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Abstract. A quadrature-rule type approximation of the quasi-continuum method for atomistic
mechanics is presented. Simple analysis and computational experiments are presented that illustrate
that the new method has, for the same accuracy, lower complexity compared to not only the quasi-
continuum method, but also to cluster-type approximations of that method. A discussion about
some implementation issues connected to the new method is also provided.
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1. Introduction. Atomistic simulations have become a prominent area of re-
search, since many practical problems involve microscopic features such as disloca-
tion and fracture phenomena [12, 20], nanoindentations [14, 17], atomic friction, and
so on [14,18,21,26]. Directly solving the whole system (molecular statics) provides an
accurate solution for the analysis of microscopic features. However, the large number
of atomistic particles in a material often makes it impossible to directly simulate the
whole system. In addition, in many practical problems, defects occur only in some
local and small regions where full atomistic resolution is needed. All these facts make
it important to develop approximation or reduction methods for the original huge
problem. The quasi-continuum (QC) method is one of the most successful multiscale
techniques for reducing the complexity of large atomistic models. It combines contin-
uum and atomistic descriptions in a rather seamless way, thus allowing for an efficient
description of the system with accuracy comparable to that of the full atomistic model
but at a much smaller cost.

Recently, many implementations, enhancements, extensions, and applications of
the QC method are addressed in the literature [1, 2, 3, 5, 6, 7, 8, 9, 10, 13, 16, 18, 19, 22,
23, 25]. Analysis of the QC method and its variants can be found in, e.g., [2, 5, 7, 9,
10, 13, 16]. Although it has fewer degrees of freedom compared to the full atomistic
model, the original QC method, in its raw form, still involves calculations over the
full atomistic lattices so that the work needed to obtain a solution is still dependent
on the total number of particles [13, 24, 25]. To avoid this, many studies are devoted
to approximations to the QC method that result in a reduction in the computational
complexity. The simplest approximate rule is the node-based summation rule [13,24].
Although it reduces the computational cost of the QC method, in some cases it suffers
from a rank-deficiency problem due to an insufficient number of sampling points. To
overcome this problem, a cluster summation method (QC-CS), also known as the
nonlocal QC method, was proposed in [13,18]. If the QC-CS method is refined down
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572 MAX GUNZBURGER AND YANZHI ZHANG

to the atomic scale, it can exactly capture details of microscopic behavior. However,
the QC-CS method requires the mapping of a cluster of atoms to their deformed
configuration at every representative particle, which causes the calculation to depend
on the cluster size. Thus, in practice, an optimal cluster size has to be determined to
ensure the balance between computational complexity and numerical accuracy.

The aim of this paper is to present a cluster-independent approximation, namely,
a quadrature-rule (QC-QR) type approximation, to the QC method. The paper is
organized as follows. In section 2, we review the full atomistic and the QC methods
for molecular statics and introduce the notations used in the following sections. In
section 3, we present a detailed description of the QC-QR method and estimate its
errors for a monoatomic chain. Some one-dimensional (1D) numerical experiments
are provided in section 4 to test the QC-QR method and compare its performance to
the QC and QC-CS methods. Finally, in section 5, we provide a brief summary and
discussion of follow-up work.

2. QC method.

2.1. Molecular statics. We start with a brief review of the molecular statics
model and notations used in the following sections. Let N denote the number of
particles in a crystal and1 N = {1, . . . , N} denote the set of particle labels. In the
reference configuration, these N particles occupy a subset of a simple d-dimensional
(d = 1, 2, or 3) Bravais lattice. For α ∈ N , let Xα, xα ∈ R

d represent the (distinct)
positions of the particle α in the reference and in a deformed configuration, respec-
tively. We denote by Φa the potential energy of a configuration of particles due to
the interaction between particles, and assume that Φa is a function of the positions
of all particles, i.e., Φa = Φa({xα}α∈N ). In addition, the particles are subject to an
external force field which we assume to be conservative and therefore derivable from
an external potential function Φe({xα}α∈N ). Then, the total potential energy Φ is
given by

(2.1) Φ({xα}α∈N ) = Φa + Φe.

We allow for the positions of some of the particles to be specified so that if Nf ⊂ N
denotes the index set of the particles whose positions are specified, then

(2.2) xα = qα for α ∈ Nf

for given position vectors qα, α ∈ Nf . Let Na = N\Nf so that Na is the set of
indices of the remaining particles, i.e., those particles whose positions are not specified.
Stable equilibrium positions of those particles are determined by minimizing the total
energy,2 subject to (2.2), i.e., by solving the problem

(2.3) min
xα, α∈Na

Φ({xβ}β∈N ) subject to (2.2)

or, equivalently,3

(2.4)
∂Φ

∂xα
({xβ}β∈N ) = 0 for α ∈ Na and xα = qα for α ∈ Nf .

1In this paper, calligraphic letters, e.g., N , represent index sets and the corresponding Roman
letter, e.g., N , defines its cardinality.

2In general, the aim is not simply to determine the absolute minimizer of Φ({xβ}β∈N ), but
rather the set of metastable configurations of the crystal, which is physically more relevant.

3We use the notation ∂Φ/∂y to denote the d-vector ∇yΦ having components ∂Φ/∂yk, k =
1, . . . , d.
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A QUADRATURE-RULE APPROXIMATION TO THE QC METHOD 573

After substituting the constraints imposed by (2.2), we see that (2.4) is a system of
dNa equations in the dNa unknowns xα, α ∈ Na.

