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ON LEAST-SQUARES FINITE ELEMENT METHODS FOR THE
POISSON EQUATION AND THEIR CONNECTION TO THE

DIRICHLET AND KELVIN PRINCIPLES∗
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Abstract. Least-squares finite element methods for first-order formulations of the Poisson
equation are not subject to the inf-sup condition and lead to stable solutions even when all variables
are approximated by equal-order continuous finite element spaces. For such elements, one can also
prove optimal convergence in the “energy” norm (equivalent to a norm on H1(Ω) × H(Ω, div)) for
all variables and optimal L2 convergence for the scalar variable. However, showing optimal L2

convergence for the flux has proven to be impossible without adding the redundant curl equation to
the first-order system of partial differential equations. In fact, numerical evidence strongly suggests
that nodal continuous flux approximations do not posses optimal L2 accuracy. In this paper, we show
that optimal L2 error rates for the flux can be achieved without the curl constraint, provided that one
uses the div-conforming family of Brezzi–Douglas–Marini or Brezzi–Douglas–Duran–Fortin elements.
Then, we proceed to reveal an interesting connection between a least-squares finite element method
involving H(Ω, div)-conforming flux approximations and mixed finite element methods based on the
classical Dirichlet and Kelvin principles. We show that such least-squares finite element methods
can be obtained by approximating, through an L2 projection, the Hodge operator that connects
the Kelvin and Dirichlet principles. Our principal conclusion is that when implemented in this way,
a least-squares finite element method combines the best computational properties of finite element
methods based on each of the classical principles.
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1. Introduction. Stable mixed finite element methods for the Poisson equation1

(written in a first-order form in terms of a scalar variable and a flux) require the use
of finite element spaces that satisfy an appropriate inf-sup condition. For methods
based on the Dirichlet principle, the inf-sup condition can be easily satisfied but
for the dual Kelvin principle, it imposes complicated restrictions on the choice of
spaces; see [11]. In either case, it is well known that pairs of standard nodal-based,
continuous finite element spaces fail the inf-sup condition and lead to unstable mixed
methods. It is also well known that the inf-sup condition is circumvented if one
uses such simple element pairs in finite element methods based on L2 least-squares
variational principles. Ever since such least-squares finite element methods for first-
order formulations of the Poisson equation were first considered in [24], this fact
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has been deemed as an important advantage of those methods over mixed Galerkin
methods.

Already in [24], optimal L2 error estimates for least-square finite element methods
were established for the scalar variable; however, there, no optimal L2 convergence
results were obtained for nodal approximations of the flux. This situation persisted in
all subsequent analyses: optimal L2 error estimates for the flux could not be obtained2

without the addition of a “redundant” curl equation; see, e.g., [13, 14, 15, 25, 27].
Moreover, computational studies in [16] strongly suggested that optimal L2 conver-
gence may in fact be nearly impossible if one uses pairs of standard nodal-based
continuous finite element spaces. A notable exception was a case studied in [16] for
which optimal L2 error estimates for both the scalar variable and the flux were ob-
tained when these variables were approximated by continuous nodal spaces built on
a criss-cross grid. The key to their proof was the validity of the grid decomposition
property (GDP) which was established for the criss-cross grid in [17]. So far, the
criss-cross grid remains the only known case of a continuous nodal-based finite ele-
ment space for which the GDP can be verified. More importantly, it was shown in [17]
(see also [7]) that the GDP is necessary and sufficient for the stability of the mixed
finite element method based on the Kelvin principle.

The correlation between the stability of mixed finite element methods and the
optimal accuracy of least-squares finite element methods, established in [16], opens
up the intriguing possibility that optimal L2 accuracy for the flux may be obtainable
for a least-squares finite element method, provided that this variable is approximated
by H(Ω,div)-conforming elements that are stable for mixed finite element methods
based on the Kelvin principle. Today, the stability of mixed finite element methods
based on the Kelvin principle is well understood, and many examples of stable finite
element pairs are known. The first goal of our study is to show that the use of some of
these spaces in a least-squares finite element method will indeed help to improve the L2

accuracy of the flux approximation. Our second goal is to offer a new perspective on
least-squares principles as resulting from a choice for the approximation of the Hodge
∗-operator that connects two mutually dual “energy” principles. Among other things,
such an interpretation shows, in our context, why the use of H(Ω,div)-conforming
elements is in fact more natural than the use of equal-order C0 spaces.

While our conclusions may disappoint the adherents of equal-order implementa-
tions, our results do not void least-squares finite element methods as a viable com-
putational alternative. To the contrary, they demonstrate that when implemented
correctly, a least-squares finite element method combines the best computational prop-
erties of finite element methods based on both the Dirichlet and Kelvin principles, and
at the same time manages to avoid the indefinite linear systems that make the latter
more difficult to solve. Although we reach this conclusion in the specific context of
mixed and least-squares finite element methods for the Poisson problem, the idea of
defining the latter type of method so that it inherits the best characteristics of a
pair of mixed methods that are related through duality may have considerably wider
application.

In the rest of this section, we briefly review the notation used throughout the
paper. Then, in section 2.1, we recall the Dirichlet and Kelvin principles and the

2A somewhat different situation exists for negative-norm-based least-squares finite element meth-
ods, for which it is known that the L2 accuracy of the flux is optimal with respect to the spaces
used; however, for such methods, no error bound for the divergence of the flux could be established;
see [10].
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associated first-order div-grad formulation of the boundary value problem for the
Poisson equation. There, in the context of the Kelvin principle, we also review basic
definitions and properties of stable H(Ω,div)-conforming mixed finite elements spaces
for the flux and show that they satisfy the GDP. For the sake of brevity, we restrict
attention to the well-known Raviart–Thomas (RT), Brezzi–Douglas–Marini (BDM),
and Brezzi–Douglas–Duran–Fortin (BDDF) classes of affine families of finite elements.
Section 3 deals with least-squares finite element methods for first-order formulations
of the Poisson problem. After a brief review of known error estimates in H1(Ω) ×
H(Ω,div), we turn our attention to the L2 accuracy and the rarely discussed case
of least-squares finite element methods using RT, BDM, or BDDF approximations of
the flux. We show that BDM and BDDF spaces lead to optimal convergence of the
flux in L2. In section 4, we offer an interpretation of such least-squares finite element
methods which is derived with the help of some notions from exterior calculus and
differential forms.

1.1. Notation. Throughout, Ω denotes a bounded region in R
n, n = 2, 3, with

a Lipschitz continuous boundary Γ = ∂Ω. We assume that Γ consists of two disjoint
parts denoted by ΓD and ΓN . For p > 0, Hp(Ω) denotes the Sobolev space of order
p with norm and inner product denoted by ‖ · ‖p and (·, ·)p, respectively. When
p = 0, we use the standard notation L2(Ω). The symbol | · |k, 0 ≤ k ≤ p, denotes
the kth seminorm on Hp(Ω). Vector-valued functions and vector analogues of the
Sobolev spaces are denoted by lower- and upper case bold-face font, respectively, e.g.,
u, H1(Ω), L2(Ω), etc. We recall the space

H(Ω,div) = {u ∈ L2(Ω) | ∇ · u ∈ L2(Ω)},

which is a Hilbert space when equipped with the norm

‖u‖H(Ω,div) = (‖u‖2
0 + ‖∇ · u‖2

0)
1/2.

