding points that have been treated in
previous steps

— if a Voronoi region contains a vertex or corner of the domain, move the
generator to that corner

— if a Voronoi region intersects an edge, project the generator to that edge

— if a Voronoi region intersects the boundary, project the generator to that
boundary

— do not change the positions of the interior Voronoi regions



CVTs with points on the boundary



CVT'’S ON SURFACES

e Generalizations of the basic CVT method can be defined so that all the points
end up on the boundary or on a surface

e These generalization can be implemented so that ordinary Euclidean metrics
and center of mass definitions can be used

— instead of using complicated geodesic distances along surfaces and/or cen-
ters of mass with respect to surfaces



APPLICATIONS OF CVT'’S

e optimal distribution of resources
e cell division
e finite volume methods for PDE's
e territorial behavior of animals
e data compression
e climate modeling

O

O

@)

e Homer Simpson



OPTIMAL DISTRIBUTION OF RESOURCES

What is the optimal placement of mailboxes in a given region?

e A user will use the mailbox nearest to their home

e The cost (to the user) of using a mailbox is proportional to the distance from
the user's home to the mailbox

e [he total cost to users as a whole is measured by the distance to the nearest
mailbox averaged over all users in the region

e The optimal placement of mailboxes is defined to be the one that minimizes
the total cost to the users

The optimal placement of the mail boxes is at the centroids of a centroidal
Voronoi tessellation, using the population distribution as the density function in
the center of mass definition



Top left: Actual distribution of mailboxes in a part of Tokyo. Top right: popu-
lation distribution in that district. Bottom: CV'T distribution of mailboxes

From: A. Okabe, B. Boots, K. Sugihara, and S. Chiu, Spatial Tessellations, Wiley,
Chichester, 2002



CELL DIVISION

e There are many examples of cells that are polygonal — often they can be
identified with a Voronoi, indeed, a centroidal Voronoi tessellation

— this is especially evident in monolayered or columnar cells, e.g., as in the
early development of a starfish (Asteria pectinifera)

e Cell division

— Start with a configuration of cells that, by observation, form a Voronoi
tessellation (this is very commonly the case)

— After the cells divide,

— It is observed that the new cell arrangement is closely approximated by a
centroidal Voronoi tessellation



Actual cellular patterns of a starfish embryo before (left) and after (right) cell
division. White circles on the left are the parent cells that divide into the four
daughter cells on the right indicated by white dots

From: H. Honda, Geometric models for cells in tissues, International Review of

Cytology 81 1983, pp. 191-248



Left: Actual cellular patterns before cell division traced from photograph. Right:
CVT-based cellular patterns after two parent cell generators are allowed to sep-
arate. The CV'T-based cellular pattern can be shown to be close to the actual
cellular pattern after cell division

From: H. Honda, Geometric models for cells in tissues, International Review of
Cytology 81 1983, pp. 191-248



TERRITORIAL BEHAVIOR OF ANIMALS

Male moutbreeder fish — Tilapia mossambica

e Fishes dig nesting pits in sandy bottoms

e They adjust the centers and boundaries of the pits so that the final configu-
ration of territories is a centroidal Voronoi tessellation



A top view photograph, using a polarizing filter, of the territories of the male
Tilapia mossambica

From: George Barlow; Hexagonal territories, Animal Behavior 22 1974, pp. 876—
878



Actual territories and Voronoi tessellation for generators located at nesting pits.

From: A. Susuki and M. Iri, Approximation of a tessellation of the plane by a
Voronoi diagram, J. Operations Research Society of Japan 29 1986, pp. 69-96



OCEAN, ATMOSPHERE, AND LAND ICE GRIDS

e CVT grids are been adopted as the grid generation technique for the next
generation climate model being developed at NCAR and Los Alamos

— new ocean model developed by LANL

— new atmospheric model developed at NCAR

e |t appears likely that CVT grids will also be used for the next generation land
ice model, e.g., for Greenland and Antarctica



Satellite data for the kinetic energy distribution in the North Atlantic; note that
the boundary is quite complicated

e The grid should be refined

— where the kinetic energy is relatively large (red and yellow areas)

— to resolve the boundary
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Left: a CVDT of the North Atlantic; Right: a zooomed in portion of that CVDT,;
grid refinement is based on both distance from the boundary and measured kinetic

energy distribution
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Left: a zoom-in of the CV'T mesh with 47305; right: a zoom-in of the same
region of a CV'T mesh with 183907 nodes



Left: A 3D prismatic mesh of the Greenland ice sheet (the vertical direction of
the ice sheet is stretched) (a) ice sheet surface elevation; (b) ice sheet thickness;
(c) bed elevation; (d) zoom-in of a region close to the ice sheet edge. Right:
Schematic diagram of the Greenland mesh partition for parallel processing



Simulation results for the temperature evolution of the Greenland ice sheet (the
vertical direction of the ice sheet is stretched). (a) the 3D prismatic mesh used

for the computation; (b) the ice sheet temperature at the ice-atmosphere and
ice-ocean boundaries after ten years



Global CCV'T of the globe and the corresponding Delauney triangulation with
points automatically placed on ocean/land boundaries



Global CCV'T of the globe and the corresponding Delauney triangulation with
points automatically placed on ocean/land boundaries



Global regionally refined grid
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Grid in interior of refined region






Global uniform grid



Region to be refined



Refined local grid



Match between global grid and refined local grid
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Quasi-uniform (left) and variable resolution (right) grids on the sphere; the grid
on the right is refined in the vicinity of an orographic feature (a mountain) that
is the sole forcing in the simulation; the colors indicate a domain-decomposition
strategy for efficient implementation on distributed memory systems — each block

represents a different computational processor
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Kinetic energy field at day 10 of simulation; left: simulation using quasi-uniform
mesh; right: simulation using variable-resolution mesh



DATA COMPRESSION (IMAGE PROCESSING)

e Each point in a picture has a specific color
e Each color is a combination of basic (primary, RGB, CMY) colors

e Let the components of a vector w represent a possible combination of the
basic colors

e Let p(w) denote the number of times the particular combination w occurs in
the picture

e Let ) denote the set of admissible color combinations
e There are zillions of different colors in a given picture

e One would like to approximate the picture using just a few combinations of
the basic colors



e Questions:

1. How to choose the few colors that are to be used to represent the picture?

2. How to assign the colors in the picture to the few chosen colors?

—one usually assigns all colors in the Voronoi region (in color space) asso-
ciated with one of the few chosen colors to that color

e \Why data compression?

— the number of pixels remains the same, but the information associated
with each pixel is reduced



e “Obvious” method for choosing the reduced set of colors

— use random sampling to determine the colors

— even with 256 approximating colors, doesn't give good approximate pic-
tures

e Better method for choosing the reduced set of colors
— choose the colors by doing a CVT in color space
— produces great approximate pictures

— method used on some (early) HP ink jet color printers



Original 8-bit grayscale image



Centroidal Voronoi 6-bit approximate picture



v

, -8

Centroidal Voronoi 5-bit approximate picture
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Centroidal Vioronoi 4-bit approximate picture



Centroidal Vioronoi 2-bit approximate picture



From left to right and top to bottom: original image containing 1434 differ-
ent colors and CV'T-approximate images containing 4, 8, 16, 32, and 64 colors,
respectively



e Elbowing effect: the CVT-energy vs. number of generators (reduced set of
colors) decreases rapidly at first, but then, as one increases the number of
generators, reductions in the energy become less pronounced

— can be used to determine the number of generators that should be used
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The CV'T-energy of CV T-approximate images for two images vs. the number of
replacement colors



IMAGE SEGMENTATION AND EDGE DETECTION

e One can regard a rectangular digital image as a function defined over the
set of the integral points (x,y) = (i,7), where ¢ = {1,2,... I} and j =
{1,2,...,J} for two positive integers [ and J

e We denote that function by u, with the values of u representing some attribute
of the picture, e.g., color or brightness.

e Image segmentation is the process of identifying the parts of an image that
have a common attribute,

e.g., that are roughly the same color or have the same brightness,
and to also identify edges,

I.e., the boundaries between the different segments of the image

e [he segmentation is done on the physical picture



e CVT clustering of an image can be easily used for image segmentation

— recall that CV'T clustering is the partitioning of an image in color space

e Suppose that we have partitioned an image into the CVT clusters {V;}/,

— in physical space, this corresponds to the segmentation of the image into
the L segments {V,}%_,, where

Vi = {(Zu?) : U(Z7]> < W}

e Edges can be detected by seeing if neighboring points belong to a different
cluster

— the point (¢, j) is an edge point of the segment V) if one of its neighboring
points belongs to a different segment V., k #£ ¢

e The elbowing effect of the CVT “energy” can be used to determine a good
number of segments to use
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CVT-based segmentation and edge detection into two segments




