
Comput. Methods Appl. Mech. Engrg. 193 (2004) 2301–2323

www.elsevier.com/locate/cma
Stability of the SUPG finite element method
for transient advection–diffusion problems

Pavel B. Bochev a,*,1,2, Max D. Gunzburger b,3, John N. Shadid c,1,2

a Sandia National Laboratories, Computational Mathematics and Algorithms, P.O. Box 5800, MS 1110, Albuquerque,

NM 87185-1110, USA
b School of Computational Science and Information Technology, Florida State University, Tallahassee, FL 32306-4120, USA

c Sandia National Laboratories, Computational Sciences, P.O. Box 5800, MS 1111, Albuquerque, NM 87185-1110, USA

Received 17 October 2003; accepted 7 January 2004
Abstract

Implicit time integration coupled with SUPG discretization in space leads to additional terms that provide con-

sistency and improve the phase accuracy for convection dominated flows. Recently, it has been suggested that for small

Courant numbers these terms may dominate the streamline diffusion term, ostensibly causing destabilization of the

SUPG method. While consistent with a straightforward finite element stability analysis, this contention is not supported

by computational experiments and contradicts earlier Von-Neumann stability analyses of the semidiscrete SUPG

equations. This prompts us to re-examine finite element stability of the fully discrete SUPG equations. A careful

analysis of the additional terms reveals that, regardless of the time step size, they are always dominated by the consistent

mass matrix. Consequently, SUPG cannot be destabilized for small Courant numbers. Numerical results that illustrate

our conclusions are reported.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the steady-state scalar advection–diffusion problem

��r2/þ b � r/ ¼ f in X and / ¼ g on C; ð1Þ
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where X is a bounded open domain in Rn, n ¼ 1; 2; 3 with Lipschitz continuous boundary C, bðxÞ is a given

velocity field with r � b ¼ 0, and �P 0 is a constant diffusion coefficient. When � ¼ 0 boundary conditions

are specified only on the inflow part C� ¼ fx 2 Cjb � n < 0g of C.
If � ¼ 0, or (1) is advection dominated, Galerkin finite element solutions of this problem develop spu-

rious oscillations unless the exact solution happens to be globally smooth. A popular and efficient remedy is

to augment the Galerkin form of (1) by terms that add artificial dissipation but vanish for all sufficiently

smooth solutions. Resulting schemes are called consistently stabilized methods because the order of the

Galerkin approximation is not affected. A consistently stabilized method can be written as

Gð/h;whÞ þ hRð/hÞ;W ðwhÞih ¼ ðf ;whÞ; ð2Þ
where Gð�; �Þ is Galerkin form of (1), Rð/hÞ is the residual of (1), W ðwhÞ is weighting operator, and h�; �ih is a
broken L2 inner product defined with respect to a partition Th of X into finite elements. Of particular

interest in this paper is the streamline upwind weighting operator

WSUPGðwhÞ ¼ b � rwh ð3Þ
and the associated SUPG method [13]. Two other possible choices for the weighting function are the
Galerkin least-squares operator

WGLSðwhÞ ¼ ��r2wh þ b � rwh; ð4Þ

leading to the GLS method of [15], and the multiscale operator

WMSðwhÞ ¼ �ð��r2wh � b � rwhÞ ¼ þ�r2wh þ b � rwh: ð5Þ
This operator is obtained from the variational multiscale method [11] and leads to a method originally

referred to as the adjoint or the unusual stabilized Galerkin; see [5,6]. All three stabilization operators are

widely used for steady state problems where their properties are well-documented and understood; see e.g.

[5–7,12–13,15–16,19].

Consider now the time dependent version of (1)

/t � �r2/þ b � r/ ¼ f in X; / ¼ g on C;

/ð0; xÞ ¼ /0ðxÞ in X;
ð6Þ

where /0 is a given initial data. It is generally agreed that time-space elements are the most natural setting

to develop stabilized methods for (6); see e.g. [19,22] or [21]. Already in 1984, Johnson et al. [19] argue that

the time derivative and the advective term should be combined into a single ‘‘material derivative’’, so that a

natural extension of (3)–(6) is the time-space SUPG weighting operator

WSUPGðwhÞ ¼ Dwh

Dt
¼ _wh þ b � rwh:

More recently, Hughes et al. [11,14] demonstrated that stabilized methods for stationary problems can

be derived via a variational multiscale framework wherein the solution space is split into resolved and

unresolved scales, followed by a defect correction step driven by the residual equation. According to this

viewpoint, which has been extended to time-space in [17], stabilization terms originate from approximation

of the solution operator (the Green’s function) of the defect equation. Therefore, if the problem is time

dependent, consistent application of variational multiscale stabilization calls for time-space elements.
Nevertheless, some of the most effective and popular algorithms for treating time-dependent problems

can be defined through a process wherein the spatial and temporal discretizations are separated. Such

algorithms are especially well adapted to the cylindrical nature of the time-space domain and they reduce

(6) to a system of ordinary differential equations (ODE’s) that can be solved by many of the available time
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integration methods for ODE’s. As a result, these algorithms allow reuse of existing spatial finite element
frameworks and deploy a time dependent solution method without significant development of new soft-

ware. Thus, in practice, for several reasons, implicit, fully discrete formulations in which spatial and

temporal discretizations are effected separately are in much more common use than are coupled time-space

formulations. Additionally, for a large number of computational applications the increased cost in the

number of unknowns for coupled time-space formulations is a significant drawback.