To deal with the boundary conditions, we introduce the spaces

H1
D(Ω) = {φ ∈ H1(Ω) | φ = 0 on ΓD}

and

HN (Ω,div ) = {v ∈ H(Ω,div) | v · n = 0 on ΓN}.

Details about all the notation just introduced may be found, e.g., in [11, 18].
Throughout, we will refer to the problem

−Δφ + γφ = f in Ω, φ = 0 on ΓD, and ∂φ/∂n = 0 on ΓN(1.1)

as the Poisson problem, even though that terminology is usually reserved for the case
γ = 0.

2. Mixed finite element methods for the Poisson problem. So as to pro-
vide a background for some of the discussions of sections 3 and 4 concerning least-
squares finite element methods, we consider, in this section, primal and dual mixed
finite element methods for the Poisson problem.

2.1. The generalized Dirichlet and Kelvin principles. The Dirichlet and
Kelvin principles arise in a variety of applications. Mathematically, they provide two
variational formulations for the Poisson problem and also form the basis for defining
mixed finite element methods for approximations of the solution of that problem.
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2.1.1. The generalized Dirichlet principle. Consider the functional

D(φ,w; f) =
1

2

∫
Ω

(
|w|2 + γ|φ|2

)
dΩ −

∫
Ω

fφ dΩ

and the minimization problem

min
(φ,w)∈H1

D
(Ω)×∇H1

D
(Ω)

D(φ,w; f) subject to w + ∇φ = 0,(2.1)

where γ ≥ 0 is a given function that is assumed to satisfy ‖γ‖L∞(Ω) ≤ C for some con-
stant C ≥ 0. The minimization principle (2.1) is known as the (generalized) Dirichlet
principle.3 Although the constraint w + ∇φ = 0 can be directly substituted into the
functional to eliminate the flux w,4 it will be more profitable for our discussions to
continue to consider the form (2.1).

With the help of a Lagrange multiplier u to enforce the constraint w + ∇φ = 0
and the Lagrangian functional

LD(φ,w,u; f) =
1

2

∫
Ω

(
|w|2 + γ|φ|2

)
dΩ −

∫
Ω

fφ dΩ −
∫

Ω

u · (w + ∇φ) dΩ,

the constrained minimization problem (2.1) can be transformed into the unconstrained
optimization problem of determining saddle-points (φ,w,u) ∈ H1

D(Ω) × ∇H1
D(Ω) ×

∇H1
D(Ω) of LD(φ,w,u; f). It is not difficult to see that the optimality system ob-

tained by setting the first variations of LD(φ,w,u; f) to zero is given by the following:
seek (φ,w,u) ∈ H1

D(Ω) ×∇H1
D(Ω) ×∇H1

D(Ω) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

w · v dΩ +

∫
Ω

∇φ · v dΩ = 0 ∀v ∈ ∇H1
D(Ω),∫

Ω

(w − u) · q dΩ = 0 ∀q ∈ ∇H1
D(Ω),

−
∫

Ω

u · ∇ψ dΩ +

∫
Ω

γφψ dΩ =

∫
Ω

fψ dΩ ∀ψ ∈ H1
D(Ω).

(2.3)

The first and second equations may be easily combined to yield the simplified system⎧⎪⎪⎨⎪⎪⎩
∫

Ω

u · v dΩ +

∫
Ω

∇φ · v dΩ = 0 ∀v ∈ ∇H1
D(Ω),∫

Ω

∇ψ · u dΩ −
∫

Ω

γψφ dΩ = −
∫

Ω

fψ dΩ ∀ψ ∈ H1
D(Ω),

(2.4)

involving only φ ∈ H1
D(Ω) and u ∈ ∇H1

D(Ω).
If solutions to the constrained minimization problem (2.1) or, equivalently, of

(2.4), are sufficiently smooth, then without much difficulty one obtains that

3For f = 0, γ = 0, and appropriate boundary conditions, the Dirichlet principle in the inviscid
fluid mechanics setting states that among all irrotational velocity fields, the one that minimizes the
kinetic energy is the solenoidal one. In the solid mechanics setting, w is a tensor, and a simplified
version of (2.1) is the energy minimization principle.

4This results in the certainly more familiar form for the (generalized) Dirichlet principle:

min
φ∈H1

D
(Ω)

D̃(φ; f), where D̃(φ; f) =
1

2

∫
Ω

(|∇φ|2 + γ|φ|2) dΩ −
∫

Ω

fψ dΩ.(2.2)
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φ = 0 on ΓD and u · n = 0 on ΓN .
(2.5)

Note that from the second equation of (2.3) we also have that w = u. Eliminating the
flux u from (2.5) (again assuming that sufficient smoothness is available), one obtains
the Poisson problem5 (1.1) for the scalar variable φ.

2.1.2. The generalized Kelvin principle. Now consider the functional

K(λ,u) =
1

2

∫
Ω

(
|u|2 + γ|λ|2

)
dΩ

and the minimization problem

min
λ∈L2(Ω), u∈HN (Ω,div)

K(λ,v) subject to ∇ · u + γλ = f.(2.7)

The minimization principle (2.7) is known as the (generalized) Kelvin principle;6 it is
dual to the (generalized) Dirichlet principle.7

With the help of a Lagrange multiplier φ to enforce the constraint and the La-
grangian functional

LK(λ,u, φ; f) =
1

2

∫
Ω

(
|u|2 + γ|λ|2

)
dΩ −

∫
Ω

φ(∇ · u + γλ− f) dΩ,

the constrained minimization problem (2.7) can be transformed into the unconstrained
problem of determining saddle-points (λ,u, φ) ∈ L2(Ω) × HN (Ω,div ) × L2(Ω) of
LK(λ,u, φ; f). It is not difficult to see that the optimality system obtained by setting

5Note that since ∇ψ ∈ L2(Ω), one can easily combine the two equations in (2.4) to yield the
more familiar weak formulation∫

Ω

∇φ · ∇ψ dΩ +

∫
Ω

γψφ dΩ =

∫
Ω

fψ dΩ ∀ψ ∈ H1
D(Ω)(2.6)

for the Poisson problem (1.1). Again, it will be more profitable for our discussion to continue to use
(2.4) instead of the more familiar form (2.6).

6Setting f = 0 and γ = 0 and allowing for an inhomogeneous boundary condition for u · n,
the Kelvin principle for inviscid flows states that, among all incompressible velocity fields, the one
that minimizes the kinetic energy is irrotational. In structural mechanics (where u is a tensor), a
simplified version of (2.7) is known as the complimentary energy principle.