CVT-based segmentation and edge detection of a bone tissue image (top-left)
into two segments (top-right) and three segments (bottom)
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CVT-energy vs. number of segments for C\V/T-based segmentations of the bone
tissue image



e CVT-based image segmentation is very cheap compared to, e.g., PDE and
variationally based methods

e Simple, CVT-based image segmentation, as just illustrated, is well known

— it is simply k-means clustering applied to image segmentation

e However, the CVT context easily allows for several useful generalizations



Weighted CVT's

e Give some cells more weight than others

— can help enhance the separation between colors

Original image (left) and weighted CV/ T-based compressed images with, from left
to right, equal weight functions, weight functions proportional to cell volume and
square of the cell volume



CVT with averaging for segmenting noisy or irregular images

e Averaging can be used to smooth out noisy or irregular images

— we effect averaging through discrete convolutions

Original image (left); averaged image (middle); image with stronger averaging
(right)



Original grayscale bone tissue image (left); CVT-based segmentation into two
segments with subsequent averaging (middle); the corresponding edges (right)
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Original grayscale image of a house (left); CVT-based segmentation into two
segments with subsequent averaging (middle); the corresponding edges (right)



Europe-by-night- segmented into 2, 3, and 4 segments




MULTICHANNEL IMAGE RECONSTRUCTION

e Suppose one has in hand several versions of a picture, none of which contains
all the information necessary to recover the complete image

— how can the information contained in the different versions be combined
so as to recover the whole image?

— this is a natural task for CVT-based image processing

WEISHTED WEIGE TED Wisna
ML CHANNEL  MUFTICHANNEL — MAILTS m NLL,
C TING SVTING TING
WEIGHTED WEIGHTED
MULTICHANNEL MULTICHANNEL
CVTING CVTING

Three noisy and incomplete versions of the same image (top); multichannel CV'T-based ap-
proximate image using 2 replacement colors (bottom-left); restored image using renormalization
(bottom-right)

e Can combine multi-channel CVT with averaging and weighting



GRID GENERATION

e The dual Delaunay meshes corresponding to CVT's are well suited for trian-
gular and tetrahedral mesh generation

— CVT and the dual Delaunay mesh pair are well suited to finite volume and
edge element type discretizations (as well as nodal elements)

e In order to render them useful for mesh generation, CVT concepts and algo-
rithms have been extended in several directions so that the CVT methodology
can handle

— automatically locating a subset of the points on the boundary
— generating interior points for a specified surface point distribution

— nonuniform point distributions

e CVT point generation is quite cheap



e The key and the curse of the effectiveness of CVT mesh generation can be
found in Gersho's conjecture

— the fact that the point distribution is always locally uniform makes it un-

likely that weird shaped elements, e.g., slivers, will be generated

— on the other hand, it seems that the local uniformity of the mesh also
means that anisotropic meshes, e.g., for fluid boundary layers, cannot be
generated

e Gersho's conjecture assumes that one uses the standard Euclidean norm to
measure the distance between two points

— if one instead uses anisotropic metrics, e.g.,

11 (y1, v, ys) (21 — 1) + pa(y1, yo, ys) (22 — y2)* + 13 (y1, yo, ys) (23 — y3)°

one can indeed generate anisotropic CV'T grids

e The CVT density function and metric function coefficients can be connected
to solutions and to a posteriori error estimators to enable CVT adaptive grid
generation



CVTs with points on boundary

e For grid generation applications, one needs points on the boundary

— for the basic CVT method, the boundary repels points so that CVT points
never lie on the boundary

e However, generalized CVTs can be defined to have some of the points lie on
the boundary — there are three ways to do this

1. a set of fixed points on the boundary can be specified, and then a gener-
alized CVT methodology will optimally place the interior points

2. a set of points on the boundary can be specified, and then another gen-
eralized CVT methodology will optimally place points in the interior and
optimally slide the boundary points

3. no points on the boundary are specified, and then another generalized CVT
methodology will optimally place points in the interior and on the boundary



UNIFORM GRID COMPARISONS
WITH OTHER 2D MESH GENERATORS

e We will use the eyeball norm |- HF\ to compare different methods for gener-
ating uniform triangulations of regions in the plane

— we also want to make comparisons based on quantitative measures

e In an effort to quantify the process of assessing and comparing the uniformity
of point sets and grids, we have examined 12 measures of uniformity
— 2 are based on just the coordinates of the points

— 6 are based on the Voronoi tessellation of the region, with the points serving
as generators

— 4 are based on the Delaunay triangulation of the point set

e We will only consider the 8 most useful ones



The point distribution measure

e Given a Voronoi tessellation V = {z;, V;}:\, of a point set, the point distri-
bution measure is defined by

h = max h; where h; = max |Zz' — Y|
i=1,..,.N yeV

e Thus,

— h; gives the maximum distance between the particular generator z; and
the points in its associated Voronoi cell V;

— h gives the maximum distance between any generator and the points in its
associated cell

e For an ideal tessellation into congruent regular hexagons, h; = h for all ¢

— thus, the smaller h is, the more uniform is the mesh



The regularity measure

e Given a Voronoi tessellation V = {z;, V;}' | of a point set, we define the
regularity measure by

V/3h;

i

X (Z:I{laXNX> where X

and where
v =min |z, —z;| fori=1,...,N
i
so that ~; is the minimum distance from the point z; to any of the other
points

e For an ideal uniform hexagonal mesh, h; = h and v; = v/3 h for all i so that
x; = 1 for all 2 and then y =1

— thus, the smaller  is, the more uniform is the mesh.



The second moment trace measure

e Given a Voronoi mesh V = {z;, V;}!',, let t; denote the trace of the second
moment tensor (about the region generator)

1
M = —/ (x —Z)(x — ) dx
Vil Jv;
associated with each Voronoi region V; having volume |V}
oleti=+ S™V . t; denote the average of the traces
e Then, we define the second moment trace measure by

T = max ‘ti — ﬂ
1=1,...,n

e For a perfectly uniform point distribution, ¢; = ¢ for all ¢ so that 7 = 0

— thus, the smaller 7 is, the more uniform is the mesh



The second moment determinant measure

e Given a Voronoi mesh V = {z;, V;}¥,, let d; denote the determinant of the
deviatoric tensor

1
D; =M, — —t,1
N

associated with each Voronoi region V;

e Then, the second moment determinant measure is given by

d = max |d;
1=1,....n

e For a perfectly uniform point distribution, di = dy = --- = dy = 0 so that
d=20

— thus, the smaller d is, the more uniform is the mesh



Maximum area measure (Shewchuk)

N

e Given a Delaunay tessellation {A\;}2L,, let |A;| denote the area of the triangle

Ay

e Then, the maximum area measure is defined by

N
a=|— max_ |A
o For an ideal uniform mesh, |A| = |Ay] = -+ = |A 5| = Q|/N so that,

ideally, o = 1

— thus, the smaller v is, the more uniform is the mesh



Minimum angle measure (Shewchuk)

e Given a Delaunay tessellation {A;}Y ),

the triangle A;

let 3; denote the minimum angle of

— note that 3; < 7/3 radians

e Then, the minimum angle measure is defined by
/3
5= < / )
min _fJ;
j N

e For an ideal uniform mesh, §; = 3, = --- = 85 = 8 = 7/3 radians so that,
ideally, 6 =1

— thus, the smaller 3 is, the more uniform is the mesh



Circle ratio measure (Persson and Strang)

e Given a Delaunay tessellation {A;}7 ), let

R; abc . -
- for j=1,....N
b= T hre—a)cta-blatb—c T

where a, b, and c denote the lengths of the sides of the triangle A;

— g; is half the ratio of the radius r; of the largest inscribed circle to the
radius I?; of the smallest circumscribed circle of the triangle A

— note that ¢; > 1

e Then, the circle ratio measure is given by

q= ( max qj)
j=1,...N

e For an ideal uniform mesh, ¢ = ¢o = - -+ = g5 = 1 so that, ideally, ¢ = 1

— thus, the smaller ¢ is, the more uniform is the mesh



The normalized standard deviation measure (Persson and Strang)

e Given a Delaunay tessellation {4},

est circumscribed circle

let ?; denote the radius of the small-

o |et

~
~

K

— 1

R = ﬁ Z R; and Rgq = standard deviation of R over j =1,..., N
j=1

e Then, the normalized standard deviation measure is given by

D= Rstd
E .

e For an ideal uniform mesh, Ry = Ry = -+ = R = Rsothatp=0

— thus, the smaller p is, the more uniform is the mesh



TRIANGLE

J. SHEWCHUK, Delaunay Refinement Algorithms for Triangular Mesh Generation, Comput.
Geom.: Theory Appl. 22 2002, pp. 21-74