2.2. QC approximation. The essence of the QC method is to replace (2.3)
by a constrained minimization of Φ({xβ}β∈N ) over a suitably chosen subset, i.e.,

the set of the representative particles [24, 25]. Let Ñr ⊂ N denote the index set

of the representative particles, and for j ∈ Ñr, let Xj denote the distinct position
of the representative particle j in the reference configuration. The selection of the
representative particles is based on the local variation of the fields and was addressed in
detail in [13]. Note that the representative particles are chosen from among the set of
all particles, so it may be the case that some of the representative particles are chosen
from among the particles whose positions are specified. In practice, all particles whose
positions are fixed through (2.2) are chosen to be among the representative particles

so that we have Nf ⊂ Ñr. Then, denote by Nr = Ñr\Nf the set of indices of the
remaining representative particles, i.e., those representative particles whose positions
are not specified by (2.2).

Let Th = {Δt}Tt=1 denote a triangulation (into simplices) having the represen-
tative particles serving as vertices. Note that this triangulation is constructed using
the particle positions in the reference configuration. We let Th,j = {Δt | Xj ∈ Δt}
denote the set of simplices which have the point Xj as a vertex. Let {ψh

j (X)}j∈ ˜Nr

denote a basis for the space of continuous, piecewise linear polynomials corresponding
to the triangulation Th. In particular, we choose this basis so that

ψh
j (Xi) =

{
1 i = j
0 i �= j

for i, j ∈ Ñr.

In this case, we have that

ψh
j (X) = 0 if X ∈ Δt but Δt �∈ Th,j

so that the support of the basis function ψh
j (X) is limited to those simplices having

Xj as a vertex, i.e., to Th,j.
Based on the Cauchy–Born hypothesis, we assume that the position xα, α ∈ Na,

of the particles which are not fixed by (2.2) can be approximately determined from
the (approximate) positions of the representative particles through interpolation, i.e.,
we have that

(2.5) xh
α =

∑
j∈ ˜Nr

xh
jψ

h
j (Xα) ≈ xα for α ∈ Na,

where xh
j denotes the (approximate) position of the representative particle j. Note

that (2.5) holds for all particles, including representative particles. Substituting (2.5)
into (2.1), we obtain the approximation

(2.6) Φh
(
{xh

j }j∈ ˜Nr

)
= Φ

(
{xh

α}α∈N
)
≈ Φ ({xα}α∈N )

to the total potential energy. Note that because of (2.5), Φh is indeed a function
of only the (approximate) positions {xh

j }j∈ ˜Nr
of the representative particles. Thus,

the only degrees of freedom appearing in Φh are the approximate positions of the
representative particles whose positions are not determined by (2.2). These degrees
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of freedom are determined by solving the problem

(2.7) min
xh
j , j∈Nr

Φh
(
{xh

i }i∈ ˜Nr

)
subject to (2.2)

or, equivalently,⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Φh

∂xh
j

(
{xh

i }i∈ ˜Nr

)
=

∑
α∈Na

∂Φ

∂xh
α

(
{xh

β}β∈N
)
ψh
j (Xα) = 0 for j ∈ Nr,

where xh
α = qα for α ∈ Nf and xh

α =
∑
j∈ ˜Nr

xh
j ψ

h
j (Xα) for α ∈ Na.

(2.8)

We see that, after substituting the constraints imposed by (2.2) and (2.5), (2.8) is
a system of dNr equations in the dNr unknowns xh

j , j ∈ Nr. In practice, we want
to have that Nr � Na so that the QC system (2.8) is much smaller than the exact
molecular statics system (2.4).4

Let

Nj =
{
α ∈ Na | Xα ∈ supp

(
ψh
j (X)

)}
,

i.e., Nj denotes the set of indices of the particles that, on the one hand, are located
(in the reference configuration) within the support of the basis function ψh

j (·) and, on
the other hand, do not have their positions fixed by (2.2). Then, since

ψh
j (Xα) = 0 for α ∈ Na\Nj,

we have that (2.8) reduces to⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
α∈Nj

∂Φ

∂xh
α

(
{xh

β}β∈N
)
ψh
j (Xα) = 0 for j ∈ Nr,

where xh
α = qα for α ∈ Nf and xh

α =
∑
j∈ ˜Nr

xh
j ψ

h
j (Xα) for α ∈ Na.

(2.9)

Even though (2.9) is a system of only dNr equations in a like number of unknowns,
the work involved in determining its solution still depends on N , the total number of
particles. There are two causes that contribute to this work count:

1. The jth equation in (2.9) involves a sum over the particles located in the
support of the basis function ψh

j (X). Collectively, the number of summands
that have to be evaluated in the system (2.9) is of the order O(N).

2. Each summand itself is a function of N variables so that the evaluation of
each summand requires work that depends on N .

4Note that we substituted the QC assumption (2.5) into the potential energy function to obtain
(2.6) before we minimized the approximate potential energy in (2.7). We could have instead substi-
tuted (2.5) into (2.4), i.e., after the minimization of the exact potential energy in (2.3). Of course,
the latter approach would lead to an overdetermined system of dNa equations in dNr unknowns. One
would then be tempted to discard those equations corresponding to the particles whose positions are
determined by the constraint (2.5), thus obtaining the system of dNr equations in dNr unknowns
∂Φ
∂xh

j

(
xh
1 , . . . ,x

h
N

)
= 0 for j ∈ Nr. This set of equations does not properly account for the energy of

the configuration; clearly, this system is different from the system (2.8).
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Of course, we would like to further process the system (2.9) so as to obtain a system
that can be solved in work depending on Nr but not on N .

On the other hand, even if the approximate positions {xh
j }j∈Nr of the represen-

tative particles are known, the evaluation of the corresponding approximate energy
Φh({xh

j }j∈ ˜Nr
) = Φ({xh

α}α∈N ) still requires work of complexity O(N2), since it is a
function of the positions of all particles.

2.3. Pairwise potentials and the corresponding forces. We assume that
the potential energy Φa due to the interaction between particles is given as a sum of
pairwise interaction potentials and that each of them depends only on the position of
the corresponding pair of particles, i.e.,

(2.10) Φa({xα}α∈N ) =
1

2

∑
α∈N

∑
β∈N ,β �=α

Φa
α,β(xα,xβ),

where Φa
α,β(xα,xβ) = Φa

β,α(xβ ,xα) denotes the potential energy due to the interaction
between particle α ∈ N and particle β ∈ N so that

∂Φa

∂xα
({xα}α∈N ) =

∑
β∈N ,β �=α

∂Φa
α,β

∂xα
(xα,xβ).