7Unlike the case of the Dirichlet principle, if γ = 0, one cannot directly use the constraint
∇ · u + γλ = f to eliminate one of the variables. If γ > 0, then it is possible to use the constraint to
eliminate the scalar variable λ. In fact, in the latter case we are led to the problem

min
u∈HN (Ω,div)

K̃(u; f), where K̃(u; f) =
1

2

∫
Ω

(
|u|2 +

1

γ
|∇ · u − f |2

)
dΩ.(2.8)

Comparing (2.2) and (2.8), we already see a big difference between the Kelvin and Dirichlet principles,

in addition to the obvious difficulty seen in (2.8) for the case γ = 0. The functional D̃(·; f) in (2.2)
involves all first derivatives of the scalar variable φ, which is why we can minimize it over the space

H1
D(Ω). On the other hand, the functional K̃(·; f) in (2.8) only involves the combination ∇ · u of

first derivatives of the flux u, which is why we can minimize it only with respect to a subspace of
H(Ω, div), and not with respect to H1(Ω).
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the first variations of L(λ,u, φ; f) to zero is given by the following: seek (λ,u, φ) ∈
L2(Ω) ×HN (Ω,div ) × L2(Ω) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

u · v dΩ −
∫

Ω

φ∇ · v dΩ = 0 ∀v ∈ HN (Ω,div ),

∫
Ω

γ(λ− φ)μdΩ = 0 ∀μ ∈ L2(Ω),

−
∫

Ω

ψ∇ · u dΩ −
∫

Ω

γψλ dΩ = −
∫

Ω

fψ dΩ ∀ψ ∈ L2(Ω).

(2.9)

For γ 	= 0, the second and third equations may be easily combined to yield the
simplified system⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
Ω

u · v dΩ −
∫

Ω

φ∇ · v dΩ = 0 ∀v ∈ HN (Ω,div ),

−
∫

Ω

ψ∇ · u dΩ −
∫

Ω

γψφ dΩ = −
∫

Ω

fψ dΩ ∀ψ ∈ L2(Ω),

(2.10)

involving only φ ∈ L2(Ω) and u ∈ HN (Ω,div ). If γ = 0, then (2.9) directly reduces
to (2.10) so that the latter holds for any γ ≥ 0.

The duality of the Dirichlet and Kelvin principles extends to the optimality sys-
tems (2.4) and (2.10). For example, they are respectively described using the dual op-
erators ∇ and −∇·. The domain of ∇ is all of H1

D(Ω), while its range is a constrained
subspace of L2(Ω) consisting of irrotational functions. In contrast, the domain of ∇·
is a constrained subspace of L2(Ω) and its range is all of L2(Ω). We note again the
difference between the domain spaces of the two operators: H1

D(Ω) involves all first
derivatives of the scalar variable, while HN (Ω,div) only involves a combination of
first derivatives of the flux.

2.2. Stable mixed finite element spaces. Finite element approximations of
the mixed problems (2.4) and (2.10) are not stable unless the spaces chosen to ap-
proximate φ and u satisfy the inf-sup condition. To keep our presentation reasonably
short and devoid of unnecessary technical details, we focus on affine families of stable
spaces defined on simplicial triangulations Th of the domain Ω into elements K. In
two dimensions, K are triangles, and in three dimensions, they are tetrahedra. The
symbol Pk(K) denotes the space of all polynomials of degree less than or equal to k
defined on K.

Nodal C0 finite element spaces built from mth degree polynomials, m ≥ 1, are
denoted by8 W0

m(Ω). We recall that there exists an interpolation operator I0 into
W0

m(Ω) such that for any φ ∈ Hm+1(Ω),

‖φ− I0φ‖0 + h‖∇(φ− I0φ)‖0 ≤ Chm+1|φ|m+1.(2.11)

8The reasoning leading to the choice of notation Wi
k for the finite element spaces we employ will

become clear later.
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We denote by W1
m(Ω) the space ∇(W0

m(Ω)).9 We will use the pair of finite element
spaces W0

m(Ω) and W1
m(Ω) to discretize the Dirichlet principle.

For the Kelvin principle, we will use the10 BDMk and RTk spaces on Ω that are
built from the individual element spaces

BDMk(K) = (Pk(K))n and RTk(K) = (Pk(K))n + xPk(K)

in a manner that ensures the continuity of the normal component across element
boundaries; see [11, pp. 113–116] for details and definitions of the corresponding
element degrees of freedom. Since BDMk and RTk both contain complete polynomials
of degree k, their approximation properties in L2 are the same. In particular, one can
show that for either the BDMk or RTk spaces there exists an interpolation operator
I2 such that

‖u − I2u‖0 ≤ Chr|u|r ∀u ∈ Hr(Ω) and 1 ≤ r ≤ k + 1.(2.12)

Since RTk also contains the higher-degree polynomial component xPk(K), it has bet-
ter accuracy in H(Ω,div) than does BDMk. Note, however, that this additional
component does not help to improve the L2 accuracy of RTk spaces because it does
not increase the order of complete polynomials contained in RTk to k+1. In summary,
we have the following estimates for the error in the divergence of the interpolant (see
[11, p. 132]):

‖∇ · (u − I2u)‖0 ≤ Chk‖∇ · u‖k for BDMk spaces(2.13)

and

‖∇ · (u − I2u)‖0 ≤ Chk+1‖∇ · u‖k+1 for RTk spaces.(2.14)

In what follows, we will denote by W2
k(Ω) the RT and BDM spaces having equal

approximation orders with respect to the divergence operator, i.e.,

W2
k(Ω) = {v ∈ H(Ω,div)|v|K ∈ W2

k(K)},

where W2
k(K) is one of the finite element spaces RTk−1(K) or BDMk(K). We can

now combine (2.13) and (2.14) into a single statement: there exists an interpolation
operator I2 into W2

k(Ω) such that

‖∇ · (u − I2u)‖0 ≤ Chk‖∇ · u‖k.(2.15)

Note, however, that from (2.12) we have that the interpolation operator I2 into W2
k(Ω)

satisfies

‖u − I2u‖0 ≤ Chr|u|r

{
for 1 < r ≤ k if W2

k(K) = RTk−1,

for 1 < r ≤ k + 1 if W2
k(K) = BDMk.

(2.16)

9In our setting, W1
m(Ω) is a space of vector-valued functions that are discontinuous with respect

to the simplicial triangulation Th and whose components belong to a subspace Pm−1(K) in each K.
Functions belonging to W1

m(Ω) must be curl-free within each element K (since they are gradients of
function belonging to W0

m(Ω)), so that, except for m = 1, they are not complete (m − 1)st degree
polynomials. However, the precise, explicit characterization of W1

m(Ω), e.g., the construction of
a basis, is not difficult (using their irrotational property), and moreover, as we shall see, it turns
out not to be necessary in practice. For future reference, we note that functions belonging to the
approximating space W0

m(Ω) for the scalar variable are continuous across element boundaries, so that
the tangential components of functions belonging to the approximating space W1

m(Ω) = ∇(W0
m(Ω))

for the flux are automatically also continuous across element boundaries.
10To simplify notation, from now on we will denote both the BDM and BDDF spaces simply by

BDM.
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We denote by W3
k(Ω) the space ∇· (W2

k(Ω)). For mixed finite element methods based
on the Kelvin principle, we will use the finite element spaces RTk−1 or BDMk to
approximate the flux. For characterizations of these spaces and the associated spaces
W3

k(Ω) = ∇ · (W2
k(Ω)) for the scalar variable, see [11].