J. SHEWCHUK, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator,
Lecture Notes in Comput. Sci. 1148, Springer, New York, 1996, pp. 203-222

e A Delaunay triangulation is refined by halving edges and/or inserting circum-
centers in such a way that

— triangles having an area greater than a specified area are subdivided

— angles smaller than a specified angle are eliminated



DISTMESH

P.-O. PERSSON AND G. STRANG, A simple mesh generator in Matlab, SIAM Review 46
2004, pp. 329-345

e A triangulation is viewed as a system of point masses connected by springs

— the point masses are moved until a static equilibrium is achieved



CVT

e The set of vertex points that are the generators of a CVT of the domain that
is constrained to have some points on the boundary

MESHGEN

e A variant of the CVT optimization process in which Voronoi regions are re-
placed by the easier to construct region formed by joining

— the circumcenters of acute triangles

— the mid-sides of the longest sides of obtuse triangles

that surround a vertex in the triangulation



VTM

P. ALLiEzZ, D. COHEN-STEINER, M. YVINEC, AND M. DESBRUN, Variational tetrahedral
meshing, Proceedings of ACM SIGGRAPH'05, 2005, pp. 617-625

e Can be viewed as another variant of CVT in which the Voronoi regions are
replaced by patches of Delaunay triangles that surround a vertex

— works directly with the Delaunay triangulation

— patches corresponding to two adjacent vertices overlap



TRIANGLE DISTMESH MESHGEN
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TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2
no. points 18 19 19 19 19 19
no. triangles 22 24 24 24 24 24
h 0.21 0.17 0.17 0.17 | 0.17 | 0.17
X 1.62 1.42 1.43 1.43 | 141 | 1.41
7 % 103 6.49 3.29 3.24 336 | 3.33 | 3.34
d x 10° 2.50 3.41 3.90 333 ] 331 | 3.30
a x 107 5.77 3.60 3.64 359 | 359 | 358
A3 x 107 2.24 2.07 2.11 2.07 | 2.05 | 2.04
q 1.20 1.06 1.08 1.05| 1.05 | 1.05
p x 107 11.50 3.60 3.70 3.50 | 3.70 | 3.70
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TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2

no. points 36 38 38 38 38 38
no. triangles 146 143 144 143 | 143 | 146
h x 107 8.85 7.42 7.22 742 | 7.24 | 7.31
X 2.02 1.56 1.62 1.68 | 1.50 | 1.54

T x 10% 6.87 6.33 6.16 6.36 | 6.51 | 5.02
d x 107 2.29 0.91 1.05 [0.98| 1.00 | 1.30
a x 10° 7.97 6.38 6.30 6.73 | 6.69 | 6.67
A x 10 3.35 2.49 2.48 254 | 238 | 2.46
q 2.04 1.37 1.25 1.37| 1.20 | 1.28

p x 107 12.30 4.00 3.60 430 | 3.50 | 3.80
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TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2

no. points 362 362 362 362 | 362 | 362
no. triangles 001 001 657 650 | 651 | 661
h x 102 4.29 3.30 3.43 3.37 | 3.41 | 3.37
X 2.18 1.51 1.70 1.78 | 1.76 | 1.48

T x 10* 2.06 1.54 1.84 |2.03] 1.85 | 1.51
d x 108 1.09 0.60 0.63 0.47 | 0.45 | 0.63
a x 10° 1.80 1.35 1.50 1.48 | 1.52 | 1.41
3 x 102 3.70 2.41 2.77 2.87 | 289 | 2.33
q 1.96 1.27 1.35 1.52 | 1.37 | 1.22

p x 10? 13.30 2.20 2.80 3.70 | 290 | 2.90




VAVAV v
TN
SRR
A%%I#EEZ#"‘#’&#&E&;
AVAV¢7‘1‘7¢Y %f;¢ﬁ§ﬂmwﬁ;

\VAVAVAVAVA!
RPN

Y
XK
aavavava %
ARRKTS
IVAVAVAS < ‘e%mé'
@ YAV e
S IIITINA

<]
P



TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2

no. points 303 303 303 303 | 303 | 303
no. triangles 520 520 519 507 | 508 | 524
h x 107 4.44 3.64 3.76 399 | 3.65 | 3.56
X 2.17 1.55 1.75 2.29 | 1.99 | 147

T x 10% 2.34 1.59 1.98 1.93| 1.70 | 1.36
d x 10” 8.69 6.80 8.44 566 | 6.00 | 8.41
a x 10° 1.89 1.56 1.51 1.91 | 1.56 | 1.56
A3 x 107 3.33 2.51 2.85 3.860 | 3.36 | 2.33
q 1.75 1.33 1.45 1.96 | 1.32 | 1.22

p x 107 12.20 3.20 4.70 6.50 | 3.70 | 3.80







TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2

no. points 193 194 194 194 | 194 | 194
no. triangles 313 315 308 308 | 308 | 320
h 0.13 0.10 0.13 0.12 | 0.11 | 0.11

% 2.11 1.64 2.35 2.10 | 1.80 | 1.60
T x 10° 2.50 2.39 2.48 244|239 | 2.35
d x 107 9.02 5.77 5.94 275 | 1.88 | 7.44
a x 10? 1.70 1.31 1.28 1.78 | 1.45 | 1.35
A x 10 3.54 2.74 2.86 3.10| 2.94 | 2.58
q 1.67 1.25 1.47 1.67| 1.33 | 1.28

p x 107 12.90 2.90 460 |7.10| 3.60 | 4.20
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TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2

no. points 242 240 240 240 | 240 | 240
no. triangles 412 385 385 381 | 381 | 393
h x 107 8.61 7.32 7.30 (78| 7.16 | 7.37
X 2.25 1.75 1.85 2.02 | 1.80 | 1.72

T x 10% 8.83 9.25 0.19 8.98 | 8.94 | 8.47
d x 107 3.36 1.53 1.09 094 0.72 | 1.72
a x 10° 6.94 6.48 6.15 7.49 | 6.55 | 6.00
A3 x 107 3.32 2.82 3.09 3.33 1 290 | 2.56
q 2.00 1.37 1.30 1.69 | 1.39 | 1.37

p x 107 11.60 3.60 4.60 6.00 | 4.30 | 4.20
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TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2

no. points 137 138 138 138 | 138 | 138
no. triangles 213 219 216 214 | 214 | 224
h x 107 8.98 7.22 7.77 (.57 7.70 | 6.85
X 3.10 6.02 2.93 2231 223 | 2.50

T x 10° 1.37 1.09 1.13 1.09| 1.09 | 1.08
d x 107 3.45 1.37 299 095 0.87 | 1.61
a x 10° 8.87 6.45 7.50 6.87 | 6.79 | 6.15
A x 10 3.27 10.27 484 350 353 | 3.95
q 2.08 3.57 1.89 1.61 | 1.64 | 1.49

p x 107 20.30 6.50 8.10 6.00 | 550 | 3.70







TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2

no. points 505 505 505 505 | 505 | 505
no. triangles 882 882 868 864 | 862 | 873
h x 107 6.85 5.56 5.84 6.54 | 6.03 | 5.82
X 2.07 1.60 2.00 212 | 213 | 2.30

T % 10* 5.28 3.85 4.82 5.87 | 5.50 | 4.57
d x 10° 5.54 5.24 3.44 476 | 3.27 | 5.00
a x 10° 4.80 3.77 4.29 472 4.01 | 3.95
A x 10 3.23 2.43 354 |357|3.14 | 3.43
q 1.96 1.27 1.41 2.08| 1.59 | 1.33

p x 107 11.40 3.00 4.30 6.00 | 4.00 | 3.80
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TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2

no. points 137 136 136 136 | 136 | 136
no. triangles 222 220 220 210 | 213 | 219
h x 10 7.00 5.62 5.61 6.21 | 5.81 | 5.47
% 2.10 1.60 1.71 236 | 1.91 | 2.15

T x 107 5.55 5.30 5.54 569 | 498 | 6.08
d x 10 3.99 3.83 4,51 3.26 | 2.78 | 3.46
a x 10 4 47 3.62 3.49 464 | 427 | 3.58
A x 10 3.33 2.58 2.84 383 3.17 | 3.39
q 1.89 1.27 1.32 1.67 | 1.47 | 1.41

p x 107 13.70 3.70 450 |6.40| 450 | 4.60







TRIANGLE | DISTMESH | MESHGEN | TVM |CVT1 |CVT2

no. points 285 287 287 287 | 287 | 287
no. triangles 470 474 479 452 | 451 | 484
h x 107 2.62 2.28 2.36 293 | 2.30 | 2.18
X 2.13 1.64 1.84 3.32 | 2.25 | 1.82