If we denote the force acting on particle α due to the interaction with particle β by

faα,β(xα,xβ) = −
∂Φa

α,β

∂xα
(xα,xβ),

we then have

(2.11)
∂Φa

∂xα
({xα}α∈N ) = −

∑
β∈N ,β �=α

faα,β(xα,xβ).

We also assume that the potential energy Φe due to externally applied forces can
be expressed as a sum of the potential energies of the forces acting on each particle
and that the latter depends only on the position of the corresponding particle, i.e.,
we assume that

(2.12) Φe({xα}α∈N ) =
∑
α∈N

Φe
α(xα),

where Φe
α(xα) denotes the potential energy on particle α ∈ N due to the external

forces. We then have

(2.13)
∂Φe

∂xα
({xα}α∈N ) =

∂Φe
α(xα)

∂xα
= −feα(xα)

with feα(xα) denoting the external force acting on particle α ∈ N .
Combining (2.9), (2.11), and (2.13) results in the force equilibrium equations

(2.14)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
α∈Nj

ψh
j (Xα)

⎛⎝ ∑
β∈N ,β �=α

faα,β(x
h
α,x

h
β)

⎞⎠+
∑
α∈Nj

ψh
j (Xα)f

e
α(x

h
α) = 0 for j ∈ Nr,

where xh
α = qα for α ∈ Nf and xh

α =
∑
j∈ ˜Nr

xh
j ψ

h
j (Xα) for α ∈ Na.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

576 MAX GUNZBURGER AND YANZHI ZHANG

It is now even more clear that the work involved in assembling the problem (2.9)
depends on N . In (2.14), the inside summation over β ∈ N involves a summation
over N − 1 particles. Moreover, for each j ∈ Nr, the summations over α ∈ Nj involve
summations over all the particles in the support of the basis function ψh

j (·) so that,
collectively, the work involved depends on

∑
j∈Nr

Nj , which is of the order of N .
Also note that, combining (2.6), (2.10), and (2.12), we have that the total poten-

tial energy is approximated by⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φh

(
{xh

j }j∈ ˜Nr

)
=

1

2

∑
α∈N

∑
β∈N ,β �=α

Φa
α,β(x

h
α,x

h
β) +

∑
α∈N

Φe
α(x

h
α),

where xh
α = qα for α ∈ Nf and xh

α =
∑
j∈ ˜Nr

xh
j ψ

h
j (Xα) for α ∈ Na.

(2.15)

It is now also clear that the work involved in evaluating the approximate potential
energy depends on N because of the sums with respect to both α and β.

2.4. Short-range interactions. The interactions between particles are usually
short-ranged, i.e., the magnitude of pairwise interaction potential decreases very fast
when the distance between two particles becomes large. Thus, one common way to
improve computational efficiency is to truncate the interatomic potential by assuming
that the particle only interacts with its nearby particles and setting the interaction
potential to be zero whenever the distance between two particles is larger than a
cut-off radius rc, i.e., for all α, β ∈ N ,

|Φa
α,β(xα,xβ)| = 0 whenever |xα − xβ | > rc.(2.16)

In practice, to ensure both appropriate accuracy and computational efficiency, the
cut-off radius rc is chosen as, for a given prescribed tolerance ε > 0,

rc = max r̂ such that |Φa
α,β(xα,xβ)| < ε ∀ r = |xα − xβ | > r̂.(2.17)

It is then safe to set Φa
α,β(xα,xβ) = 0 outside of the cut-off region; see (2.16). In

addition, it was suggested in [4] that a simple truncation may lead to a small disconti-
nuity of energy at r = rc. To avoid it, a simple “smoothing” term can be added to the
potential so that both the interacting energy and its derivative, i.e., the interacting
force, become zero at r = rc [4].

Let

Nb(α) = {β ∈ N | 0 < |xβ − xα| ≤ rc} for α ∈ N

denote the index set of the particles interacting with the particle α. Then, in the
short-range interaction case, the approximate energy (2.15) reduces to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φh

(
{xh

j }j∈ ˜Nr

)
=

1

2

∑
α∈N

∑
β∈Nb(α)

Φa
α,β(x

h
α,x

h
β) +

∑
α∈N

Φe
α(x

h
α),

where xh
α = qα for α ∈ Nf and xh

α =
∑
j∈ ˜Nr

xh
j ψ

h
j (Xα) for α ∈ Na,

(2.18)
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and the force equilibrium equations (2.14) become

(2.19)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑
α∈Nj

ψh
j (Xα)

⎛⎝ ∑
β∈Nb(α)

faα,β(x
h
α,x

h
β)

⎞⎠+
∑
α∈Nj

ψh
j (Xα)f

e
α(x

h
α) = 0 for j ∈ Nr,

where xh
α = qα for α ∈ Nf and xh

α =
∑
j∈ ˜Nr

xh
j ψ

h
j (Xα) for α ∈ Na.

Now in both (2.18) and (2.19), the inside summation over β ∈ Nb(α) involves a
summation over the particles located inside of a small ball with center at the particle
α but no longer over all particles. Usually, for any α ∈ N , the number Nb(α) � N
and is independent of the total number of particles N . Consequently, the complexity
in evaluating the total energy (2.18) and in solving equilibrium configuration (2.19)
reduces to O(NNb) with Nb the maximum number of particles in a ball, i.e., Nb =
maxα∈N {Nb(α)}.

3. QC-QR type approximations. It is easy to see from (2.18) and (2.19) that,
even in the short-range interaction case, the application of the QC method cannot
eliminate the dependence on the total number of particles N . This is caused by
the outer summations which collectively or directly involve the calculation over all
particles. To mitigate the causes for having work depending on N , in this section we
approximate these summations by using “quadrature” rules.