As numerical experiences have borne out, separated, fully discrete algorithms are completely adequate

for transient calculations carried out for moderate to relatively large time steps. However, in settings that

require very fine time resolution, the behavior of such algorithms is not very well understood. Recently,
Harari [8,9] demonstrated that for small time steps the implicit time integration of parabolic problems leads

to a singularly perturbed elliptic problem with an onset of local spurious oscillations in the vicinity of thin

physical layers. Because for small time steps the fully discrete equation can be viewed as discretization of an

elliptic boundary value problem with a dominant reaction term, the remedy suggested in [8] is to apply

adjoint stabilization to this spatial problem. This is analogous to the approach of [5] but differs from the

gradient Galerkin least squares (GGLS) stabilization advocated in [4] and [18].

The main focus of this paper is, however, on another potential source of instability that occurs when

implicit time integration is coupled with spatial stabilization. This situation arises whenever, in the
development of stabilization methods for (6), one foregoes the time-space setting in favor of the more

conventional separated finite difference/finite element approach. After discretization in space one obtains

the semidiscrete equation

ð/h
t ;w

hÞ þ Gð/h;whÞ þ eRð/hÞ;W ðwhÞ
D E

h
¼ ðf ;whÞ; ð7Þ

where wh varies only spatially and eRð/hÞ contains the time derivative /h
t . We can rewrite (7) as

ð/h
t ;w

hÞ þ /h
t ;W ðwhÞ

� �
h
þ Gð/h;whÞ þ Rð/hÞ;W ðwhÞ

� �
h
¼ ðf ;whÞ; ð8Þ

from where it is clear that the fully discrete equation will be a weighted average of a spatially stabilized

Galerkin form for the steady-state problem (1) and a modified mass matrix. The additional ‘‘mass’’ term is

contributed by the time derivative in the residual of (6) and is needed for phase consistency. In a recent

paper, Bradford and Katopodes [1] argue that in conjunction with Crank–Nicolson implicit time inte-

gration this term may have an antidissipative and destabilizing effect for small time steps. Their finite

difference analysis leads to a sufficient stability condition that requires Courant numbers greater than one

and imposes a lower bound on the admissible time steps. In the next section we introduce the fully discrete

equations, review the arguments of [1], repeat some of their numerical experiments, and show that a

straightforward finite element stability analysis will lead to essentially the same sufficient stability condition
for the finite element method. However, our numerical tests fail to excite a true destabilization in the

Petrov–Galerkin method, thus raising questions about the sharpness of the stability estimates. Motivated

by this discrepancy between analysis and numerical experiments we pursue a more careful stability analysis

of this problem.
2. Fully discrete spatially stabilized equations

Let Th denote a uniformly regular partition of X into finite elements K. We consider affine families of

Lagrangian finite element spaces Sh
d where d stands for the polynomial degree. To discretize (6) in space we

use the subspace Sh
d;g of Sh

d constrained by the essential boundary condition in (6). Approximation of / is

sought in the form
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/hðx; tÞ ¼
XN
i¼1

aiðtÞNiðxÞ;

where Ni denotes the standard nodal basis of Sh
d .

Let Sh
d;0 denote the subspace of S

h
d consisting of functions that vanish on C (or C� if � ¼ 0). The spatially

stabilized semidiscrete variational problem is to seek /hðx; tÞ 2 Sh
d;g � T such that

M /h
t ð�; tÞ;w

h� �
þ GS /hð�; tÞ;wh� �

¼ f ð�; tÞ;wh� �
8wh 2 Sh

d;0; t 2 T ; ð9Þ

where

M /h
t ð�; tÞ;w

h� �
¼ /h

t ð�; tÞ;w
h� �

þ
X

K2Th

/h
t ð�; tÞ; s r�r2wh��

þ b � rwh��
0;K

;

is an augmented inertial form, and

GS /hð�; tÞ;wh� �
¼ �r/hð�; tÞ;rwh� �

þ b � r/hð�; tÞ;wh� �
þ
X

K2Th

�
� �M/hð�; tÞ þ b � r/hð�; tÞ; s r�r2wh�

þ b � rwh��
0;K

;

is a spatially stabilized Galerkin form. In this formulation s is the stability parameter, and r takes on the

integer values 0, 1 and )1, corresponding to SUPG, MS and GLS, respectively.

In what follows we restrict attention to SUPG spatial stabilization (r ¼ 0) and use a definition of s
developed in [6]. For the purpose of our study it suffices to consider only advection dominated problems.

Therefore, we assume that �, b and the grid Th are such that

PeK > 3; ð10Þ
where

PeKðxÞ ¼
mkbðxÞkphK

2�
;

is the element Peclet number and m is a parameter whose value depends on the inverse constant 4 forTh. In

this case,

sðxÞ ¼ hK
2kbðxÞkp

ð11Þ

and if Th is regular, one can show that

�sh6 sðxÞ6 ŝh 8K 2 Th ð12Þ
for some positive constants �s and ŝ. In what follows we set p ¼ 2 in (11).