T x 10% 1.24 1.20 1.13 1.14 | 1.12 | 1.14
d x 10” 2.81 1.84 1.19 0.97 | 0.51 | 1.37
a x 104 7.26 5.70 6.88 8.99 | 6.59 | 6.33
A3 x 107 3.34 3.34 3.33 570 | 3.81 | 3.33
q 2.13 2.13 1.75 2.08 | 2.04 | 1.56

p x 107 11.70 4.30 5,50 |10.30| 5.80 | 4.10







TRIANGLE | DISTMESH | MESHGEN | TVM | CVT1 | CVT2

no. points 202 203 203 203 | 203 | 203
no. triangles 336 338 339 332 | 343 | 334
h 6.65 5.87 5.46 577 | 558 | 5.65

X 2.40 2.11 2.37 2251 1.70 | 2.51

T x 10% 6.30 6.12 6.53 6.42 | 6.13 | 6.28
d x 108 5.80 8.56 3.56 5.79 | 8.27 | 4.49
a x 10° 4.45 4.11 3.76 408 | 3.88 | 3.99
A3 x 107 3.33 3.25 3.48 351 | 254 | 4.33
q 1.54 1.37 1.41 1.52 | 1.25 | 1.82

p x 107 13.10 3.60 410 490 | 4.20 | 6.20
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3D CVT MESH GENERATION

e CVT generators can be used to define the vertices of a Delaunay tetrahedral
mesh in 3D

e Gersho's conjecture implies that bad-shaped tetrahedra, e.g., slivers, will be
avoided

e Some examples from

— Q. Du and D. Wang, Tetrahedral mesh generation and optimization based

on centroidal Voronoi tessellations, International Journal for Numerical
Methods in Engineering 56 2003, pp. 1355-1373
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CVT MESH REFINEMENT

Indicator-based (or passive) mesh refinement

e Mesh refinement is effected by relating the CVT density function to a given
feature

— the grid size will be smaller in regions where the CVT density is larger

e Good resolution of complicated boundaries can be effected by choosing the
CVT density to be bigger near boundaries

— e.g., choose the CVT density to decrease as the distance from the boundary
Increases

e Can also use measured data or some other known information to determine
where the CVT density should be relatively larger



Satellite data for the kinetic energy distribution in the North Atlantic; note that
the boundary is quite complicated

e The grid should be refined

— where the kinetic energy is relatively large (red and yellow areas)

— to resolve the boundary
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Left: a CVDT of the North Atlantic; Right: a zooomed in portion of that CVDT,;
grid refinement is based on both distance from the boundary and measured kinetic

energy distribution



Measured ice thickness of Greenland; note that the boundary is quite complicated

e The grid should be refined

— where the ice thickness is relatively small (light blue areas)

— to resolve the boundary
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Adaptive mesh generation

e One starts with the approximate solution of a PDE on a coarse grid

e A posteriori error estimators are determined based on the computed approxi-
mate solution of the PDE on the chosen grid

— two types of error estimators are developed
- one is based on L? norms

- the other is based on H! norms

e The a posteriori error estimator is used to determine a CV'T density function

— the CVT density function is relative large in triangles where the error esti-
mator is large

— it is important to keep in mind that the relation between the density func-

tion and the local spacing between points is, in d dimensions,
1
P 1 )




e Using the CVT density function, the points are moved to generate a CV'T of
the region

e Starting with the latest grid, the process is repeated until the error indicator
in every triangle is smaller than some prescribed tolerance

e Grid refinement and coarsening is then automatically effected

— points will move away from regions where the CVT density is relatively
small

— points will aggregate in regions where the CVT density if relatively large

e The final grid obtained will be an optimal grid in the sense that the CVT
energy is minimized



e We present results for a finite volume discretization of the problem

—V - (aVu)+bu=f in €
u=g on 0f)



Smooth solution with large gradients

® Set
O =1[-1,1] x [—1,1]
a(x,y) = 10.0 cos(y)
b(x,y) = 2* + y°

e Choose the exact solution
1.0 1.0

_|_
(x — 052+ (y —0.5)2+0.01  (z+0.5)72+ (y+0.5)>+0.01

u(z,y) =

e Determine f and g from u so that the PDE problem is satisfied

e The solutions is smooth, i.e., u € C?%((), achieves its maximum value near
the two points (0.5,0.5) and (—0.5, —0.5), and decays very quickly away from
Its maxima
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Initial meshes; left: a uniform Cartesian grid with 81 nodes; middle and right:
the corresponding CVD'T meshes with the same number of nodes generated using
the density functions related to H' and L? error estimators, respectively.
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error; right: H 1
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of nodes for different

refinement strategies; left: L?
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Equilibration of error using different adaptive refinement strategies; left: error on
a uniform mesh with 4225 nodes; middle: error on the mesh with 4644 nodes
obtained using the CVDT-based adaptive method with the H 1 error estimator:
right: error on the mesh with 4629 nodes obtained using the CVDT-based adap-
tive method with the L? error estimator.



Problem with a geometric singularity

® Set
() = the L-shaped domain [—1,0] x [0,1] U [0, 1] x [—1,1]
with a re-entrant corner at the point (0, 0)

a(z,y) =1
b(w,y) =0

e Choose the exact solution
T — (51

2
u(r,0) = s (52 — 51) 23 gin (59) + w(r cos @, rsin 0)

with 9; = 0.02 and 95 = 0.25, where s is the cut-off function

(1, t <0,
s(t) = ¢ —6t° + 15t* — 10t + 1, 0<t<l,
0, t>1,

and w(z,y) = (x — 23)(y* — y*); note that w is a smooth function with
w‘@g = O



e Determine f and g from u so that the PDE problem is satisfied

e The solution u mimics the singularity in the solution at the re-entrant corner

— u merely belongs to H%_E(Q) for any € > 0



025

Solution



Initial meshes; left: a uniform Cartesian grid with 65 nodes; middle and right:
the corresponding CVDT meshes with the same number of nodes generated using
the density functions related to H' and L? error estimators, respectively.
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Error norms vs. number of nodes for different refinement strategies; left: L2
error; right: H' error
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Equilibration of error using different adaptive refinement strategies; left: error on
a uniform mesh with 3201 nodes; middle: error on the mesh with 2379 nodes
obtained using the CVDT-based adaptive method with the H' error estimator;
right: error on the mesh with 3617 nodes obtained using the CVDT-based adap-
tive method with the L* error estimator.



Problem with interface singularities

e Set O =[-1,1] x [-1,1] b(x,y) =1 and

B 1 ([E, y) e (Ul
a($7y)_{5 ([E,g)EQQUQ4

Q, Q,

Q4 Q,

note that a is discontinuous across x =0 and y = 0



e Choose the exact solution
u(r, ) = r*(p; cos(ad) + g;sin(ad)) in Q

with a ~ 0.53544094560 and

{(pi g}, ~ {(14.535673, —0.839562), (0.429608, 1.621108),
(—13.043759, 6.469236), (—0.478922, —0.693383) }

e Then, fort =1,2, 3,4, u satisfies
V- (aVu)=0 in§;
and the interface conditions

lim  wu(r,d0)= lim wu(r,0
9—>(m/2)+( ) eﬁ(m/z)—( )

and
ou(r, 0)

! ! ou(r, 9)
111 a = 111 a
O— (im/2)+ 00 O— (im/2)~ 00

— note that u € H*¢(Q) for any ¢ > 0 and has a strong singularity at
the origin
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Initial meshes; left: a uniform Cartesian grid with 81 nodes; middle and right:
the corresponding CVD'T meshes with the same number of nodes generated using
the density functions related to H' and L? error estimators, respectively



Refined adaptive meshes at some levels generated by the CVDT-based adaptive
method; top: 476 and 2910 nodes and a zoom-in of the latter case near the
singular point using the H' error estimator; bottom: 436 and 2868 nodes and a
zoom-in of the latter case near the singular point using the L? error estimator.
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Error norms vs. number of nodes for different refinement strategies; left: L2
error; right: H' error



Equilibration of error using different adaptive refinement strategies; left: error on
a uniform mesh with 4225 nodes; middle: error on the mesh with 2910 nodes
obtained using the CVDT-based adaptive method with the H L error estimator:
right: error on the mesh with 2868 nodes obtained using the CVDT-based adap-
tive method with the L? error estimator.