3.1. Quadrature rules. There are two types of outer summations appearing in
(2.18) and (2.19) that make the calculation depend on the total number of particles
N . They have the following forms:

(3.1) G =
∑
α∈N

g(Xα) and Gj =
∑
α∈Nj

g(Xα) for j ∈ Nr,

where g(X) is an appropriate function depending only on the positionX. To apply the
quadrature rules, we first break up the sums in (3.1) into those over all representative

particles Xj (j ∈ Ñr) and over all simplices Δt (t = 1, . . . , T ). For each simplex Δt,
we denote by

Nt = {α ∈ N but α �∈ Ñr | Xα ∈ Δt}

the index set of the particles located inside Δt. As mentioned in section 2, all particles
specified through (2.2) are to be among the representative particles, so we conclude
that the particles whose indices belong to Nt are not specified. If a particle is on the
boundary between simplices but is not a representative particle, i.e., it is not located
at a vertex, it can be arbitrarily assigned to one of the simplices. Also, let

Tj = {t ∈ {1, . . . , T } | Δt ∈ Th,j},

i.e., Tj denotes the index set of the simplices located inside of the support of the basis
function ψh

j (·). Then, the two sums in (3.1) may be expressed in the form

(3.2)

G =
T∑

t=1

∑
α∈Nt

g(Xα) +
∑
k∈ ˜Nr

g(Xk),

Gj =
∑
t∈Tj

∑
α∈Nt

g(Xα) + g(Xj) for j ∈ Nr,

respectively.
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We now focus on the inside summations in (3.2), i.e., the sums over individual
simplices. Our aim is to approximate the sum over all particles in a simplex by a
(weighted) sum over fewer particles. To this end, for any simplex Δt (t = 1, . . . , T ),
we define the index set

Nt,q =

{
Nt if Nt ≤ q,
a q-dimensional subset of Nt otherwise,

(3.3)

i.e., in the latter case, Nt,q consists of the indices of q particles chosen from among
the particles in the simplex Δt, where q depends on the “quadrature” rule we apply.
Then, the sum over all particles in the simplex Δt can be approximated by a weighted
sum over the subset of particles whose indices belong to Nt,q, i.e.,∑

α∈Nt

g(Xα) ≈
∑

β∈Nt,q

ωt,β g(Xβ) for t = 1, . . . , T,(3.4)

where Xβ denotes the “quadrature” particles we choose in the simplex Δt and ωt,β

denotes the corresponding “quadrature” weights. The guidelines for selecting these
particles and weights are addressed in section 3.2. Consequently, applying (3.4) to
the sums in (3.2), we obtain

G ≈
T∑

t=1

∑
β∈Nt,q

ωt,β g(Xβ) +
∑
k∈ ˜Nr

g(Xk)(3.5)

and

Gj ≈
∑
t∈Tj

∑
β∈Nt,q

ωt,β g(Xβ) + g(Xj) for j ∈ Nr.(3.6)

It is easy to see that the complexity in computing sums (3.5) and (3.6) depends on
the number of representative particles, the construction of the triangulation, and the
quadrature rules employed, but it is independent of the total number of particles N .

3.2. Quadrature particles and weights. As defined in (3.3), if the number
of particles in the simplex Δt is less than or equal to q, then all of them are used in
the summation (3.4), i.e., Nt,q = Nt. Thus, in this case, the sum (3.4) is exact for
any function g(·), and the weight ωt,β ≡ 1 for β ∈ Nt,q.

On the other hand, if the number of particles is larger than q, then only q of them
are selected to be “quadrature” particles and used in (3.4). The basic requirement
for selecting the quadrature points Xβ (β ∈ Nt,q) is that they are not coplanar, i.e.,
they do not lie on a (d− 1)-dimensional plane. The noncoplanarity of these points is
necessary for this system to be invertible. In addition, it is beneficial to choose these
points so that the system is well conditioned. Since the triangulation Th is effected in
the reference configuration of particles, it should be easy to choose points that satisfy
this requirement. In practice, we can choose those particles nearest to some set of
standard quadrature points for the simplex Δt. In fact, if we were approximating
integrals instead of sums, we would choose exactly those quadrature points in the
simplex Δt, but since we are approximating sums, we have no assurance that there
are “quadrature” particles available at standard quadrature points for the simplex Δt.

On each simplex Δt (t = 1, . . . , T ), the weights ωt,β should be chosen to ensure
that the approximation (3.4) is exact for a class of functions g(·) [22], i.e., by solving



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A QUADRATURE-RULE APPROXIMATION TO THE QC METHOD 579

the system of q equations∑
β∈Nt,q

ωt,β g(Xβ) =
∑
α∈Nt

g(Xα) for β ∈ Nt,q(3.7)

in the q unknowns ωt,β. The weights ωt,β are not necessarily integers and may be
regarded as the number of particles represented by the “quadrature” particles Xβ .

For example, in the reference configuration, we consider a 1D particle chain uni-
formly distributed on a straight line. In this case, the simplex Δt ∈ Th is the interval
between two representative particles, i.e., Δt = (Xj , Xj+1), with Xj+1 > Xj and

t = j = 1, . . . , Ñr − 1. On each simplex, we use at most two quadrature particles, i.e.,
we set q = 2 in (3.3). If a simplex Δt has more than two particles, the quadrature
particles can be chosen as

Xβ = arg min
α∈Nt

∣∣∣∣Xα −Xj −
βL

3

∣∣∣∣ for β = 1, 2,(3.8)

where L = Xj+1 −Xj defines the size of the simplex, i.e., we choose two quadrature
particles nearest to the 1/3 and 2/3 locations along the 1D simplex. Then, the weights
can be calculated by requiring that (3.4) is exact for linear polynomials g(·) so that
we have the linear system

ωt,1 + ωt,2 = Nt and ωt,1X1 + ωt,2X2 =
∑
α∈Nt

Xα(3.9)

for the two weights ωt,1 and ωt,2.
In fine regions of the triangulation Th, the sums on the right-hand side of (3.7)

may be computed explicitly. By contrast, in coarse regions where the mesh approaches
the continuum limit, this explicit calculation becomes impractical. However, in such
regions the sum reduces to an integral, and the corresponding weights are those of
conventional Lobatto quadrature [11, 13]. In this limit, each simplex Δt ∈ Th simply
contributes (N/V )|Δt|/q particles to each of its q quadrature points, where |Δt| and
V are the volumes of the simplex and the crystal in the reference configuration,
respectively. Then N/V is the atom density of the crystal.