2.2.1. Stable mixed finite element spaces for the Dirichlet principle.
A mixed finite element method based on the Dirichlet principle may be defined by
discretizing (2.4), i.e.,⎧⎪⎪⎨⎪⎪⎩

∫
Ω

uh · vh dΩ +

∫
Ω

∇φh · vh dΩ = 0 ∀vh ∈ W1
m(Ω),∫

Ω

∇ψh · uh dΩ −
∫

Ω

γψhφh dΩ = −
∫

Ω

fψh dΩ ∀ψ ∈ W0
m(Ω).

(2.17)

Since W1
m(Ω) ≡ ∇(W0

m(Ω)), note that, even at the discrete level, we may again
eliminate the flux approximation to obtain the equivalent discrete problem∫

Ω

∇φh · ∇ψh dΩ +

∫
Ω

γψhφh dΩ =

∫
Ω

fψh dΩ ∀ψ ∈ W0
m(Ω),(2.18)

which we recognize as the standard Galerkin discretization of (2.2) or (2.6). In fact,
using the pair of spaces W0

m(Ω) and W1
m(Ω) for approximating the scalar variable and

the flux, respectively, in the discretization (2.17) of (2.4) is equivalent11 to using the
scalar space W0

m(Ω) in the standard Galerkin discretization (2.18) of (2.2) and then
letting the approximation of the flux be the gradient of the resulting approximation
of the scalar variable.

In this way we see that for discretizations of (2.4), i.e., the Dirichlet principle, the
required inf-sup condition is completely benign in the sense that it can be avoided
by eliminating the flux approximation uh from (2.17), then solving (2.18) for the ap-
proximation φh of the scalar variable using a standard continuous nodal finite element
space W0

m(Ω), and, at the end, determining the approximation to the flux from the
exact relation uh = −∇φh. The required inf-sup condition is implicitly satisfied by
the pair of spaces W0

m(Ω) and W1
m(Ω) = ∇(W0

m(Ω)). If one insists on solving (2.4),
then one needs to explicitly produce a basis for W1

m(Ω); this is easily accomplished.

From either (2.17) or (2.18) one obtains, for the Dirichlet principle, that if φ ∈
Hm+1(Ω) ∩H1

D(Ω), then

‖φ− φh‖0 ≤ hm+1‖φ‖m+1,(2.19)

while the flux approximation is less accurate:

‖u − uh‖0 = ‖∇(φ− φh)‖0 ≤ hm‖φ‖m+1.(2.20)

2.2.2. Stable mixed finite element spaces for the Kelvin principle. For
discretizations of (2.10), i.e., the Kelvin principle, the inf-sup condition is much more
onerous in the sense that defining a pair of stable finite element spaces for the scalar
variable and the flux is not so straightforward a matter.

11Here, by equivalent we mean that they yield exactly the same approximate solutions.



348 P. BOCHEV AND M. GUNZBURGER

The mixed finite element method associated with (2.10), i.e., the Kelvin principle,
is given by the following: seek (φh,uh) ∈ W3

k(Ω) ×W2
k(Ω) such that⎧⎪⎪⎨⎪⎪⎩

∫
Ω

uh · vh dΩ −
∫

Ω

φh∇ · vh dΩ = 0 ∀vh ∈ W2
k(Ω),∫

Ω

ψh∇ · uh dΩ +

∫
Ω

γψhψh dΩ =

∫
Ω

fψh dΩ ∀ψh ∈ W3
k(Ω).

(2.21)

For the γ = 0 case, we refer to [11] for a proof that (W3
k(Ω),W2

k(Ω)) is a stable pair
for the mixed finite element problem (2.21). Moreover, one can show [11, Proposition
1.2, p. 139] that for any sufficiently regular exact solution of (2.10) one has the error
estimate

‖u − uh‖0 ≤ Chr‖u‖r

{
for 1 < r ≤ k if W2

k(K) = RTk−1,

for 1 < r ≤ k + 1 if W2
k(K) = BDMk,

(2.22)

while the error in the divergence is of the same order in both cases,

‖∇ · (u − uh)‖0 ≤ Chr‖∇ · u‖r for 1 < r ≤ k,(2.23)

as is the error in the scalar variable:

‖φ− φh‖0 ≤ Chr(‖φ‖r + ‖u‖r) for 1 < r ≤ k.(2.24)

These results also hold for the γ > 0 case, since the mixed finite element problem
(2.21) is identical to what one obtains for penalty methods for the γ = 0 case; see,
e.g., [11, 18], for details.

We have thus seen that the duality between the Dirichlet and Kelvin principles
propagates to their numerical approximations by mixed finite element methods that
themselves have, in a sense, complementary computational properties. For example,
for the Dirichlet principle, one directly approximates the scalar variable in the H1-
conforming finite element space W 0

m(Ω), and the flux is approximated in the finite
element space W 1

m(Ω) = ∇(W 0
m(Ω)). With respect to L2(Ω) norms, the mixed approx-

imation φh to φ satisfies the optimal bound (2.19), while the approximation uh of the
flux u is less accurate; see (2.20). For the Kelvin principle, the situation is reversed in
the sense that now one directly approximates the flux in the HN (Ω,div )-conforming
finite element space W2

k(Ω) and the scalar variable in W3
k(Ω) = ∇ · (W2

k(Ω)). The
approximation uh to u now satisfies the optimal bound (2.22), while the scalar ap-
proximation is less accurate when W2

k(Ω) = BDMk.
We have also seen the differences in how easily one can satisfy the inf-sup condi-

tion for mixed methods based on the two principles. From (2.18), one sees that for the
Dirichlet principle one can essentially avoid the inf-sup condition, or, if one insists on
using the mixed formulation (2.17), one can easily construct a stable pair of spaces.
This is closely related to the fact that the null space of the gradient consists of the
constant function and is trivial to approximate. On the other hand, for the Kelvin
principle, one has to construct a pair of finite element spaces such that the space for
approximating the scalar variable is the divergence of the space for approximating
the flux and the latter is a subspace of H(Ω,div). This is a much more difficult con-
struction since the divergence operator has a decidedly nontrivial null space that is
much harder to approximate than the (trivial) null space of the gradient. Compared
to the finite element subspaces that can be used for approximations of the Dirichlet
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principle, for the Kelvin principle this leads to the need to define more complicated
finite element subspaces for the flux such as the RT and BDM spaces or continuous
piecewise linear subspaces based on the criss-cross grid.

It is important to note that if one uses C0 finite element spaces for both the scalar
variable and the flux, then (2.17) and (2.21) are identical discrete systems. It is well
known that this leads to unstable approximations, so that one cannot use such pairs
of finite element spaces in mixed methods derived from either the Dirichlet or Kelvin
principles.