The semidiscrete equation (9) is a system of ODE’s

MatðtÞ þ KaðtÞ ¼ fðtÞ
for the unknown coefficient vector aðtÞ ¼ ða1ðtÞ; . . . ; aN ðtÞÞ. The matrices M and K are generated in the

usual manner from the bilinear forms Mð�; �Þ and GSð�; �Þ, respectively and f is a vector whose components

are L2 products of the source term and the nodal shape functions Ni. This system may be solved by any of

the available ODE solvers. In this paper we use the h-method, also known as the generalized trapezoidal

rule. To discretize in time, the interval ð0; T Þ is subdivided into L subintervals ½tk; tkþ1�, k ¼ 0; . . . ; L with
4 Sharp estimates for the inverse constant and other important constants can be found in [10].
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lengths Dkt. Throughout, fk ¼ f ðtkÞ, and /h
k , ak denote approximations to /hðx; tkÞ and aðtkÞ, respectively.

Given /h
0, /

h
kþ1 for k ¼ 0; 1; . . . ; L� 1 are determined from the equation

1

Dkt
M /h

kþ1

�
� /h

k ;w
h�þ GSð/h

h;k;w
hÞ ¼ fh;k;w

h� �
8wh 2 Sh

d;0; ð13Þ

where 06 h6 1 is a real parameter,

/h
h;k ¼ h/h

kþ1 þ ð1� hÞ/h
k

and likewise for fh;k. The fully discrete problem (13) is a linear system of algebraic equations

M
�

þ hDktK
�
akþ1 ¼ fh;k þ M

�
� ð1� hÞDktK

�
ak: ð14Þ

For h ¼ 0 the scheme (14) is the explicit Euler method, h ¼ 1=2 gives the second-order neutrally stable

Crank–Nicolson method, and h ¼ 1 gives the first-order accurate implicit Euler rule. In what follows it will

be convenient to introduce the bilinear form

Bð/h;wh; q; hÞ ¼ qMð/h;whÞ þ hGSð/h;whÞ; ð15Þ
that is a weighted average of the inertial form and the spatially stabilized Galerkin form. This form

engenders the problem that advances the discrete solution by one time step and will be in the focus of our

stability analysis.

The following result holds true; see [5–7] and [19].

Theorem 1. Assume that r � b ¼ 0, g ¼ 0 on C and �P 0. Then, for the weighting operators in (3)–(5)

GS wh;wh� �
P 1

2
� rwh
�� ��2

0

�
þ s1=2b � rw
�� ��2

0

�
8wh 2 Sh

d;0: ð16Þ
2.1. Preliminary analysis

Consider (6) in 1D and assume that � ¼ 0. The discrete equation (14) resulting from the combination of

SUPG stabilization in space (r ¼ 0) and Crank–Nicolson implicit integration in time (h ¼ 1=2) is viewed in

[1] as a finite difference approximation of the modified equation

/t þ b/x � sðxÞ b2/xx

�
þ b/xt

�
¼ f ; ð17Þ

where the definition

sðxÞ ¼ Mx

jbj
ffiffiffiffiffi
15

p ð18Þ

is employed. For 1D pure advection problems, this choice maximizes the phase accuracy in the semidiscrete

equation [20].

The ‘‘streamline’’ derivative /xx is contributed by the SUPG stabilization while /xt results from the

coupling between /t and the spatial weight function. Assume now that /h is a discontinuous pulse and let

D/ ¼ /h
R � /h

L > 0 denote its amplitude. The additional terms in (17) are estimated in [1] by

/xx � CFL
D/

2ðDxÞ2
and /xt � �CFL

D/
2DxDt

;

respectively, where

CFL ¼ b
Dt
Dx

;
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is the Courant number. The total modification in (17) is then estimated as

sðxÞðb2/xx þ b/xtÞ � sðxÞ b2D/

2ðDxÞ2
ðCFL� 1Þ

and a conclusion is drawn that for CFL < 1 the term /xt will dominate the streamline derivative, causing

destabilization of the Petrov–Galerkin formulation. To avoid the antidissipative effect of this term, it is

suggested that the time step should satisfy the stability condition CFL > 1, or

Dt >
Dx
jbj : ð19Þ

Next, we obtain a formal finite element stability estimate that leads to the same conclusion. This rather

disturbing result ostensibly implies that for stability the CFL number should be greater than 1, however, for

accuracy in following transient advection we desire to have CFL < 1.

Theorem 2. Assume that �, b and Th are such that (10) holds. Then, for r ¼ 0 (SUPG spatial stabilization)

B wh;wh; q; h
� �

P
q
2

wh
�� ��2

0
þ h

�

2
rwh
�� ��2

0

 
þ �sh

2
1

 
� qðŝhÞ2

hð�shÞ

!
b � rwh
�� ��2

0

!
ð20Þ

for all wh 2 Sh
d;0.