Problems with more complicated geometries

e The last two examples are posed on the domains

Q, O3]
Q3 Qu
o We set f(x,y) =1 and g(x,y) = 0 for both examples and
( 1 In Ql
20 in Q)
a(z,y) =1+102° +y° (%) =9 400 in Qi
20 inqy

b(x,y) =1+ a° bz, y) =



e Analytical solutions are not known; however

— for the two hexagonal whole problem, we have that u belongs to Hg_E(Q)
for any € > 0,but not to H*(Q)

— for the problem with a square hole and interfaces, 1 only belongs to H'(€2),
but not to H*(2)); however, uln, € H*(Q;) for i =1,2,3,4
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Initial meshes for the two examples
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ANISOTROPIC CVT MESH GENERATION

e Anisotropic CVT's are defined with respect to a metric tensor M

— distances are measured using the norm ||x||5, = x' Mx

e We consider metric tensors that are defined with respect to a function u(x)

— u could be the a given function

— in the grid generation case, u is an approximate
solution of a partial differential equation

e Many definitions for metric tensors have been used for anisotropic grid gen-
eration
— here, we will only discuss one particular metric tensor that is defined in

W. Huang, Metric tensors for anisotropic mesh generation,
J. Comp. Phys. 204 2005, 633-665



e That metric tensor is given by

M(x) = (%) . (det (]1 4 éH(@)) o (1[ + éH@))

d = space dimension
N = number of triangles in the grid
H(u) = Hessian matrix for u(x)

- — /Q pd0)
0= (det (]1 + éH(@)) .

o is defined implicitly by /de = 243)Q)
Q

where

— for a finite element function, an approximation to the Hessian matrix can
be determined from its nodal values



e So far, we have used metric tensors such as this one to both

— make the grid anisotropic

— determine local grid size, using the “size” of the metric tensor as an implicit
CVT density function

e Although this seems to work well, we will also study adding the use of a
posteriori error estimators to determine the local grid size



Computational example

e From: V. John, A numerical study of a posteriori error estimators for convection-
diffusion equations, Comput. Meth. Appl. Mech. Engrg. 190 2000, 757-781.

—alAu+v-Vu+bu=f in{)

u =0  on boundary of ()
where
Q=(0,1)° a = 0.01 v =(2,3) b=1

e f is chosen so that the exact solution is given by

w = P —12 exp (2(58.;51)) _zexp (3(?(;(;51)>+6Xp (2(x — 12;653(?/ — 1))

e [he solution has boundary layers near r =1 and y =1

— i.e., near the outflow boundaries where v - n > 0



0.a

07

0.6

Exact solution with boundary layers nearx =1 and y =1
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refinement | number of | number of
level vertices | triangles | L™ error L? error H?' error
0 25 32 1.4541e+00 | 4.9449e-01 | 6.3923e+00
1 63 98 1.0291e+-00 | 2.0689e-01 | 5.9529e+-00
2 170 301 3.9171e-01 | 4.1308e-02 | 3.2622e+00
3 515 953 0.6131e-02 |3.2532¢-03 | 8.6938e-01
4 1524 2928 1.9862e-02 | 4.9886e-04 | 3.0390e-01
5 4817 9429 5.5310e-03 | 1.4333e-04 | 1.5924e-01
6 14299 28224 1.7945e-03 |4.0194e-05 | 8.2427e-02

Errors vs. level of refinement using adaptive anisotropic meshes




level | L™ error| L? error| H' error
1 0.7481 | 1.8855 | 0.1541
2 1.9461 | 3.2461 | 1.2118
3 3.2099 | 4.5859 | 2.3862
4 2.2173 | 3.4566 | 1.9376
5 2.2218 | 2.1675 | 1.1232
6 2.0691 | 2.3371 | 1.2104

Convergence rates vs. level of refinement




APPLICATION TO OCEAN GRIDS

e CVT grids are been adopted as the grid generation technique for the next
generation climate model being developed at NCAR and Los Alamos

— new ocean model developed by LANL

— new atmospheric model developed at NCAR

e |t appears likely that CVT grids will also be used for the next generation land
ice model, e.g., for Greenland and Antarctica



Left: time-mean kinetic energy of the North Atlantic Ocean that is used as the
CV'T density function; right: a CV'T mesh with 47305 nodes of the North Atlantic
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Left: a zoom-in of the CV'T mesh with 47305; right: a zoom-in of the same
region of a CV'T mesh with 183907 nodes



Left: A 3D prismatic mesh of the Greenland ice sheet (the vertical direction of
the ice sheet is stretched) (a) ice sheet surface elevation; (b) ice sheet thickness;
(c) bed elevation; (d) zoom-in of a region close to the ice sheet edge. Right:
Schematic diagram of the Greenland mesh partition for parallel processing



Simulation results for the temperature evolution of the Greenland ice sheet (the
vertical direction of the ice sheet is stretched). (a) the 3D prismatic mesh used

for the computation; (b) the ice sheet temperature at the ice-atmosphere and
ice-ocean boundaries after ten years



POINT DISTRIBUTIONS AND GRID GENERATION ON SURFACES

e In many applications, point distributions on surfaces are needed

e In order to generalize CVT's to surfaces, two main ingredients are needed

— the generalization of the concept of Voronoi regions to surfaces

— the generalization of the concept of mass centroids to surfaces

e There are a number of ways to do each of these

— we choose generalizations which are “easy” to use

e We consider compact and continuous surfaces S ¢ RY



e Given a set of points {z;}X, € S, we define their corresponding Voronoi
regions on S by

Vi={xeS | [x—al<lx—z| forj=1.. K /i)
fori=1,... K

e For each Voronoi region V;, we call z{ the constrained mass centroid of V; on
S if z{ is a solution of the following problem:

zES

min F;(z) , where  Fj(z) = / p(x)|x — z|* dx
Vi

e We call a Voronoi tessellation a constrained centroidal Voronoi tessellation
(CCVT) if and only if the points {z;}2, which serve as the generators of
the Voronoi regions {V;}% | are also the constrained mass centroids of those
regions



e Note that the definition of CCVT implies that
— generators are constrained to the surfaces

— but distances are still the standard Euclidean distances, not the more
general geodesic distances

e Constrained centroids are “easy” to construct by normal projection

— first construct the 3D centroid which, in general, is not on the surface
— then project the 3D centroid to the surface

— it turns out (under mild assumptions) that the projected point is the
constrained mass centroid



e Constrained CVT's defined in the manner above enjoy an optimization prop-
erty in much the same way as do CVT's

e Algorithms (deterministic and probabilistic, serial and parallel) for CVT's may
be then easily generalized to the case of CCVT's



Voronoi diagrams for 256 generators on a developable surface
random sampling (top) constrained CVT (bottom)

pla,y,z) =1 (left)  plx,y,z) = e 2% (right)



Voronoi diagrams for 256 generators on a torus
random sampling (top) constrained CVT (bottom)

ple,y.z) =1 (left)  plx,y,z) = e > (right)
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CCV'T on the sphere with uniform density



CCV'T on the sphere with nonuniform density
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CCV'T on the sphere with local refinement



Global CCV'T of the globe and the corresponding Delauney triangulation with
points automatically placed on ocean/land boundaries



Global CCV'T of the globe and the corresponding Delauney triangulation with
points automatically placed on ocean/land boundaries



Regional refinement

e Two scenarios for regional refinement:

— a locally refined global simulation is run on the whole or large parts of the
sphere or ocean

— alternately, a coarse uniform grid simulation is run on the whole or large
parts of the sphere or on the oceans

- followed by a regional fine-grid simulation using the results
of the coarse-grid simulation to provide boundary conditions

— for both scenarios, compatibility between coarse and fine grids is important
or at least useful for accuracy and conservation

e We can generate regionally refined SCVT grids such that
- the fine grid in the region of refinement matches
exactly with the coarse uniform global grid
and
- the transition from coarse to fine meshes is “smooth”



SCVT grids for the first scenario

e The region of interest is the United States plus a little more

e 65,026 total nodes with 35,270 nodes in the nested region

e Outer domain grid is quasi-uniform with a resolution of ~ 120 km

e Inner domain grid is quasi-uniform with a resolution of ~ 40 km away from
its boundary



Global regionally refined grid.eps



gion.eps

in refined re

Gri



Grid in interior of refined region



Refined grid in transition region.eps



SCVT grids for the second scenario

e The region of interest is again the United States plus a little more

e The global uniform grid has 40,962 nodes and the local refined grid has 65,026
nodes

e The refined grid exactly matches with the parent global grid it replaced near
the boundary between the two regions

e In the local refined grid, a “smooth” transition occurs from the fine to coarse
quasi-uniform grids



Global uniform grid.eps



Region to be refined



Refined local grid



Match between global grid and refined local grid
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Quasi-uniform (left) and variable resolution (right) grids on the sphere; the grid
on the right is refined in the vicinity of an orographic feature (a mountain) that
is the sole forcing in the simulation; the colors indicate a domain-decomposition
strategy for efficient implementation on distributed memory systems — each block

represents a different computational processor
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Kinetic energy field at day 10 of simulation; left: simulation using quasi-uniform
mesh; right: simulation using variable-resolution mesh