2.3. The grid decomposition property. We continue our study of mixed
methods based on the Kelvin principle by showing that the spaces W2

k(Ω) satisfy the
GDP.12

Theorem 2.1. For every uh ∈ W2
k(Ω), there exist wh, zh in W2

k(Ω) such that 13

uh = wh + zh,(2.25)

∇ · zh = 0,(2.26) ∫
Ω

wh · zh dΩ = 0,(2.27)

‖wh‖0 ≤ C(‖∇ · uh‖−1 + h‖∇ · uh‖0).(2.28)

Proof. Given a uh ∈ W2
k(Ω), define wh to be a solution of the following mixed

problem: seek (φh,wh) ∈ W3
k(Ω) ×W2

k(Ω) such that∫
Ω

wh · vh dΩ −
∫

Ω

φh∇ · vh dΩ = 0 ∀vh ∈ W2
k(Ω),∫

Ω

ψh∇ · wh dΩ =

∫
Ω

ψh∇ · uh dΩ ∀ψh ∈ W3
k(Ω).

(2.29)

The second component is then defined as the algebraic complement

zh = uh − wh(2.30)

of uh. Therefore, the first GDP property (2.25) is trivially satisfied.
To prove (2.26), we use the second equation in (2.29) to conclude that∫

Ω

ψh∇ · zh dΩ =

∫
Ω

ψh(∇ · uh −∇ · wh) dΩ = 0 ∀ψh ∈ W3
k(Ω).

Assume now that ∇ · zh 	= 0. From the definition of W3
k(Ω), it follows that the

divergence operator is a surjective mapping W2
k(Ω) �→ W3

k(Ω). Therefore, there exists

12An analogous “GDP” can be defined in the context of the Dirichlet principle; it requires that for
every φh ∈ W0

k(Ω) there exist λh, χh ∈ W0
k(Ω) such that φh = λh + χh, ∇χh = 0,

∫
Ω
λhχhdΩ = 0,

and ‖λh‖0 ≤ C(‖∇φh‖−1 + h‖∇φh‖0). Of course, these conditions are trivially satisfied since
∇χh = 0 and χh ∈ W0

k(Ω) imply that χh = 0 and therefore λh = φh. Again, the fact that the null

space of the gradient operator with respect to H1
D(Ω) is trivial plays a crucial role in the triviality of

the GDP for the Dirichlet principle. On the other hand, for the Kelvin principle, the fact that the
null space of the divergence operator with respect to HN (Ω, div ) is decidedly not trivial also plays
a crucial role in the GDP for that principle. All this, of course, is related to the observations made
above about the inf-sup conditions for the two principles.

13In its original form (see [17]), the GDP was formulated without the term h‖∇ · uh‖0 in (2.28).
However, thanks to the multiplicative h factor, this term will not affect the L2 error rates.
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a nonzero element ψ̂h ∈ W3
k(Ω) such that ψ̂h = ∇ · zh. Then,

0 =

∫
Ω

ψ̂h∇ · zh dΩ =

∫
Ω

ψ̂hψ̂h dΩ 	= 0,

a contradiction.
To show that wh and zh are orthogonal, we use the first equation in (2.29) with

vh = zh: ∫
Ω

wh · zh dΩ =

∫
Ω

φh∇ · zh dΩ = 0.

To prove the last GDP property (2.28), we will need the solution (φ,w) of the
first-order problem{∇ · w = ∇ · uh and w + ∇φ = 0 in Ω,

φ = 0 on ΓD and w · n = 0 on ΓN .

It will be also necessary to assume that this problem has full elliptic regularity, i.e.,
w ∈ H1(Ω) and φ ∈ H2(Ω). Lastly, we recall the a priori bounds

‖w‖0 ≤ ‖∇ · uh‖−1 and ‖w‖1 ≤ ‖∇ · uh‖0.

Then, from (2.22)

‖w − wh‖0 ≤ Ch‖w‖1.

Using this error estimate, the a priori bounds, and the triangle inequality yields that

‖wh‖0 ≤ ‖wh − w‖0 + ‖w‖0

≤ Ch‖w‖1 + ‖∇ · uh‖−1 ≤ Ch‖∇ · uh‖0 + ‖∇ · uh‖−1.

It was shown in [17] that the GDP, i.e., (2.25)–(2.28), along with the relation
W3

k(Ω) = ∇ · (W2
k(Ω)), are necessary and sufficient for the stability of a mixed finite

element method based on the Kelvin principle.

3. Least-squares finite element methods. A least-squares finite element
method for the Poisson equation replaces the search for saddle-points of the La-
grangian functional, either LD(φ,w,u, f) or LK(λ,u, φ, f), by a search for the un-
constrained global minimizer of the quadratic functional

J(φ,u; f) =
1

2

(
‖∇ · u + γφ− f‖2

0 + ‖∇φ + u‖2
0

)
.(3.1)

The least-squares variational principle

min
(φ,u)∈H1

D
(Ω)×HN (Ω,div)

J(φ,u; f)(3.2)

then has a solution that minimizes the L2 residuals of the first-order system (2.5). It
is clear that this solution coincides with the solution of (2.5) or, equivalently, (1.1),
and that it can be determined from the following first-order optimality system for
(3.2): seek (φ,u) ∈ H1

D(Ω) ×HN (Ω,div ) such that

Q((φ,u); (ψ,v)) = F(ψ,v) ∀ (ψ,v) ∈ H1
D(Ω) ×HN (Ω,div),(3.3)
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where

Q((φ,u); (ψ,v)) =

∫
Ω

(∇ · u + γφ)(∇ · v + γψ) dΩ

+

∫
Ω

(∇φ + u) · (∇ψ + v) dΩ

(3.4)

and

F(ψ,v) =

∫
Ω

f(∇ · v + γψ) dΩ.(3.5)

To define a least-squares finite element method, we restrict (3.2) to the conforming
subspace W0

m(Ω) ×W2
k(Ω) ⊂ H1

D(Ω) ×HN (Ω,div ). The least-squares finite element
approximation is then obtained from the following discrete optimality system: seek
(φh,uh) ∈ W0

m(Ω) ×W2
k(Ω) such that

Q((φh,uh); (ψh,vh)) = F(ψh,vh) ∀ (ψh,vh) ∈ W0
m(Ω) ×W2

k(Ω).(3.6)

The next theorem states that

|||ψ,v||| = (Q((ψ,v); (ψ,v)))1/2

is an equivalent norm on H1
D(Ω) × HN (Ω,div ). We call it the energy norm corre-

sponding to the least-squares principle.

Theorem 3.1. There exist positive constants C1 and C2 such that for any
(ψ,v) ∈ H1

D(Ω) ×HN (Ω,div),

C1

(
‖ψ‖2

1 + ‖v‖2
H(Ω,div)

)
≤ |||ψ,v|||2 ≤ C2

(
‖ψ‖2

1 + ‖v‖2
H(Ω,div)

)
.(3.7)

For a proof, see any of [12, 13, 14, 27]. Theorem 3.1 implies that both the continuous
variational problem (3.3) and its finite element restriction (3.6) are uniquely solvable
and that their solutions are bounded by the norm of the data.