Proof. To prove the theorem we estimate the inertial term Mð�; �Þ and use the available bound (16) for the

spatially stabilized component of Bð�; �; q; hÞ. Successive use of Cauchy’s inequality and the e––inequality
give

M wh;wh� �
c ¼ wh;wh� �

þ
X

K2Th

wh; sb � rwh� �
0;K

P wh
�� ��2

0
�
X

K2Th

ŝh wh
�� ��

0;K
b � rwh
�� ��

0;K

P wh
�� ��2

0
� 1

2

X
K2Th

wh
�� ��2

0;K

 
þ ðŝhÞ2 b � rwh

�� ��2
0;K

!

P
1

2
wh
�� ��2

0

�
� ðŝhÞ2 b � rwh

�� ��2
0

�
:

The theorem now easily follows by combining the last bound with (16). h

For a pure advection problem with constant advective velocity b and a uniform mesh, (11) implies 5 that

sðxÞ ¼ h
2kbk2

¼ const and �s ¼ ŝ ¼ 1

2kbk2
:

5 It is possible to extend (18) to multiple dimensions. For example, in [13] the formula s ¼ ðkbnk2hn þ kbgk2hgjÞ=ðkbk
2
2

ffiffiffiffiffi
15

p
Þ is

proposed for quadrilateral elements. Using this formula in lieu of (11) would have changed �s and ŝ to

1

kbk2
ffiffiffiffiffi
15

p and

ffiffiffi
2

p

kbk2
ffiffiffiffiffi
15

p ;

respectively, which is not essential to our discussion.
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In this case (20) simplifies to

B wh;wh; q; h
� �

P
q
2

wh
�� ��2

0
þ s

h
2

1
�

� qs
h

�
b � rwh
�� ��2

0
:

For Crank–Nicolson h ¼ 1=2, and since q ¼ 1=Mt,

1� qs
h

¼ 1� h
Dtjbj ¼

1

CFL
ðCFL� 1Þ:

As a result, the streamline coefficient will be positive if CFL > 1, i.e., we have obtained the same stability

condition as in [1]. Let us now check this stability condition against some numerical experiments.

Following [1] we set b ¼ 0:001 m s�1, Dx ¼ 0:1, Dt ¼ 1 s, which makes CFL equal to 0.01. Then we

compute solutions of the fully discrete equations with and without SUPG stabilization for different final

times using Crank–Nicolson and two different sets of initial and boundary data. The first set

/0ðxÞ ¼ 0 and g ¼ gð0Þ ¼ 100; ð21Þ
is the same as the one used in [1]. However, for the second set we change the initial condition to a square

pulse and set homogeneous data on the inflow:

/0ðxÞ ¼
100 if 0:256 x6 0:5
0 otherwise

	
and g ¼ gð0Þ ¼ 0: ð22Þ

Plots of the Galerkin and SUPG solutions at t ¼ 100 s and t ¼ 500 s are shown in Figs. 1 and 2.

The left plot in Fig. 1 shows that at early times SUPG solution tends to develop stronger undershoot at

the base of the advancing discontinuity. The right plot shows that in later times the undershoots of SUPG

and Galerkin solutions are about the same. Nevertheless, in both cases the SUPG solution does not appear
to be substantially better than the Galerkin one, which lends some credence to the possibility that the extra

mass term is destabilizing.

However, the second set of plots presented in Fig. 2, shows that such a conclusion is unfounded and that

each method behaves as advertised: the Galerkin solution quickly develops global spurious oscillations,

while SUPG continues to successfully suppress these oscillations, even for very small Courant numbers.

To reconcile the stability criterion (19) with the numerical results shown in Figs. 1 and 2, it is important

to recognize that the former is only a sufficient but not a necessary condition for stability. As such, (19) does

imply stability when satisfied, but it does not imply instability when not satisfied. In fact, a sufficient
condition may turn out to be too pessimistic. Let us show that this is indeed the case for the examples

considered so far. The next Theorem sharpens the stability bound (20) for problems where s can be set to

the same mesh dependent constant throughout the domain X.
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Fig. 1. Galerkin (dashed) vs. SUPG (solid) solutions for (21).
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Fig. 2. Galerkin (dashed) vs. SUPG (solid) solutions for (22).
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Theorem 3. Assume that �, b and Th are such that

sðxÞ ¼ dh 8x 2 X

for some positive constant d. Then, for r ¼ 0 (SUPG spatial stabilization)

B wh;wh; q; h
� �

P
q
2

wh
�� ��2

0
þ h

�

2
rwh
�� ��2

0

�
þ dh b � rwh

�� ��2
0

�
ð23Þ

for all wh 2 Sh
d;0.

Proof. As in the proof of Theorem 2 we start by bounding the inertial term Mð�; �Þ. The difference is that

now s can be factored out and all element integrals can be collected in a single integral over X:

M wh;wh� �
¼ wh;wh� �

þ
X

K2Th

wh; sb � rwh� �
0;K

¼ wh
�� ��2

0
þ s wh; b � rwh� �

0;X
:

Consider first the case when � > 0. Because b is solenoidal and wh vanishes on C, integration by parts

shows that

2

Z
X
wh b � rwh� �

dX ¼ �
Z
X

wh� �2r � bdXþ
Z
C

wh� �2
n � bdC ¼ 0:

If � ¼ 0 then n � bP 0 on Cþ and

2

Z
X
wh b � rwh� �

dX ¼
Z
Cþ

wh� �2
n � bdCP 0:

In either case,

M wh;wh� �
P wh
�� ��2

0
;

which in combination with (16) proves the theorem. h

Theorem 3 leads to a sharper stability bound because it accounts for the fact that for constant s the

additional ‘‘mass’’ term is either skew or gives a non-negative contribution regardless of the time step.