MESHLESS COMPUTING

e Meshless computing refers to numerical methods that do not involve meshes

e They can be used, e.g., for approximating

— multivariate functions
— multiple integrals
— solutions of partial differential equations

e The hope is that since meshes are not required, problems posed on compli-
cated and/or high-dimensional regions can be treated more easily

e Of course, meshless computing is nothing new, e.g., recall

— Monte Carlo methods for numerical integration and the numerical solution
of PDE's

— particle methods for PDE's



e A typical efficient meshless computing method requires

1. the selection of a set of points
2. the selection of a support region associated with each point

3. the selection of a basis function associated with each point having support
over the region selected in step 2

e The implementation of a typical meshless method also requires

4. knowledge about the overlap of the support regions associated with dis-
tinct basis functions

5. the application of a discretization method, e.g., in the PDE setting, one
can use any of

— Galerkin, collocation, mixed, or least squares methods
while in the function approximation setting, one can use, e.g.,
— interpolation or least squares approximation

e One can also analyze meshless methods

6. derive error estimates



e A great deal of attention has been devoted to steps 3, 5, and 6

— lots of papers on deriving error estimates for specific choices of basis func-
tions, assuming the point destribution is given and the support radii and
the overlap information are known or at least are easily determined

e Some papers determine support radii and overlap information by using graph
theoretic ideas

since graph = mesh, these papers do not address truly meshless methods

e Much less effort has been devoted to the efficient determination, in a truly
meshless way, of

— optimal point distributions
— support radii

— overlap information



POINT PLACEMENT

e We use the generators of a centroidal Voronoi tessellation of the computa-
tional domain for the points on which the meshless method is based

— using probabilistic algorithms, the CVT points can be determined in a
totally meshless manner

e There are, of course many other methods for selecting point positions

— for example, for uniform point distibutions in simple domains, Halton se-
quences are a popular point selection method

e CVT point selection strategies offer substantially more flexibilitiy than most
exisiting methods in that they can be used for

— general domains
— nonuniform and anisotropic point distributions
— some or all points can be placed on bounding surfaces



SUPPORT RADII AND OVERLAP DETERMINATION

e Having chosen a set of K points {z;}*, in the domain 2 C RY, we want to
now choose, for each point x;, an associated radius h;

e For each point x;, we then define the sphere centered at z; and having radius
h;
S@Z{QERN ) ‘y—l‘z‘éhz}

— other patch shapes associated with points can be used, e.g., ellipsoids,
rectangles, or bricks

— the sphere (or other patch) associated with a point will determine the
support region for basis function associated with the point

e The selection of the radii {h;}*, should meet two requirements:

— the union of the spheres {S;}%, should cover ) a specified number of
times

— if the intersection S; N .S; of two distinct spheres is not empty, it should
not be “too small’ nor “too large”



e Algorithms are known (notably due to C. Duarte and J. Oden and to M.
Griebel and M. Schweitzer) for support radii determination

— these algorithms involve a background mesh
— they do not give good results for nonuniform point distributions

e A new, (totally meshless) algorithm for determining support radii has been
developed that

— guarantees, in a probabilistic sense, that the patches cover every point in
the domain p-times, where p is an input integer

- some meshless methods for PDE’s require that each point in the region
be covered several times by the support spheres associated with the
point set

— allows for control of the amount of overlap of the support regions
— gives good results for nonuniform point distributions in general regions

e Although we illustrate using circular patches in 2D, there is no difficulty treat-
ing 3D and/or other shaped patches, e.g., rectangles or bricks
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No. of | Support region | Point selection method
points | algorithm |Monte Carlo| CVT
128 old 13.33% 10.66%
new 12.26% 5.21%
256 old 6.61% 4.87%
new 6.24% 2.58%
512 old 3.10% 2.49%
new 2.81% 1.25%

Percentages of nonzero elements in the characteristic matrix for a uniform distri-
bution of points in a square domain
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No. of | p Point selection method
points Monte Carlo | Halton sequence| CVT
128 1| 12.02% 10.04% 5.05 %
31 25.41% 21.63%
256 |1 6.25% 4.95% 2.61%
31 14.23% 10.97%
512 |1 3.29% 2.72% 1.33%
3 7.30% 5.91%

Percentages of nonzero elements in the characteristic matrices resulting from the
new support region determination algorithm for a uniform distribution of points

in a square domain

e The CVT numbers using the new support region determination algorithm are

almost identical to what one obtains

— for linear finite element discretizations in the case p = 1 (a 1-covering of

the domain)

— for
of the domain)

discretizations in the case p = 3 (a 3-covering
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The sets of 128 points in a non-convex domain (left) and the associated spherical patches deter-
mined by the new algorithm for p = 1 (middle) and p = 3 (right) for the Monte Carlo (top) and

CVT (bottom) point selection methods for a uniform density function
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mined by the new algorithm for p = 1 (middle) and p = 3 (right) for the Monte Carlo (top) and

CVT (bottom) point selection methods for a uniform density function
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The sets of 128 points in a non-convex domain (left) and the associated spherical patches deter-
mined by the new algorithm for p = 1 (middle) and p = 3 (right) for the Monte Carlo (top) and

CVT (bottom) point selection methods for a uniform density function
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CVT (bottom) point selection methods for a uniform density function



)
55
4‘;-\!'
S

Y.
%3
Yy
|

o

s

- * * . - . ‘
- . .
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The sets of 512 points in a three-dimensional non-convex domain for the Monte Carlo (left) and

CVT (right) point selection methods for a uniform density function



The sets of 512 points in a three-dimensional non-convex domain for the Monte Carlo (left) and

CVT (right) point selection methods for a nonuniform density function
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REDUCED-ORDER MODELING

e Solutions of (nonlinear) complex systems are expensive with respect to both
storage and CPU costs

e As a result, it is difficult if not impossible to deal with a number of situations
such as

— continuation or homotopy methods for computing state solutions
— parametric studies of state solutions
— optimization and control problems (multiple state solutions)

— feedback control settings (real-time state solutions)

e Not surprisingly, a lot of attention has been paid to reducing the costs of the
nonlinear state solutions by using reduced-order models for the state

— these are low-dimensional approximations to the state



e Reduced-order modeling has been and remains a very active research direction
in many seemingly disparate fields, e.g., to name five:
— linear algebra: singular value decomposition (SVD), Hankel SVD
— statisitics: Karhunen-Loeve analysis, clustering
— information science: representation, interpolation, reconstruction

— boundary layers: e.g., in a fluids setting, replacing the Navier-Stokes equa-
tions with the simpler Prandtl boundary layer equations

— tubulence modeling: e.g., in a fluids setting, replacing the Navier-Stokes
equations by another complex system, e.g., a k-¢ or LES model, that is
“easier’ to approximate

e In fact, many of us already do the ultimate in reduced-order modeling

— any computational approximation to a complex system goverened by partial
differential equations constitutes an attempt at reduced-order modeling,
i.e., reducing an infinite-dimensional problem to a finite-dimensional one



A TYPE OF REDUCED-ORDER MODELING

e For a state simulation, a reduced-order method would proceed as follows

— one chooses a reduced basisu;, 1 =1,...,d

d is hopefully very small compared to the usual number of functions used
in a finite element approximation or the number of grid points used in
a finite difference approximation

— next, one seeks an approximation u to the state of the form

d
u= Zcz-ui eV =span{uy,...,uy}
i=1
— then, one determines the coefficients ¢;, ¢ = 1, ..., d, by solving the state

equations in the set V'

e.g., one could find a Galerkin solution of the state equations in a stan-
dard way, using V' for the space of approximations

— the cost of such a computation would be very small if d is small (ignoring



the cost of the off-line determination of the reduced basis {uy,...,uy})

e Does reduced-order modeling work?