Note that the selection of the quadrature particles and the computation of their
weights are done in the reference configuration so that they are independent of the
actual positions of the particles. Thus, the same weights ωt,β and “quadrature”
particles Xβ can be used throughout an iterative process that determines the solution
of (2.19).

3.3. Error analysis for a monoatomic chain. In this subsection, we analyze
the accuracy of the QC-QR method for a simple 1D monoatomic chain used in [13]
and compare it with the QC-CS method. The index set is defined by N ≡ Z. In
the reference configuration, we choose the distance between two neighboring particles
to be h = 1 so that the position of particles can be defined as Xα = α for α ∈ Z.
For simplicity, a uniform triangulation of size L > 0 is used. The coordinates of the
representative particles are Xj = jL for j ∈ Ñr = Z, and the simplex can be defined
as Δj = (Xj , Xj+1); see Figure 3.1.

To obtain the summation error in the leading order, the sum of a quadratic poly-
nomial supported only on two adjacent simplices in the reduced chain is considered,
i.e.,

g(X) =

{
X2 X ∈ [−L,L],
0 otherwise.

(3.10)
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−L L 0 

r r 

Fig. 3.1. A part of the 1D monoatomic chain with L = 10, where the “big” particles are
representative particles and r is the radius of the clusters used in the QC-CS method.

It is easy to obtain the exact sum of g(X) over all sites of the chain, i.e.,

S =
∑
α∈N

g(Xα) =

L∑
α=−L

(Xα)
2 =

L∑
α=−L

α2 =
L(L+ 1)(2L+ 1)

3
.(3.11)

In the QC-QR method, we use two quadrature particles on each simplex. The quadra-
ture particles and their weights can be computed by using (3.8) and (3.9). For exam-
ple, on the simplex Δt = (0, L), we choose two points as

X1 =
L

3
, X2 =

2L

3
.(3.12)

Here we assume that these two points are exactly on the lattice sites, i.e., there exist
particles on the two points. Then, from (3.9) and (3.12), we obtain the weights
ωt,1 = ωt,2 = (L − 1)/2, i.e., each quadrature particle represents (L − 1)/2 particles
in this simplex. Thus, the approximate sum of the QC-QR method can be calculated
by

Sh
QC−QR =

T∑
t=1

2∑
β=1

ωt,β g(Xβ) +
∑
j∈ ˜Nr

g(Xj)(3.13)

=
0∑

t=−1

2∑
β=1

ωt,β g(Xβ) + [g(−L) + g(0) + g(L)] =
5L3 + 13L2

9
,

which depends only on the size of the simplex.
On the other hand, the use of the QC-CS method gives the approximation [13]

Sh
QC−CS =

2(r + 1)L

3(2r + 1)

[
3L2 + r(1 − 3L) + 2r2

]
(3.14)

with 0 ≤ r ≤ L/2 the radius of uniform clusters; see Figure 3.1.5 In particular, if the
radius r = 0, the approximate sum becomes

Sh
QC−CS|r=0 = 2L3 = Sh

QC−NS,(3.15)

where Sh
QC−NS is the approximate result of the node-based summation method (QC-

NS) [13].

5Of course, we also could parameterize the QC-QRmethod by introducing “higher-order” quadra-
ture rules that would require more quadrature particles in each simplex. However, as it is shown
below, the “lowest-order” QC-QR method compares favorably with the QC-CS method for any prac-
tical choice of cluster size. Thus, it suffices for us to confine the discussion to the “lowest-order”
QC-QR method.
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From (3.11), (3.13), and (3.14), we can obtain the summation errors |Sh − S| of
the QC-QR and QC-CS methods as

eQC−QR =
∣∣∣1
9
L3 − 4

9
L2 +

1

3
L
∣∣∣,(3.16)

eQC−CS =
∣∣∣ 2(r + 2)

3(2r + 1)
L3 − (2r2 + 4r + 1)

(2r + 1)
L2 +

(2r2 + 2r − 1)

3
L
∣∣∣,(3.17)

respectively. In the continuum region, i.e., L 
 1, we have that the leading order of
the exact sum (3.11) is S ∼ 2L3/3. Thus, in this regime, the leading order of the
relative error of the QC-QR method is given by

ẽQC−QR =
eQC−QR

S
∼ L3/9

2L3/3
=

1

6
,(3.18)

which is a constant and independent of the simplex size L. On the other hand, the
leading order of (3.17) depends on the radius of the clusters. So, to obtain the rel-
ative errors of the QC-CS method, we need divide our discussion into the following
two cases.

Case I r � L. In this case, the leading order of (3.17) and its relative error become

eQC−CS ∼ 2(r + 2)

3(2r + 1)
L3, ẽQC−CS ∼ (r + 2)

(2r + 1)
=

1

2
+

3

2(2r + 1)
≥ 1

2
,(3.19)

respectively. This implies that the relative error of the QC-CS method de-
pends on the radius of the clusters. For any radius r, the relative error is
always larger than 1

2 ; in particular, it reaches the maximum value 2 when
r = 0, i.e., for the case of the node-based summation rule. Thus, we can
conclude that when L 
 1, for any radius 0 ≤ r � L the QC-QR method
has better accuracy than the QC-CS method. On the other hand, on each
simplex, the QC-QR method uses only two quadrature particles, whereas the
QC-CS method needs 2r particles. Thus, if r > 1, the complexity of the
QC-CS method is larger than that of the QC-QR method.