Therefore, this term cannot be destabilizing because it will either vanish or add, rather than take away

stability!

Such a conclusion does not contradict the more cautious stability condition (20), because, again, vio-

lation of (20) does not imply instability. However, (20) is too conservative to be of any predictive value for

the model problems used in our numerical experiments. The lack of sharpness in this condition is caused by
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the early use of the Cauchy’s inequality in the proof of (20). This forces an estimate of the extra mass term
by the streamline derivative and leads to the subsequent subtraction of beneficial streamline diffusion.

Consequently, the proof cannot take advantage of the fact that s is constant and that element integrals can

be combined to form a skew term.

While conclusions of Theorem 3 are valid in a specific setting, they indicate a strong possibility that the

sufficient stability condition (19) inferred from Theorem 2 may be unduly restrictive even for a variable s. In
the next section we develop sharp upper bounds for the additional mass term and show that this is indeed

the case. Using these bounds we prove stability of SUPG finite elements for arbitrary CFL numbers.
3. Stability analysis of fully discrete equations

The bilinear form Bð�; �; q; hÞ serves to define the algebraic problem that advances the solution to the next

time level. The main goal of this section is to determine whether or not the additional terms engendered by

the coupling between the spatial weight function and the time dependent residual can destabilize the time

stepping process by destroying the coercivity of Bð�; �; q; hÞ. To avoid unnecessary technical details, in

addition to (10) we will assume that sðxÞ is constant on each element, that is, for all K 2 Th

sðxÞjK ¼ sðKÞ 8x 2 K:

In what follows we will consider general advective–diffusive problems and uniformly regular (but not

necessarily uniform) partitions Th. The key to proving sharp stability conditions will be to obtain tight

bounds for the additional ‘‘mass’’ term. For this purpose we begin with a technical lemma that estimates

this term for a variable s.

Lemma 1. Assume that �, b and Th are such that (10) holds and that r � b ¼ 0 and kbk1;X 6 b for some
positive constant b. ThenX

K2Th

sðKÞ wh; b � rwh� �
0;K

6 hC wh
�� ��2

0;X
; ð24Þ

where C is a positive constant that depends on the diameter of X, the polynomial degree d, the values of b, �s and
ŝ, but is independent of h.

Proof. We give a detailed proof in two space dimensions. The proof in three dimensions follows by minor

modifications. Let K 2 Th be an arbitrary element. Because r � b ¼ 0 integration by parts givesZ
K

wh b � rwh� �
dx ¼ 1

2

Z
oK

wh� �2
n � bdS:

On each element wh is a polynomial function of degree at most d, and so, its square is a polynomial of
degree at most 2d

wh� �2 ¼ Xndof
i¼0

wiNi

 !2

¼ a00 þ a10xþ a01y þ a11xy þ � � � þ addxdyd ;

with coefficients

aij ¼
Xd
k;l¼1

wkiwlj ;

that are linear combinations of the products of the nodal coefficients of wh. Because b is divergence free,
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Z
oK

n � bdS ¼
Z
K

r � bdx ¼ 0: ð25Þ

As a result, after inserting the polynomial expression for wh� �2
into the boundary integral, contribution

from the constant term a00 will vanish so thatZ
oK

wh� �2
n � bdS ¼

Z
oK

ða10xþ a01y þ � � �Þn � bdS:

Let xP ¼ ðxP ; yP Þ denote one of the vertices of K. Because Th is assumed to be uniformly regular,

changing variables according to

x ¼ x̂þ xP and y ¼ ŷ þ yP ;

takes K inside a box ½�Ch;Ch�2, where C is a constant that does not depend on the particular element K.

Therefore,Z
oK

ða10xþ a01y þ � � �Þn � bdS ¼
Z
oK̂

ða10ðx̂þ xP Þ þ a01ðŷ þ yP Þ þ � � �Þn � bdbS
¼
Z
oK̂

ða10xP þ a01yP þ � � �Þn � bdbS þ
Z
oK̂

ða10x̂þ a01ŷ þ � � �Þn � bdbS
¼
Z
oK̂

ðâ10x̂þ â01ŷ þ � � �Þn � bdbS ;
where we have used (25) and that a10xP þ a01yP þ � � � is a constant. The new coefficients

âij ¼
Xd
k;l¼1

lijðxP ; dÞakilj

are linear combinations of the old coefficients akl with factors lijðxP ; dÞ that depend only on the polynomial

degree and the diameter of X. This gives the intermediate boundZ
K

wh b � rwh� �
dx6

1

2
max jâijjkbk1;K

Z
oK̂

ðjx̂j þ jŷj þ � � �ÞdbS : ð26Þ

To estimate the terms on the right hand side of (26) we first note that

max
i;j

jâijj6CðX; dÞmax
k;l

jaklj

and that

max
k;l

jaklj6CðdÞmax
i;j

jwiwjj:

Because for nodal finite element bases

max
06 i6Ndof

jwij6 wh
�� ��

1;K
;

it is not hard to see that

max
i;j

jâijj6CðX; dÞ wh
�� ��2

1;K
;

where CðX; dÞ depends only on the diameter of X and the polynomial degree d of the finite element space,

but not on mesh parameter h. Because the length of ocK is of order OðhÞ
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Z
oK̂

jx̂jdbS ¼
Z
oK̂

jŷjdbS ¼ Oðh2Þ:

Therefore, the line integral on the right hand side in (26) contributes terms of order Oðh2Þ and higher. To

complete the proof we recall the inverse inequality; see [3,10],

wh
�� ��

1;K
6CIh�n=2 wh

�� ��
0;K

:

Combining all estimates together and setting n ¼ 2 givesZ
K

whðb � rwhÞdx6 1

2
CðX; dÞh2 wh

�� ��2
1;K

kbk1;K 6
1

2
CðX; dÞ wh

�� ��2
0;K

kbk1;K:

The Lemma follows by observing that sðKÞ ¼ OðhÞ. h

This result shows that for solenoidal advection fields the additional mass term contributed by the

coupling between the SUPG operator and the finite difference in time can be completely absorbed in the

consistent mass matrix. In particular, it will never dominate the streamline diffusion term and the amount

of stabilizing streamline diffusion in Bð�; �; q; hÞ will not decrease when the time step is reduced. These
observations are formalized in the next theorem.

Theorem 4. Under the same assumptions as in Lemma 1 and for r ¼ 0 (SUPG spatial stabilization)

B wh;wh; q; h
� �

P
q
2
ð1� C1hÞ wh

�� ��2
0
þ h

�

2
rwh
�� ��2

0

�
þ C2h b � rwh

�� ��2
0

�
ð27Þ

for all wh 2 Sh
d;0.

Proof. Follows immediately from Lemma 1 and (16). h

The main conclusion from this theorem is that streamline upwinding in space can be safely coupled with

implicit time stepping. Nevertheless, one should be aware of the fact that reduction in the time step will

change the balance between the mass and the stiffness matrices in the discrete equation. For very small time

steps Bð�; �; q; hÞ will correspond to a discretization of a singularly perturbed problem and the onset of

spurious oscillations in the vicinity of thin layers may be expected; see [9].
4. Numerical results

In this section we test how well the stability theory developed in Theorem 4 matches with computation.

Our main focus is on the behavior of the fully discrete equations for small time steps.

According to Theorem 4 application of SUPG stabilization in space leads to a harmless additional term

that can be absorbed in the consistent mass matrix for any Courant number. Therefore, this theorem

guarantees computational stability for small time steps with, perhaps, the exception of small localized

oscillations in the vicinity of sharp layers. We remind the reader that these are caused by the singularly
perturbed nature of the equations as Dt 7!0.

To test the conclusion of Theorem 4 we compare Galerkin and SUPG solutions of (6) in the pure

advection limit, 6 i.e., for � ¼ 0. Several different time steps are used to provide a representative range of
6 We note that in this case adjoint and GLS weighting operators reduce to SUPG stabilization.



Fig. 3. Non-uniform meshes: mesh (A)––left, mesh (B)––right.

2312 P.B. Bochev et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 2301–2323
CFL values for each example problem. In all experiments X is the unit square, Th is a uniform triangu-

lation of X into triangles and Sh
d is the standard Lagrangian space consisting of C0 piecewise polynomial

functions whose restrictions to each element K of Th are quadratic polynomials (d ¼ 2).

We begin by solving all examples on a uniform mesh obtained by subdividing X into 400 squares and

then drawing the diagonal in each one of them. This gives a partition containing 800 triangles with a mesh

parameter h ¼ 0:05, and a finite element space Sh
2 with 1681 degrees of freedom. The space Sh

2;0 is defined by

setting all nodal degrees of freedom that belong to C� to zero. All matrices and right hand sides are
assembled using a quintic (7 point) quadrature rule [2, p. 343].

Then we repeat the experiments using two different non-uniform meshes shown in Fig. 3 and having the

same number of elements. Mesh (A) is a smooth deformation of the original uniform mesh. Mesh (B) is

obtained by a random perturbation of the nodes in the uniform mesh.

Results from calculations on uniform grids are plotted by using the nodal values of the finite element

solution. For non-uniform grids results are plotted by first generating the values of the finite element

solution on a 41 · 41 uniform interpolation mesh. Thus, in all plots the axes are labeled by the node

number, either with respect to the original uniform grid, or with respect to the uniform grid used to
interpolate the finite element solution.