Note for later use that (3.3) and (3.6) imply the standard finite element orthog-
onality relation

Q((φ− φh,u − uh); (ψh,vh)) = 0 ∀ (ψh,vh) ∈ W0
m(Ω) ×W2

k(Ω).(3.8)

3.1. Error estimates in H1(Ω) × H(Ω, div). In this section, we review the
convergence properties of least-squares finite element methods for the Poisson equa-
tion with respect to the H1(Ω)×H(Ω,div) norm. Most of the details are omitted, as
the proofs follow by standard elliptic finite element arguments.

Theorem 3.2. Assume that the solution (φ,u) of (3.3) satisfies (φ,u) ∈ H1
D(Ω)∩

Hm+1(Ω) × HN (Ω,div ) ∩ Hk+1(Ω) for some integers k,m ≥ 1. Let (φh,uh) ∈
W0

m(Ω) × W2
k(Ω) be the solution of the least-squares finite element problem (3.6).

Then, there exists a constant C > 0 such that

‖φ− φh‖1 + ‖u − uh‖H(Ω,div) ≤ C
(
hk‖u‖k+1 + hm‖φ‖m+1

)
.(3.9)

The error estimate (3.9) remains valid when uh is approximated by the C0 space
(Pk(Ω))n.
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Proof. Since (φh,uh) is a projection with respect to the energy norm ||| · |||,

|||φ− φh;u − uh||| ≤ |||φ− ψh;u − vh||| ∀ψh ∈ W0
m(Ω), vh ∈ W2

k(Ω).

Then, (3.9) easily follows from the norm equivalence relation (3.7) and the approxi-
mation theoretic estimates (2.11)–(2.15).

Theorem 3.2 shows that the errors in uh and φh will be equilibrated whenever
k = m. For example, if any of the pairs (RT0, P1), (BDM1, P1), or ((P1)

n, P1) are
used in the least-squares finite element method, the a priori bound (3.9) specializes
to

‖φ− φh‖1 + ‖u − uh‖H(Ω,div) ≤ Ch (‖u‖2 + ‖φ‖2) .

Therefore, the asymptotic accuracy of all three pairs in the norm of H1(Ω)×H(Ω,div)
is the same. For this reason, in the implementation of the least-squares finite element
method, one usually chooses the C0 pair ((P1)

n, P1) because it is the easiest to im-
plement. Indeed, the ability to use equal-order interpolation has been often cited as a
primary reason for choosing to use least-squares finite element methods. Nevertheless,
the C0 pair is not flawless because optimal L2 norm errors for the flux approxima-
tion have proven impossible to obtain without augmenting (2.5) with an additional
redundant curl constraint equation. Also, as we have already mentioned, numerical
studies in [16] indicate that the L2 convergence of the flux is indeed suboptimal with
C0 finite element spaces.

The curl constraint, first introduced in the least-squares finite element setting
in [15] and subsequently utilized by many others (see, e.g., [12, 13, 14, 25]), makes
the least-squares functional norm-equivalent on H1(Ω) × H1(Ω). However, in some
situations the curl equation may unduly restrict the range of the differential operator
and should be avoided. In the next section, we will see that if the nodal approximation
of the flux is replaced by an approximation in W2

k(Ω), it may be possible to recover
optimal L2 convergence rates without adding the curl constraint. As in [16], the key
to this is the GDP.

3.2. Error estimates in L2. Throughout this section, we let (φ,u) and (φh,uh)
∈ W0

m(Ω) ×W2
k(Ω) denote the solutions of (3.3) and (3.6), respectively. We assume

that the solution of the problem

−Δψ + γψ = η in Ω, ψ = 0 on ΓD,
∂ψ

∂n
= 0 on ΓD(3.10)

satisfies the regularity estimate

‖ψ‖s+2 ≤ C‖η‖s for s = 0, 1 and ∀ η ∈ Hs(Ω).(3.11)

This additional regularity is necessary since our L2 error estimates are based on a
duality argument.

3.2.1. L2 error estimates for the scalar variable. Our first lemma bounds
the negative norm of the error in the first equation in (2.5) in terms of the energy
norm of the total error. Note that (3.11) of course implies that ‖∇ψ‖s+1 ≤ C‖η‖s for
s = 0, 1.

Lemma 3.3. Let (φh,uh) be a least-squares finite element approximation of (φ,u).
Then,

‖∇ · (u − uh) + γ(φ− φh)‖−1 ≤ Ch|||φ− φh,u − uh|||.(3.12)
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Proof. Let η ∈ H1
0 (Ω) be an arbitrary function, let ψ solve the boundary value

problem (3.10), and let v = −∇ψ. One then obtains∫
Ω

(∇ · (u − uh) + γ(φ− φh)) η dΩ

=

∫
Ω

(∇ · (u − uh) + γ(φ− φh))(∇ · v + γψ) dΩ

= Q(φ− φh,u − uh;ψ,v) = Q(φ− φh,u − uh;ψ − I0ψ,v − I2v)

=

∫
Ω

(∇ · (u − uh) + γ(φ− φh))(∇ · (v − I2v) + γ(ψ − I0ψ) dΩ

+

∫
Ω

(∇(φ− φh) + (u − uh)) · (∇(ψ − I0ψ) + (v − I2v)) dΩ

≤ C((‖∇ · (u − uh)‖0 + ‖φ− φh‖0)(‖∇ · (v − I2v)‖0 + ‖ψ − I0ψ‖0)

+(‖∇(φ− φh)‖0 + ‖u − uh‖0)(‖∇(ψ − I0ψ)‖0 + ‖v − I2v‖0)),

where we have successively used ∇ψ + v = 0, the error orthogonality (3.8), the
definition of Q(·, ·; ·, ·), and the Cauchy–Schwarz inequality. Using the interpolation
error estimates (2.11)–(2.15) and the regularity assumption (3.11), we have that

‖∇ · (v − I2v)‖0 ≤ Ch‖v‖2 ≤ Ch‖η‖1

‖v − I2v‖0 ≤ Ch‖v‖2 ≤ Ch‖η‖1

‖∇(ψ − I0ψ)‖0 ≤ Ch‖ψ‖2 ≤ Ch‖η‖1

‖ψ − I0ψ‖0 ≤ Ch2‖ψ‖2 ≤ Ch2‖η‖1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∀ η ∈ H1

0 (Ω).

Combining the last two sets of results, we easily obtain that, for all η ∈ H1
0 (Ω),∫

Ω

(∇ · (u − uh) + γ(φ− φh)) η dΩ ≤ Ch(‖φ− φh‖1 + ‖u − uh‖H(Ω,div))‖η‖1,

while the left inequality in (3.7) gives∫
Ω

(∇ · (u − uh) + γ(φ− φh)) η dΩ ≤ Ch|||φ− φh,u − uh||| ‖η‖1 ∀ η ∈ H1
0 (Ω).

The lemma follows by taking a supremum over η ∈ H1
0 (Ω).