Case II r ∼ O(L). Assuming that r = cL with 0 < c ≤ 1
2 , we have the leading order

of (3.17) and its relative error as

eQC−CS ∼ 2c2 − 3c+ 1

3
L3, ẽQC−CS ∼ 2c2 − 3c+ 1

2
,(3.20)

respectively. It is easy to see that when c = 1
2 , i.e., r = L/2, the errors from

the QC-CS method become 0. But, in this case, all the particles are used in
the calculation, which does not reduce the complexity at all. Thus, we will
only consider the case with c < 1

2 . By requiring that

ẽQC−QR = ẽQC−CS so that
2c2 − 3c+ 1

2
=

1

6
,

we have

c =
3

4
−

√
33

12
≈ 0.2713 so that r ≈ 0.2713L.(3.21)
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Fig. 3.2. The relative errors in computing the approximate sum for (3.11) versus the simplex
size L (left) and the radius of clusters r (right), where the curves with symbols are for the QC-QS
method; the plain curve is for the QC-QR method.
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Fig. 3.3. For a fixed simplex size L = 200, the relative errors (left) and the percent of particles
used in the calculation (right) versus the radius of clusters.

This implies that to obtain the same accuracy as that of the QC-QR method,
in each simplex the QC-CS method has to use more than half of the particles.
Consequently, its complexity depends on the total number of particles.

Recall that the motivation for using either the QC-CS or QC-QR methods is to
reduce the complexity of the original QC method, which depends on the total number
of particles N . The QC-CS method with r ∼ O(L) can get better accuracy than the
case with r � L, but it does not essentially mitigate the dependence on the total
number of particles in the calculation. Thus, in practice, only Case I with r � L is
of interest.

In (3.18)–(3.21), we compare the errors of the QC-QR and QC-CS methods in
the leading order. To make a further comparison, in Figures 3.2 and 3.3, we study
the relationship between the full relative errors ẽQC−CS and ẽQC−QR, the simplex size
L, and the radius r in the QC-CS method.

Figure 3.2 shows that when the size of the simplex becomes large, the relative
error from the QC-QR method is almost a constant around 1/6. By contrast, the
error of the QC-CS method highly depends on the radius r. For a fixed L, the bigger
the cluster radius 0 ≤ r ≤ L/2, the smaller the error ẽQC−CS. The relative error
reaches its maximum and minimum values at r = 0 and r = 1/2, respectively. On the
other hand, for a fixed r, the bigger the simplex size L, the bigger the error ẽQC−CS.
The results shown in Fig. 3.2 confirms our analysis in the leading order.
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In Figure 3.3, we plot the relative errors and the computational complexity (pro-
portional to the number of particles used in the calculation) for the fixed simplex size
L = 200. From it, we find that when r ≈ 56, the QC-CS method has the same error
as that of the QC-QR method, but it uses more than 56% of all particles. In contrast,
the QC-QR method uses only less than 1% particles.

3.4. Reduced equations based on quadrature rules. As we have seen in
section 2, in the short-range interaction case, the QC method can be formulated in
two ways: the energy-based QC method, e.g., (2.18), and the force-based QC method,
e.g., (2.19). Both of them begin from the energy (2.6) and can be used to find the
stable configurations of the particles. In this subsection, we give the formulation of
the energy-based QC-QR method and the force-based QC-QR method by applying
the quadrature rules to (2.18) and (2.19), respectively.

3.4.1. Energy-based QC-QR method. Applying (3.5) to (2.18), we obtain
the approximate potential energy by the QC-QR method as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φh
(
{xh

j }j∈ ˜Nr

)
≈

T∑
t=1

∑
α∈Nt,q

wt,α

⎛⎝ ∑
β∈Nb(α)

Φa
α,β(x

h
α,x

h
β)

2
+ Φe

α(x
h
α)

⎞⎠
+

∑
k∈ ˜Nr

⎛⎝ ∑
β∈Nb(k)

Φa
k,β(x

h
k ,x

h
β)

2
+ Φe

k(x
h
k)

⎞⎠ ,

where xh
α = qα if α ∈ Nf and xh

α =
∑
k∈ ˜Nr

xh
kψ

h
k (Xα) if α ∈ Na.

(3.22)

As mentioned previously, the inner summations in (3.22) have the complexity of
O(Nb), which is independent of the total number of particles N , and the outer sums

involve at most qT + Ñr particles with T the total number of simplices. Conse-
quently, the total work in evaluating the approximate energy (3.22) is of the order

O((qT + Ñr)Nb), which is independent of the total number of particles N .
Similarly, to minimize the energy (3.22), we can solve for the force equilibrium

equations to ensure that the total force on each degree of freedom is zero. Thus, dif-
ferentiating (3.22) with respect to xh

j for j ∈ Nr, we obtain that the force equilibrium
equations corresponding to (3.22) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
t∈Tj

∑
α∈Nt,q

wt,αψ
h
j (Xα)

⎛⎝ ∑
β∈Nb(α)

faα,β(x
h
α,x

h
β)

2
+ feα(x

h
α)

⎞⎠
+

⎛⎝ ∑
β∈Nb(j)

faj,β(x
h
j ,x

h
β)

2
+ fej (x

h
j )

⎞⎠
+

T∑
t=1

∑
α∈Nt,q

ωt,α

∑
β∈Nj∩Nb(α)

ψh
j (Xβ)

faβ,α(x
h
β ,x

h
α)

2

+
∑
k∈ ˜Nr

∑
β∈Nj∩Nb(k)

ψh
j (Xβ)

faβ,k(x
h
β ,x

h
k)

2
= 0 for j ∈ Nr,

where xh
α = qα if α ∈ Nf and xh

α =
∑
j∈ ˜Nr

xh
j ψ

h
j (Xα) if α ∈ Na.