Example 1. The first model problem used in the numerical study is (6) with

b1 ¼
1:0

0:7002075


 �
; g ¼ 0

and

/0ðxÞ ¼
1 if jx� xCj6 0:2
0 otherwise

	
; xC ¼ 0:25

0:25


 �
: ð28Þ

The choice of b1 and the initial and boundary data corresponds to an advection of a cylinder of unit

height, radius 0.2, and positioned at xC in a direction skew to the mesh orientation. The homogeneous

boundary data is specified on the inflow portion of the boundary

C� ¼ fx 2 X; x ¼ 0g [ fx 2 X; y ¼ 0g:
Example 2. The second model problem is (6) with the variable solenoidal advective field

b2 ¼
y
x


 �
þ 1:0

0:7002075


 �
and the same initial and boundary data as in (28). The inflow boundary remains the same as in Example 1.
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Fig. 4. Example 1. Galerkin (left) and SUPG (right) solutions at t ¼ 0:5 computed with Dt ¼ 0:1, Dt ¼ 0:01, Dt ¼ 0:001, and

Dt ¼ 0:0005.
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Fig. 5. Example 1. Slices of Galerkin (dashed) and SUPG (solid) solutions at y ¼ 0:6 (left), x ¼ 0:75 (right) and t ¼ 0:5 computed with

Dt ¼ 0:1, Dt ¼ 0:01, Dt ¼ 0:001, and Dt ¼ 0:0005.
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Fig. 6. Example 2. Galerkin (left) and SUPG (right) solutions at t ¼ 0:5 computed with Dt ¼ 0:1, Dt ¼ 0:01, Dt ¼ 0:001, and

Dt ¼ 0:0005.
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Fig. 7. Example 2. Slices of Galerkin (dashed) and SUPG (solid) solutions at y ¼ 0:85 (left), x ¼ 1:0 (right) and t ¼ 0:5 computed with

Dt ¼ 0:1, Dt ¼ 0:01, Dt ¼ 0:001, and Dt ¼ 0:0005.
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Fig. 8. Example 3. Galerkin (left) and SUPG (right) solutions at t ¼ 0:5 computed with Dt ¼ 0:1, Dt ¼ 0:01, Dt ¼ 0:001, and

Dt ¼ 0:0005.

P.B. Bochev et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 2301–2323 2317



0 10 20 30 40
t=0.5; y=0

-0.25

0

0.25

0.5

0.75

1

1.25

dt=0.1

0 10 20 30 40
t=0.5; y=0.25

-0.25

0

0.25

0.5

0.75

1

1.25

dt=0.1

0 10 20 30 40
t=0.5; y=0

-0.25

0

0.25

0.5

0.75

1

1.25

dt=0.01

0 10 20 30 40
t=0.5; y=0.25

-0.25

0

0.25

0.5

0.75

1

1.25

dt=0.01

0 10 20 30 40
t=0.5; y=0

-0.25

0

0.25

0.5

0.75

1

1.25

dt=0.001

0 10 20 30 40
t=0.5; y=0.25

-0.25

0

0.25

0.5

0.75

1

1.25

dt=0.001

0 10 20 30 40
t=0.5; y=0

-0.25

0

0.25

0.5

0.75

1

1.25

dt=0.0005

0 10 20 30 40
t=0.5; y=0.25

-0.25

0

0.25

0.5

0.75

1

1.25

dt=0.0005

Fig. 9. Example 3. Slices of Galerkin (dashed) and SUPG (solid) solutions at y ¼ 0 (left), y ¼ 0:25 (right) and t ¼ 0:5 computed with

Dt ¼ 0:1, Dt ¼ 0:01, Dt ¼ 0:001, and Dt ¼ 0:0005.
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Table 1

Example 1. H 1 seminorm of finite element solutions at t ¼ 0:5

Dt 0.1 0.01 0.001 0.0005

CFL 2.442 0.2442 0.02442 0.0122

Method H 1 seminorm

Galerkin 0.8357E+01 0.8278E+01 0.8298E+01 0.8300E+01

SUPG 0.6390E+01 0.4715E+01 0.4684E+01 0.4684E+01

Table 2

Example 2. H 1 seminorm of finite element solutions at t ¼ 0:5

Dt 0.1 0.01 0.001 0.0005

CFLmax 6.7204 0.67204 0.06720 0.0336

Method H 1 seminorm

Galerkin 0.8868E+01 0.8303E+01 0.8073E+01 0.8069E+01

SUPG 0.6943E+01 0.3720E+01 0.3640E+01 0.3639E+01

Table 3

Example 3. H 1 seminorm of finite element solutions at t ¼ 0:5

Dt 0.1 0.01 0.001 0.0005

CFLmax 22.361 2.2361 0.22361 0.1118

Method H 1 seminorm

Galerkin 0.1030E+02 0.9253E+01 0.9204E+01 0.9205E+01

SUPG 0.7207E+01 0.6290E+01 0.6289E+01 0.6289E+01
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Example 3. The last model problem in our numerical study is (6) with

b3 ¼ 10
y

0:5� x


 �
; /0ðxÞ ¼ 0

and inhomogeneous boundary data

g ¼
0 if y ¼ 0 and 06 x < 0:125 or 0:375 < x6 0:5;
1 if y ¼ 0 and 0:1256 x6 0:375;
0 if x ¼ 0 or y ¼ 1 and 0:56 x6 1:

8<:
This example corresponds to a circular advection of an initial square profile. Note that in this case

C� ¼ fx 2 X; x ¼ 0g [ fx 2 X; y ¼ 1 and 0:56 x6 1g [ fx 2 X; y ¼ 0 and 06 x6 0:5g:

The three example problems are discretized in time using the neutrally stable Crank–Nicolson method

(h ¼ 0:5Þ and a uniform time step Dt. The inhomogeneous initial condition in Example 3 is approximated

by its nodal interpolant out of Sh
2 The fully discrete equation (13) is solved for different time steps using a

direct solver from the LAPACK library. In particular, we choose D1t ¼ 0:1, D2t ¼ 0:01, D3t ¼ 0:001 and

D4t ¼ 0:0005, and integrate in time until t ¼ 0:5. The number of time steps required in each case is 5, 50, 500

and 1000, respectively. The choice of time steps ensures that CFL numbers for all three examples include
values above and below one.