— it is clear that reduced-order methods should work in an interpolatory set-
ting

— What happens in an extrapolatory setting is not so clear

Superconducting vortices for three different values of the applied magnetic field
Reduced-order modeling would be difficult to do in this setting



SNAPSHOT SETS

e The state of a complex system is determined by parameters that appear in
the specification of a mathematical model for the system

e Of course, the state of a complex system also depends on the independent
variables appearing in the model

e Snapshot sets consist of (expensive computational or, in principle, even ex-
perimental) state solutions corresponding to several parameter values and/or
evaluated at several values of one or more of the dependent variables

— steady-state solutions corresponding to several sets of design parameters

— a time-dependent state solution for a fixed set of design parameter values
evaluated at several time instants during the evolution process

— several state solutions corresponding to different sets of parameter values
evaluated at several time instants during the evolution process



e For practical, time-dependent problems, one needs to accumulate hundreds
or even thousands of snapshots

— however, snapshot sets often contain lots of redundant information

— we will examine two means for removing the redundant information so that
one obtains reduced-order bases of small dimension

- POD (proper orthogonal decomposition) <= based on projecting
snapshots

- CVT <= based on clustering snapshots



POD-BASED REDUCED-ORDER MODELING
e Given n snapshots X; € RY, 5 =1,...,n, set
: 1
X; =Xj— b, 17=1...,n, where :EZ
the set {x;}"_; are the modified snapshots

e Let A denote the snapshot matrix , i.e., the N X n matrix whose columns
are the modified snapshots x;, i.e.,

AI(Xl,XQ, “ .. Xn):(il—;l,, ig—ﬁ, c e Sin—ﬁ)

e A POD basis of dimension d consists of the first d left singular vectors of the
snapshot matrix A



e POD is closely related to the statistical methods known as Karhunen-Loeve
analysis or the method of empirical orthogonal eigenfunctions or principal
component analysis

e The POD basis satisfies an optimality property

e POD is the most popular reduced-order modeling technique

e Many variations on POD have been proposed



CVT’S AND REDUCED-ORDER MODELING

e CVT's have been successfully used in data compression; one particular appli-
cation was to image reconstruction

— therefore, it is natural to examine CVT's in another data compression
setting, namely reduced-order modeling

e The idea, just as it is in the POD setting, is to extract, from a given set of
(modified) snapshots {x;}"_; of vectors in R", a smaller set of vectors also

belonging to RY

— in the POD setting, the reduced set of vectors was the d-dimensional set
of POD vectors {¢;}_,

—in the CVT setting, the reduced set of vectors is the k-dimensional set of
vectors {z; }¥_, that are the generators of a centroidal Voronoi tessellation

of the set of modified snapshots



e Just as POD produces an optimal reduced basis in some sense, CV'T produces
an optimal reduced basis in the sense that the CVT “energy” is minimized

e One can, in principle, determine the dimension d of an effective POD basis,
e.g., using the singular values of the snapshot matrix

— similarly, using the elbowing effect, one can determine the dimension k of
an effective CVT basis by examining the (computable) CVT “energy”



COMPUTATIONAL RESULTS FOR CVT MODEL REDUCTION
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CVT VS. POD

e Question: why should one use CVT instead of POD?

— although justifications have to be substantiated through analyses and ex-
tensive further numerical experiments, one can make some arguments

e CVT naturally introduces the concept of clustering into the construction of
the reduced basis

e CVT is “cheaper’ than POD

— POD involves the solution of an n X n eigenproblem, where n is the number
of snapshots

— CVT requires no eigenproblem solution
- CVT can handle many more snapshots for the same cost
- adaptively changing the reduced basis is less expensive with CVT

e Another potentially interesting feature of CVT is that it avoids the over-
crowding of the reduced basis into a few dominant modes



CVT COMBINED WITH POD (CvOD)

e We have already mentioned that the concept of centroidal Voronoi tessella-
tions can be extended to more general notions of distance

— this allows us to combine POD and CVT to (hopefully) take advantage of
the best features of both approaches.

e Why should one use CVOD instead of POD or CVT?

— CVOD offers the possibility of taking advantage of the best features of
both POD and CVT

— CVOD is cheaper than POD since it requires the solution of several smaller
eigenproblems instead of one large one



CVT AND SNAPSHOT GENERATION

e CVT can play another important role in reduced-order modeling, regardless
of how the reduced-order basis is determined

e Any reduced-order basis cannot be better than the snapshot set from which
it is generated

—if it ain't in the snapshot set, it ain't in the reduced-order basis

e Thus, the intelligent, effective, and efficient generation of snapshot vectors is
crucial to the success of any reduced-order model

— very little attention has been paid to this aspect of reduced-order modeling

— ad-hoc techinques are used to generate snapshots

e In a real sense, snapshot generation is an exercise in the design of experiments

— CVT point sampling in parameter space can be effective in this regard



IMPROVED HYPERCUBE POINT SAMPLING

e A set of NV points in a d-dimensional hypercube is said to have the Latin-
hypercube sample (LHS) property if one subdivides the hypercube into N¢
little cubes, then all (d — 1)-dimensional “hyperplane slices” of little cubes
contain exactly one point

A 4-point LHS in the square



e \Whenever one constructs an LHS point set, the points may be

— randomly located within a little cube

or may be

— located at the center of the little cube

Random (left) and centered (right) 4-point LHS point sets in the square



e The most direct way to construct LHS point sets is
— to choose (d — 1) random permutations of the numbers 1 through N

— then place a point randomly or at the center of the IV little cubes deter-
mined by the permutations
- points are numbered lexigraphically according to their first coordinate

Random (left) and centered (right) 4-point LHS point sets in the square deter-
mined by the permutation {3,2,4,1} for the second coordinate



e For many applications, the LHS property is very desirable

— however, LHS point sets constructed in the direct way are often found to
have poor “other’ properties

e For this reason, there have been several attempts made at “improving” LHS
point sampling

— with the goal of improving other measures of quality for point sets

e Thus, we ask the related questions

— can any point set be transformed into an LHS point set?

— what happens to the quality of points sets after they are transformed into
LHS point sets?

— can one obtain improved LHS point sets by transforming other sets in to
LHS point sets?



LATINIZATION OF POINT SETS

e Any point set can be transformed into an LHS point set through a simple
Latinization process

e The process consists of, sequentially for each coordinate,

— ordering the points according to their coordinate value

— shifting the points so that they are in separate “hyperplane slices” for that
coordinate



e Starting with a non-LHS point set, first order and shift the points according
to the first coordinate

— the other coordinates of the points remain fixed

A non-LHS point set order the x-coordinates there is now one
shift into separate x-slices point in each x-slice




e Keep on ordering and shifting, one coordinate at a time

0O °
A
. .
Q °
® °
. ° ‘ ° °
Y
O ®
the points after the x- order the y-coordinates there is now one point
coordinate is taken care of shift into separate y-slices in each x and y slice
T

results in an LHS point set




e What happens to the star discrepancy of a point set after it is Latinized?

— we can show that under certain hypotheses, the star-discrepancy of the
Latinized point set has the same asymptotic bound as that of the original
point set

e Specifically, if
if the star discrepancy of the original point set < f(N)

and

f(N) =
then

the star discrepancy after Latinization is O(f(IV)),

for some C' > 0,

=le

where the constant in the big-O notation depends on d



e What happens to the CVT energy of a point set after it is Latinized?

— we can show that under certain hypotheses, the CVT energy of the La-
tinized point set has the same asymptotic bound as that of the original
point set

e Specifically,

— if the original point sastisfies
- the volumes V; of the Voronoi cells corresponding to the points satisfy,
for some 0 < v < 1
1 1
<V <
1 +~N 1 —~yN

- the maximum difference in the coordinates of any point and the points

in its Voronoi cell is bounded by R for some R > 0

— then, the difference between the CV'T energy of the original and Latinized
point sets is bounded by
(R+7)°

“N




e This result holds for any point set

RZ
e The CVT energy of a uniform CVT point set is bounded by N

— thus, Latinization changes the CV'T energy of a CVT point set by the same
order as the CV'T energy of the original point set



MEASURES OF POINT SET QUALITY

The star discrepancy

e To define the star discrepancy D* of a point set {z;}.", in the unit hypercube
0,1]% in d dimensions,

— choose a box B C [0, 1]¢ having one corner at the origin

— compute the ratio

number of points from {z;}# | that are in the box B

T p—
b N, the total number of points in the point set

— set

D* = sup |volume(B) — 75
Bc[o,1]¢



e The star-discrepancy is of interest because of the Koksma-Hlawka theorem:

(@) de =7 ()| < DVS)

| [0’1]d

where V' (f) denotes the “variation of f in the sense of Hardy and Krause”

e This results motivates the popular activity of developing for algorithms that
produce low-discrepancy point sets.

e The best known bound for D* is given by

] Nd—l
D*ngn( )

e For large d and not too large IV, these types of bounds are not very useful

— we have that In(N)?"!N~1is an increasing function for N < e?~1

— often, C,; grows super-exponentially in d



Measures based on the Voronoi tessellation of the points sets

The point distribution norm

e Given a Voronoi tessellation V = {z;, V;}1¥,, let

h = max h; where h; = max |Zi — Y|
i=1,..,.N yeVi

e Thus,

— h; gives the maximum distance between the particular generator z; and
the points in its associated cell V;

— h gives the maximum distance between any generator and the points in its
associated cell

e For an ideal tessellation of () into congruent regular hexagons, h; = h =
(vV12]Q] /9N)Y2 2 0.6204(]2 /N)'/2, where || denotes the area of ()

— thus, the smaller h is, the more uniform is the mesh.