(3.23)
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3.4.2. Force-based QC-QR method. In practice, instead of solving the ex-
plicit first-order necessary conditions corresponding to the energy function (3.22),
i.e., solving the system (3.23), one usually works with the approximate force equa-
tions [13, 18]. To do this, we apply (3.6) to (2.19) to obtain

(3.24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
t∈Tj

∑
α∈Nt,q

wt,αψ
h
j (Xα)

⎛⎝ ∑
β∈Nb(α)

faα,β(x
h
α,x

h
β) + feα(x

h
α)

⎞⎠
+

⎛⎝ ∑
β∈Nb(j)

faj,β(x
h
j ,x

h
β) + fej (x

h
j )

⎞⎠ = 0 for j ∈ Nr,

where xh
α = qα if α ∈ Nf and xh

α =
∑
j∈ ˜Nr

xh
j ψ

h
j (Xα) if α ∈ Na.

For each j ∈ Nr, the outer sums in the first line of (3.24) involve at most qTj parti-
cles, where Tj is the number of simplices in the support of the basis function ψh

j (·).
Thus collectively, the number of particles involved in the outer summations of all
the equations in (3.24) is of the order of q

∑
j∈Nr

Tj + Ñr; this number is bounded
independently of the total number of particles N .

For example, if a 1D particle chain is considered, then we have that Tj ≤ 2.

Thus, the number q
∑

j∈Nr
Tj + Ñr is bounded by (2q + 1)Ñr so that the total com-

putational complexity in solving the force equilibrium equations (3.24) is of the order

O((2q + 1)ÑrNb), which is independent of the total number of particles N .

4. Numerical tests. In this section, we test the accuracy and efficiency of the
QC-QR method by comparing it with the QC method, the QC-CS method, and the
full atomistic method. The exact solution is chosen as that from the full atomistic
method, and we measure the quality of the solutions in terms of both the energy and
position. Then, the relative error in energy is defined by

E(Φ) =
|Φ(x)− Φh(xh)|

|Φ(x)| ,(4.1)

where x is the solution obtained from the full atomistic model, xh is the solution from
approximate methods, e.g., the QC, QC-CS, or QC-QR methods. The position error
is defined by

EL2(x) = ‖x− xh‖L2 =

√∑
(x− xh)

2

N
.(4.2)

In addition, we also define the displacement gradient F (X) as

F (X) =
dx

dX
= I+

du

dX
,(4.3)

where I is the identity tensor and u(X) = x−X is the displacement of the particles.
The simulations of the approximate methods as well as the full atomistic method

require the use of an iterative method to solve the associated nonlinear systems. We
purposely use very tight tolerances for the iterative method so that any error resulting
from the iterative solver is negligible compared to the differences between the full
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Fig. 4.1. The Lennard-Jones potential as a function of the distance between two particles.

atomistic and the approximate solutions. Thus, the sources of the errors we report on
are due to the following: (i) for the QC, QC-CS, and QC-QR simulations, the error
introduced because of the reduction of the number of degrees of freedom from Na

to Nr through the use of the Cauchy–Born hypothesis and the use of representative
atoms, and (ii) for the QC-CS and QC-QR simulations, an additional error due to
the use of the cluster or the quadrature-rule type approximations, respectively, for
the sums in the QC model.

4.1. Test problem definition. We consider a simple 1D model of a crystalline
material where all particles are distributed on a straight line. A “nanoindentation”
is used to assess the performance of the methods [13]. This problem can present a
highly nonuniform state of deformation, resulting in a lattice gradation away from the
indentor.

In our examples, the popular 6–12 Lennard-Jones (LJ) potential is used, which
takes the form [13, 15]

Φa(r) = 4ε

[(σ
r

)12

− 2
(σ
r

)6
]
,(4.4)

where r is the distance between two particles, ε is a parameter determining the depth
of the potential well, and σ is a length scale that determines the position of the
minimum. In the following computations, we choose ε = 1 and σ = 1, and the shape
of the LJ potential is shown in Figure 4.1.

A 1D nanoindentor is applied as an additional external potential Φe(x) interacting
with atoms; specifically, it has the form [12, 13]

Φe(x) =

{
A(R − x)2 if R ≥ x,
0 otherwise,

(4.5)

where R > 0 is the radius of the indentor and A is a force constant. The parameters
are chosen as A = 0.001 and R = 100.

In the simulations, we consider a system with N = 2049 particles which, in the
reference configuration, are uniformly distributed on a straight line with an interpar-
ticle distance h. The two end-particles are fixed by setting x0 = 0 and x2048 = 2048h
throughout the tests. Unless otherwise stated, the atomistic distance is set as h = 1,
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Fig. 4.2. The displacement u(X) (left) and the displacement gradient F (X) (right) of the
particle chain.
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Fig. 4.3. The position errors of the QC and QC-QR methods versus the number of the rep-
resentative particles (left) and the time used in solving the force equilibrium equations versus error
values (right).

and no displacement constraints are applied to other particles. A cut-off radius rc = 66
in (2.17) is chosen by requiring that ε = 10−10.

Figure 4.2 shows the displacement of the particles u(X) and the displacement
gradient F (X) for this example. In the region of [0, 100], the chain has a high nonuni-
form deformation whereas for X > 100, the deformation is almost linear. Thus, in
the computation, we use full atomistic resolution on [0, 100], i.e., all the particles in
this region are chosen to be the representative particles. For the region of [100, 2048],
a coarser mesh is used by choosing uniformly distributed representative particles.