2320 P.B. Bochev et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 2301–2323
Figs. 4, 6 and 8 show contours of the three example solutions at t ¼ 0:5 computed using the four different
time steps. Each refinement of the time step leads to a reduction in the CFL number. From these plots it is

clear that stability of the SUPG solution does not suffer when the time step is refined. This conclusion is

also confirmed by plots of solution profiles along selected x and y coordinate values, presented in Figs. 5, 7

and 9. In all cases we see that the first two time refinement steps improve the accuracy of SUPG solutions,

while the last refinement does not lead to a appreciable change in these solutions, i.e., they have converged

in time.

The absence of destabilization in the SUPG solutions, as the time step is being refined, can also be

verified by inspecting their H 1 seminorm in Tables 1–3. The top two rows in these tables show the time step
and the associated CFL number. (For variable advection fields the maximal CFL number is reported.) In
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Fig. 10. Snapshots of SUPG solutions for example problems 1 (top), 2 (middle) and 3 (bottom) at t ¼ 0:05, t ¼ 0:25 and t ¼ 0:5 and

non-uniform mesh (A).
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all three example cases the H 1 seminorm, which measures the amount of oscillation in the solution, does not
change as the time step is reduced from D3t to the final value D4t.

When the uniform grid was substituted by either one of the two non-uniform grids shown in Fig. 3,

Galerkin and SUPG solutions did not change appreciably in their behavior. For this reason, below we limit

ourselves to just a few snapshots of the finite element solutions on the non-uniform meshes computed using

the finest time step D4t. Fig. 10 shows solutions of the three example problems at three different instants in

time computed on mesh (A). Fig. 11 shows the same time snapshots but computed using the randomly

perturbed mesh (B). In both cases we see that SUPG stabilization performs an exemplary job in suppressing

the global spurious oscillations, and that no destabilization is present in the solutions. The absence of
destabilization on the two non-uniform grids can also be inferred from the data in Table 4. We see that H 1

seminorms of solutions computed on the non-uniform grids remain bounded by the seminorm values on the

uniform grid.
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Fig. 11. Snapshots of SUPG solutions for example problems 1 (top), 2 (middle) and 3 (bottom) at t ¼ 0:05, t ¼ 0:25 and t ¼ 0:5 and

non-uniform mesh (B).



Table 4

H 1 seminorms of finite element solutions at t ¼ 0:5 computed on different meshes and Dt ¼ 0:0005

Mesh Example 1 Example 2 Example 3

Uniform 0.4684E+01 0.3639E+01 0.6289E+01

Mesh (A) 0.4157E+01 0.3159E+01 0.5722E+01

Mesh (B) 0.4609E+01 0.3434E+01 0.6026E+01
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In summary, our results clearly show the expected pollution by global spurious oscillation in the

Galerkin solution and their successful suppression by the SUPG stabilization for all time steps considered

in this study. Regarding the small localized oscillations in SUPG solutions we recall that SUPG is not
monotonicity preserving, and that such oscillations can be expected in the vicinity of discontinuities and

internal layers. Therefore, their presence cannot serve as an indication of a destabilization. Moreover, as the

data in Tables 1–3 show, smaller time steps do not lead to an increase in the H 1 seminorm of the solutions,

i.e., these oscillations remain bounded for small time steps. An application of a discontinuity capturing

operator [16] is recommended for a further suppression of these oscillations.
5. Conclusions

We have considered fully discrete problems obtained by coupling implicit integration in time with spatial

advective stabilization. Such formulations serve as an alternative to space-time discretizations and offer

many advantages in the algorithmic development.

Our results show that some concerns raised about the possible destabilizing effect of Petrov–Galerkin

upwinding in that context, and for small time steps, are unfounded. In fact, application of the streamline

upwind stabilization operator in conjunction with implicit time integration can be considered as a safe

separated discretization that does not lead to any additional stability restrictions on the Peclet or Courant
numbers.

Galerkin least squares and multiscale (adjoint) stabilization cases will be a subject of a forthcoming

paper.

In closing, we stress upon the fact that the numerical results presented in this paper are in excellent

agreement with the theory and demonstrate that our analytical results are sharp. These results also hold

with minor modifications for fully discrete formulation of the advective–diffusive–reactive model. Our

conclusions about stability of fully discrete equations are also consistent with an earlier Von-Neumann

stability analysis of the semidiscrete SUPG equation carried out in [12] for uniform grids.
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