Next, we bound the L2 error in φh by the energy norm.
Lemma 3.4. Let (φh,uh) be a least-squares finite element approximation of (φ,u).

Then,

‖φ− φh‖0 ≤ Ch|||φ− φh,u − uh|||.(3.13)

Proof. Let ψ solve the boundary value problem{−�ψ + γψ = φ− φh in Ω,

ψ = 0 on ΓD and ∂ψ/∂n = 0 on ΓN .
(3.14)

The regularity assumption (3.11) implies that

‖ψ‖2 ≤ C‖φ− φh‖0.(3.15)
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Using the definition of ψ, integration by parts, and the definition of the least-squares
form (3.4) yields

‖φ− φh‖2
0 =

∫
Ω

(φ− φh)(−�ψ + γψ) dΩ =

∫
Ω

(∇(φ− φh) · ∇ψ + γ(φ− φh)ψ) dΩ

=

∫
Ω

(∇(φ− φh) + (u − uh)) · ∇ψ dΩ

−
∫

Ω

(u − uh) · ∇ψ dΩ +

∫
Ω

γ(φ− φh)ψ dΩ

= Q(φ− φh,u − uh;ψ, 0) +

∫
Ω

(1 − γ)(∇ · (u − uh) + γ(φ− φh))ψ dΩ.

Using the error orthogonality (3.8), the definition (3.14) for ψ, and the regularity
assumption (3.15) yields

Q(φ− φh,u − uh;ψ, 0) = Q(φ− φh,u − uh;ψ − I0ψ, 0)

≤ |||φ− φh,u − uh||| ‖ψ − I0ψ‖1 ≤ Ch|||φ− φh,u − uh||| ‖ψ‖2

≤ Ch|||φ− φh,u − uh||| ‖φ− φh‖0.

In addition, the definition (3.14) for ψ, (3.15), and (3.12) imply that∫
Ω

(1 − γ)(∇ · (u − uh) + γ(φ− φh))ψ dΩ ≤ ‖∇ · (u − uh) + γ(φ− φh)‖−1‖ψ‖1

≤ C‖∇ · (u − uh) + γ(φ− φh)‖−1‖φ− φh‖0

≤ Ch|||φ− φh,u − uh||| ‖φ− φh‖0.

The lemma easily follows by combining the last three results.
Corollary 3.5. Assume that the regularity assumption (3.11) is satisfied, and

assume that the solution (φ,u) of (3.3) satisfies (φ,u) ∈ H1
D(Ω) ∩ Hm+1(Ω) ×

HN (Ω,div ) ∩ Hk+1(Ω) for some integers k,m ≥ 1. Let (φh,uh) ∈ W0
m(Ω) ×W2

k(Ω)
be the solution of the least-squares finite element problem (3.6). Then, there exists a
constant C > 0 such that

‖φ− φh‖0 ≤ C(hk+1‖u‖k+1 + hm+1‖φ‖m+1).(3.16)

Proof. The corollary follows simply by a direct application of (3.7) and (3.9) to
(3.13).

The optimal L2 error bound (3.16) for the scalar variable does not depend on
whether or not the finite element space for the flux satisfies (2.25)–(2.28), i.e., the
GDP. Thus, it remains valid even when equal-order C0 finite element functions are
used for the flux approximations, a result first shown in [24]. On the other hand, we
will see that the GDP is needed if one wants to improve the L2 accuracy of the flux.

3.2.2. L2 error estimate for the flux. Ultimately, the final L2 error estimates
for approximations to the flux depend on whether W2

k(Ω) represents the RTk−1 or
the BDMk family. To this end, we need the following result.

Lemma 3.6. Let (φh,uh) ∈ W0
m(Ω) ×W2

k(Ω) be the least-squares finite element
approximation defined by (3.6). Then,14

‖u − uh‖0 ≤ C
(
h|||φ− φh,u − uh||| + h‖∇ · (u − vh)‖0 + ‖u − vh‖0

)
(3.17)

14It is clear from the proof of this lemma that it holds for any flux approximation that satisfies
the GDP.
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for any vh ∈ W2
k(Ω).

Proof. Let vh be an arbitrary element of W2
k(Ω). From Theorem 2.1, we know

that there exist zh and wh, also in W2
k(Ω), such that

uh − vh = wh + zh

and the properties (2.26)–(2.28) hold. We recall for later use that

‖∇ · v‖−1 ≤ ‖v‖0 ∀v ∈ HN (Ω,div).(3.18)

We now bound the two GDP components of uh − vh in L2. To estimate ‖wh‖0, we
successively use (2.28), (3.18), (3.12), (3.7), and (3.13) to obtain

‖wh‖0 ≤ C(‖∇ · (uh − vh)‖−1 + h‖∇ · (uh − vh)‖0)

≤ C(‖∇ · (u − uh)‖−1 + h‖∇ · (u − uh)‖0

+ ‖∇ · (u − vh)‖−1 + h‖∇ · (u − vh)‖0)

≤ C(‖∇ · (u − uh) + γ(φ− φh)‖−1 + h‖∇ · (u − uh)‖0

+ ‖γ(φ− φh)‖−1 + ‖u − vh‖0 + h‖∇ · (u − vh)‖0)

≤ C(h|||φ− φh,u − uh||| + ‖φ− φh‖0 + ||u − vh‖0 + h‖∇ · (u − vh)‖0)

≤ C(h|||φ− φh,u − uh||| + ||u − vh‖0 + h‖∇ · (u − vh)‖0).

To estimate ‖zh‖0, we use the error orthogonality (3.8) with ψh = 0 and vh = zh.
Since from (2.26) we have that ∇ · zh = 0, this identity reduces to∫

Ω

(∇(φ− φh) + (u − uh)) · zh dΩ = 0,

from which integrating by parts and again using ∇ · zh = 0 yields∫
Ω

(u − uh) · zh dΩ = 0.

Using this result and the orthogonality of zh and wh (see (2.27)), we obtain

‖zh‖2
0 =

∫
Ω

zh · zh dΩ =

∫
Ω

(zh + wh) · zh dΩ

=

∫
Ω

(uh − vh) · zh dΩ =

∫
Ω

(u − vh) · zh dΩ,

so that

‖zh‖0 ≤ ‖u − vh‖0.

To complete the proof, we note that

‖u − uh‖0 ≤ ‖u − vh‖0 + ‖uh − vh‖0 ≤ ‖u − vh‖0 + ‖wh‖0 + ‖zh‖0

and then use the bounds on zh and wh.
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Let us now inspect (3.17). The first term on the right-hand side is exactly the
same one as in the L2 bound (3.13) for the scalar variable. Let us further assume
that the approximation orders of the spaces used for the scalar variable and the flux
are equilibrated, i.e., φh ∈ W0

r (Ω) and uh ∈ W2
r (Ω) for some r ≥ 1. Then,

|||φ− φh,u − uh||| ≤ Chr(‖φ‖r+1 + ‖u‖r+1).