The regularity measure

e Given a Voronoi mesh V = {z;, V;}I¥,, let

V/3h;

i

X (Z:I{laXNX> where X

e For an ideal uniform hexagonal mesh, h; = h and Vi = \/gﬁ so that y; =1
for all 2 and then y =1

— thus, the smaller  is, the more uniform is the mesh.

e In addition, the value of ¥ provides a measure of the mesh regularity, i.e., the
local uniformity of a mesh

— if a mesh is locally uniform in the sense that the cells in a neighborhood
of any cell are nearly congruent to that cell, then the value of x will again
be small



The second moment trace measure

e Given a Voronoi mesh V = {z,;, V;}! |, let t; denote the trace of the second
moment tensor (about the region generator)

1
Mi:—/ x —7)(x — 7)) dx
Vi w-( I )

associated with each Voronoi region V;

o lett= % sz\il t; denote the average of the traces

e Then, let
T = max ’tz- — ﬂ
1=1,...,n
e For a perfectly uniform point distribution, ¢t = ¢t = -+ = ty = ¢ so that
7T =0

— thus, the smaller 7 is, the more uniform is the mesh



The second moment determinant measure

e Given a Voronoi mesh V = {z;, V;}¥,, let d; denote the determinant of the
deviatoric tensor

1
D; =M, — —t,1
N

associated with each Voronoi region V;

e Then, let
d = Tnax |d;|
e For a perfectly uniform point distribution, di = dy = --- = dy = 0 so that
d=0

— thus, the smaller d is, the more uniform is the mesh



COMPUTATIONAL EXPERIMENTS

e [en methods are used

HAL Halton LHAL Latinized Halton
HAM Hammersley LHAM Latinized Hammersley
CVT centroidal Voronoi tessellation LCVT Latinized CVT
CVTP periodic CVT LCVTP Latinized CVTP

LHS Latin hypercube

IHS improved Latin hypercube
B. BEACHKOFSKI AND R. GRANDHI, Improved distributed hypercube

sampling, AIAA Paper 2002-1274, AIAA, Washington, 2002

e 100 and 1000 points are sampled in 2, 3, and 7-dimensional hypercubes



e The star discrepancy of each point set was approximately determined by the
method of E. Thiemard

E. THIEMARD, An algorithm to compute bounds for star discrepancy, J. Complexity
17 2001, 850-868

— the results in 7 dimensions are less accurate than the corresponding results
in 2 and 3 dimensions

e Four Voronoi-based measures and the CVT energy were determined using
intense sampling to evaluate integrals

— again, the results in 7 dimensions are less accurate than the corresponding
results in 2 and 3 dimensions



Measure | CVT | LCVT | HAL | LHAL | HAM | LHAM | LHS | IHS | CVTP | LCVTP
D* x 10°|8.89| 2.74/5.05| 2.91| 3.80| 2.78/6.06/3.71| 5.86 3.65

h 072 .104|.125| .126| .140| .134|.165|.118| .109 .108

X 1.56| 7.19/5.18| 587 391| 4.19|15.7|4.51| 2.17 2.46
T x 10° 31 59164 1.18| 1.20| 1.13/2.83|1.14 81 .78
v x 107 | 26| 2.50]6.63| 6.22| 4.79| 4.75/22.3|4.45 1.10 1.02
Ex10° | 164 184222 225/ 1.96| 1.96/3.03/1.97| 1.73 1.81

100 points in 2D

Measure | CVT | LCVT | HAL | LHAL | HAM | LHAM | LHS | ITHS | CVTP | LCVTP
D* x 103 ] 31.1 1.5(729| 564 481| 3.71/19.2(8.87| 16.3 8.42
h x 10 | 229 3.10/3.60| 3.69| 4.08| 4.07(5.93|3.72| 3.34 3.35

X 1.52| 359|731 782 11.4| 13.0(45.1|4.82| 2.42 2.35
T x 10% .63 67121 1.18| 1.34| 1.35/4.06|1.28 97 1.12
vx 107 | 1.14| 2.18]/9.56| 11.1| 3.98| 3.71/29.9/5.06| 3.25 3.68
Ex10% | .163| .171|.221| .221| .183| .184|.315|.182| .168 1.69

1000 points in 2D




Measure | CVT | LCVT | HAL | LHAL | HAM | LHAM | LHS | IHS | CVTP | LCVTP
D* x 10°| 24.3| 6.95(6.76| 5.89| 6.43| 4.98/9.18|6.83 1.5 6.02
h 200 .265|.312] 321 .269| .268|.350|.281| .281 276
X 194, 152964 9.69| 8.00| 7.33/13.7/5.29| 253 2.85
T x 10° | 1.40| 4.58|5.57| 537| 6.11| 5.24| 1.6|557| 4.67 4.16
v x 10° | 19| 1.24|3.88| 3.98| 1.19| 1.49/11.7/4.31 1.70 3.13
£x10° |1.14| 137|155 155| 1.41| 1.41|1.83/1.41 1.31 1.31
100 points in 3D
Measure | CVT | LCVT | HAL | LHAL | HAM | LHAM | LHS | IHS | CVTP | LCVTP
D* x 10%|11.8| 197|1.64| 1.48| 1.33| 1.17(3.28/2.00| 2.53 1.83
h .082| .114|.136| .136| .130| .129|.167|.129| .116 123
X 1.83| 474 14| 13| 6.43| 6.52/31.8/6.19| 2.32 2.36
Tx10° | .63| 1.43|1.49| 1.63| 1.28| 1.24/3.00(1.63| 1.83 2.02
vx 101 | 38| 6.43]5.22| 6.93| 2.25| 2.99/17.0/3.59| 2.99 2.60
Ex10° | 2.42] 2.63|3.13| 3.14| 2.84| 2.84|3.70|2.73| 2.60 2.60

1000 points in 3D




Measure

CVT

LCVT

HAL

LHAL

HAM

LHAM

LHS

IHS

CVTP

LCVTP

D*

870

250

248

203

237

200

228

234

222

210

h

718

817

956

919

.863

.863

908

904

964

948

X

2.63

5.18

4.05

4.03

4.69

4.73

6.56

4.05

3.26

3.23

T % 107

91

2.94

3.53

3.43

2.94

3.14

5.24

5.46

5.25

4.65

v x 101

.000108

1.79

6.15

6.36

1.8

11.3

14.3

17.8

2.26

1.89

.156

211

212

212

206

206

215

215

203

203

100 points in 7D

Measure

CVT

LCVT

HAL

LHAL

HAM

LHAM

LHS

ITHS

CVTP

LCVTP

D*

741

173

132

128

125

120

139

139

137

133

h

552

582

600

600

587

585

622

632

569

573

X

2.80

4.41

5.85

5.86

4.36
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INFERENCES DRAWN FROM THE EXPERIMENTS

e Of course, we present a very limited number of test runs so that drawing
definitive conclusions with regard to the relative merits of the different point
sets is not possible

— however, the inferences drawn from the results presented are also consistent
with the results of other tests we have performed



e Inferences drawn from the star discrepancies

— Latinization reduces the star discrepancy of every CVT, Halton, and Ham-
mersley point set

— Latinized Hammersley point sets consistently have the smallest star dis-
crepancy

— CVT point sets have the largest star discrepancy

- CVTP point sets have lower star discrepancies than do CVT point sets

— Latinization of CVT point sets greatly reduces the star discrepancy to a
value comparable to that for some of the other point sets

— Latinized CVTP point sets have lower values of the star discrepancy than
do the LHS and IHS points sets

- in this respect, they begin to rival Halton and Hammersley



e Inferences drawn from the four Voronoi diagram-based measures

— CVT point sets are consistently the best
— LHS point sets are consistently the worst
— IHS point sets are much better than LHS point sets

— Latinization raises the measures for the CVT point sets, but LCVT point
sets are still consistently better than any of the other points sets

— Latinization mostly but not always raises these measures for the Halton
and Hammersley point sets

— for the most part, CVTP and LCVTP points sets are superior to Halton,
Hammersley, LHS, and IHS and are only outdone by the CVT point sets



e Inferences drawn from the CVT energies

— naturally, CVT point sets have the lowest value of the CVT energy since
they are, by design, minimizers of that energy

— a Latinized CV'T point set has higher CVT energy than that of its parent
CVT point set, but generally lower energy than that of the other point sets

— Latinization seems to have little effect on the CVT energy of Halton and
Hammersley point sets



e Summary

— if the star discrepancy measure is of most importance, then Latinized Ham-
mersley point sets seem to be best

— if the four Voronoi diagram-based measures are of most importance, then
CVT point sets seem to be best

— if both measures are of interest, Latinized CVT and CVTP point sets seem
to provide the best compromise

— LHS and IHS point sets are not competitive in either category



CONCLUSIONS

e CVT and periodic CVT point sampling seems to be useful in some settings

e The Latinization of point sets such as Hammersley seems to produce very
much improved LHS point sets

e Clearly, more tests and theoretical studies need to be done

— especially in higher dimensions and for larger point sets



FUTURE OF CVT

e Improved construction algorithms
e More theory
e Further development of existing applications

e New applications