4.2. Accuracy of the force-based QC-QR method. We numerically assess
the rate at which the QC and QC-QR solutions converge toward the full atomistic
solutions. Figure 4.3 provides the position errors of the QC and QC-QR methods
for a different number of representative particles and also shows the time used in
solving the force equilibrium equations versus the resulting error obtained. Similarly,
Figure 4.4 displays the relative energy errors and the time consumed in evaluating
the total potential energy.

From Figure 4.3 (left), we see that the errors of both the QC and QC-QR methods
decrease when more representative particles are used in the simulation. The error of
the QC-QR method is usually larger than that of the QC method, due to the extra
errors introduced by using of the quadrature-type rule. However, the time used by the
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Fig. 4.4. The energy errors of the QC and QC-QR methods (left) and the time used in evalu-
ating the approximate energy (right) versus the number of the representative particles.

QC-QR method is much shorter than that of the QC method. For example, Figure 4.3
(right) shows that for a given error level, the QC method needs more time to solve
the force equilibrium equations. Furthermore, its time is insensitive to changes in
the number of the representative particles, e.g., the time is always around 55. This
is due to the fact that the costs associated with the QC method are dominated by
the summations over all particles. On the other hand, having fewer representative
particles can save a lot of time in the QC-QR method, since its complexity depends
on the number of representative particles but not on the total number of particles.

Similarly, Figure 4.4 displays the relative errors and the time needed to determine
the approximate energy. From that figure, we again observe that a decrease in the
number of representative particles does not shorten the time spent by the QC method,
whereas the time used by the QC-QR method is significantly reduced. Note that when
ln(Nr) ≈ 6.2, i.e., Nr ≈ 500, the time used by the QC-QR method becomes larger
than that of the QC method because, in this case, the simplices are quite small and
almost every particle is used in the QC-QR method. Thus, in this case, the QC-QR
method is equivalent to the QC method, but it has more overhead such as determining
the quadrature particles in the computation. This suggests that the QC-QR method
is more efficient for coarse meshes.6

4.3. Comparison of the QC-QR and QC-CS methods. In this subsection,
we compare the QC-QR and QC-CS methods. Figure 4.5 displays the position errors
of the QC-QR method and the QC-CS method with different cluster size. In addition,
it provides the percentage of particles used in the calculation.

It is easy to see that the accuracy of both the QC-QR and QC-CS methods
increases when more representative particles are used. For the QC-CS method and
a fixed number of representative particles, the error also decreases with increasing
cluster size r. However, the error for the QC-CS method is always larger than that
for the QC-QR method. This qualitatively confirms the error analysis in section 3.3.

In addition, for any fixed number of representative particles, if the radius of
the cluster r = 1, the number of particles used in the QC-CS method is the same
as that used in the QC-QR method. In this case, the two methods have the same

6The discussion in this paragraph is about evaluating the energy, assuming one has in hand the
positions of the particles. One should keep in mind that in a calculation, one has to solve the force
balance equations to determine those positions so that the results displayed in Figure 4.3 should be
factored in when one examines the costs to evaluate the energy.
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Fig. 4.5. The position errors of the QC-QR and QC-CS methods (left) and the percentage of
particles used in calculations (right) versus the number of the representative particles.

Table 4.1

The relationship between the number of representative particles near the specified particle x2048,
the position error EL2(X), and the relative energy error E(Φ).

Number of representative EL2 (X) E(Φ)
particles near x2048

0 9.3354E−4 9.4219E−6
1 1.4139E−4 1.0772E−6
2 3.3315E−5 3.3299E−7
5 1.5504E−6 9.7763E−9
10 2.5004E−7 1.3230E−9

computational complexity, but the QC-QR method is more accurate than the QC-CS
method. For r > 1, the computational cost of the QC-CS method is always larger
than that of the QC-QR method, as is the error.

4.4. Representative particles near the specified particles. As mentioned
in section 2, in practice, all particles whose position are specified through (2.2) should
be chosen to be among the representative particles. This is because the specified
particles can be viewed as those having important information about the system, e.g.,
the boundary of the system as well as boundary values. From our simulations, we
find that not only the specified particles but the particles near them should be taken
as the representative particles in order to obtain good accuracy.

There are two specified particles in our example, i.e., x0 and x2048. Since all par-
ticles in the region [0, 100] have been selected as the representative particles, here we
study only the effect of the representative particles near the particle x2048. Table 4.1
provides the position errors EL2(X) and relative energy errors E(Φ) for different
numbers of representative particles near the specified particle x2048. In this case, a
uniform simplex size with Nt = 16 is used in the region of [100, 2048]. It is easy to see
that when more representative particles are used near to the specified particle x2048,
the errors in both position and energy decrease very fast.

5. Summary and discussion. We have presented a QC-QR type approxima-
tion to the QC method. Provided that the interatomistic interaction is short-ranged,
the QC method has a computational complexity of the order O(N), with N the total
number of particles, while the QC-QR method effectively reduces this complexity to
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O(Ñr) so that its complexity depends only on the number of representative particles

Ñr with Ñr � N .
We have presented some numerical tests to demonstrate the accuracy and perfor-

mance of the QC-QR method. Compared to both the QC method and the QC-CS,
the QC-QR method has substantially lower computational cost for the same accuracy.
In addition, our numerical tests suggest that including more representative particles
near the specified particles can highly improve the numerical accuracy.

There are several directions for further study. Certainly, one direction is to ap-
proximate the inner sums of (2.14) and (2.15) in cases involving long-ranged inter-
atomistic interactions. In such cases, we cannot truncate the potential into a small
region so that the calculation involved in the inner sums still depends on the total
number of particles N . However, there is the possibility of using quadrature-type
rules for approximating the inner summations as well; this approach is being ex-
plored. Further analysis of the proposed method is also called for, following the lines
of, e.g., [2,5,7,9,10,16]. In addition, to further illustrate the usefulness of the method
introduced in this paper, many additional computational tests are needed as is the
use of the method to solve some application problems.
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