The additional factor h multiplying this term in (3.17) will increase the order of that
term to r + 1, just as in (3.16). However, (3.17) contains the two additional terms
h‖∇ · (u− vh)‖0 and ‖u− vh‖0. Recall that W2

r (Ω) represents RT and BDM spaces
that are equilibrated with respect to the divergence error. Therefore, after setting
vh = I2u, from (2.15) it follows that

‖∇ · (u − vh)‖0 ≤ Chr‖u‖r+1.

After multiplication by h, the order of this term also increases to r+ 1. However, the
order of the last term will depend on whether W2

r (Ω) represents a BDM or RT space.
Indeed, from (2.16),

‖u − vh‖0 ≤ C

{
hr‖u‖r if W2

r (Ω) = RTr−1,

hr+1‖u‖r+1 if W2
r (Ω) = BDMr.

The next corollary summarizes these observations.

Corollary 3.7. Assume that the regularity assumption (3.11) is satisfied, and
assume that the solution (φ,u) of (3.3) satisfies (φ,u) ∈ H1

D(Ω) ∩ Hr+1(Ω) ×
HN (Ω,div ) ∩ Hr+1(Ω) for some integer r ≥ 1. Let (φh,uh) ∈ W0

r (Ω) × W2
r (Ω)

be the solution of the least-squares finite element problem (3.6). Then, there exists a
constant C > 0 such that

‖u − uh‖0 ≤ C

{
hr(‖u‖r+1 + ‖φ‖r+1) if W2

r (Ω) = RTr−1,

hr+1(‖u‖r+1 + ‖φ‖r+1) if W2
r (Ω) = BDMr.

(3.19)

Consider, for example, the lowest-order case for which r = 1, W0
1 (Ω) = P1,

and W2
1 (Ω) is either RT0 or BDM1. If the least-squares finite element method is

implemented with RT0 elements, (3.19) specializes to

‖u − uh‖0 ≤ h(‖u‖2 + ‖φ‖2).

If instead we use BDM1 elements, we then obtain the improved error bound

‖u − uh‖0 ≤ h2(‖u‖2 + ‖φ‖2).

It is worth repeating that the reason for this difference in the L2 errors is the structure
of the RT spaces. Since RT0 = (P0)

n + xP0, the approximation properties of RT0 in
L2 are the same as those of P0. However, it is easy to see that, thanks to the extra
term xP0, ∇· (RT0) = P0; i.e., the divergence of u is approximated to the same order
as the field itself. For numerical examples with least-squares methods that illustrate
this feature of RT spaces, we refer to [2].
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4. Least-squares finite element methods and duality. We already saw that
a least-squares finite element method implemented using equal-order C0 finite element
spaces approximates the scalar variable with the same accuracy as a Galerkin (or,
equivalently, a mixed) method for the Dirichlet principle. However, the approximation
properties of the Kelvin principle are only partially inherited in the sense that the
accuracy in the approximation to the divergence of the flux is recovered, but the
accuracy in the flux approximation itself may be of one order less. This should not
be too much of a surprise because C0 elements provide stable discretization only for
the Dirichlet principle (with the exception of the criss-cross grid; see [16]). While
least-squares minimization is stable enough to allow for the approximation of scalar
variables and the flux by equal-order C0 finite element spaces, it cannot completely
recover from the fact that such spaces are unstable for the Kelvin principle.

The key observation from section 3.2 is that a least-squares finite element method
can inherit the computational properties of both the Dirichlet and the Kelvin princi-
ples, provided the scalar variable and the flux are approximated by finite element
spaces that are stable with respect to these two principles. Then, as our analysis
showed, least-squares finite element solutions recover the accuracy of the Dirichlet
principle for the scalar variable and the accuracy of the Kelvin principle for the flux.

In a way, we see that, implemented in this particular manner, the least-squares
finite element method represents a balanced mixture of the two principles. Below,
we provide an explanation of this observation using the apparatus of differential form
calculus, albeit in a simplified form and without an explicit reference to differential
forms on manifolds. For consistency, in what follows, H(Ω, grad), H(Ω, curl ), and
H(Ω,div) denote spaces of square integrable functions whose gradients, curls, and
divergences, respectively, are also square integrable.15

The De Rham differential complex

R ↪→ H(Ω, grad)
∇�−→ H(Ω, curl )

∇×�−→ H(Ω,div)
∇·�−→ L2(Ω) �−→ 0(4.1)

is an exact sequence of spaces in the sense that each operator maps the space on its
left to the kernel of the next operator in the sequence, and the last mapping is a
surjection. We will now start to use the identifications

W0(Ω) = H(Ω, grad), W1(Ω) = H(Ω, curl ), W2(Ω) = H(Ω,div), W3(Ω) = L2(Ω)

to indicate that these function spaces are comprised of proxies for differential forms of
orders 0, 1, 2, and 3, respectively.16 Exact sequences of finite element spaces provide
piecewise polynomial approximations of the proxies. Commonly used terminologies
for the finite element subspaces of W0, W1, W2, and W3 are nodal, edge, face, and
volume (or discontinuous) elements, respectively.

Differential forms have always played a fundamental role in classical mechanics
and numerical methods for Hamiltonian systems; see, e.g., [3, 6]. Their place as
an abstraction tool for discretization of elliptic boundary value problems was perhaps
first recognized in [21], while [8, 9] further affirmed their importance in computational
electromagnetism.

Subsequently, the idea that a stable partial differential equation discretization can
be developed using a discrete equivalent of the De Rham complex has been exploited
by many researchers in finite element, finite volume, and finite difference methods

15Here we treat the case of n = 3; similar developments can be carried out for the two-dimensional
case.

16This should explain the seemingly peculiar choice of notation introduced earlier in the paper.
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[1, 5, 19, 20, 22, 23, 26]; see [4] for a more extensive bibliography. In particular, for
second-order elliptic problems, a key tool for encoding their structure is provided by
the factorization or Tonti diagrams; see [19, 20]. Essentially, these diagrams break
the problem into topological relations between different spaces in a De Rham com-
plex connected by metric relations expressed by the Hodge ∗-operator, a linear map
Wk(Ω) �→ Wn−k(Ω). The factorization diagram for the Poisson problem (see, e.g.,
[20, 26]) is

W0(Ω) φ
∇−→ −u W1(Ω)

ξ = ∗φ � � q = ∗u

W3(Ω) f − γξ
∇·←− q W2(Ω)

(4.2)

We will refer to the relation and the variables on the top of the diagram as the
primal variables and equilibrium equation. The dual variables and their “equilibrium”
equation are represented by the bottom part of the diagram. The dual and primal
variables serve as proxies for 0, 1 and 2, 3 differential forms, respectively.

The horizontal links in (4.2) correspond to the differential equations

∇φ = −u and ∇ · q = −γξ + f,

while the vertical links provide the “constitutive” relations

ξ = ∗φ and q = ∗u.
The importance of structures such as (4.2) stems from the fact that they encode
fundamental relationships between spaces and operators that are required for the
stability of discretizations; see, e.g., [1, 4, 9, 20, 22].

Let us now show that the Dirichlet and Kelvin principles are obtained from (4.2)
by the approximation of the Hodge operator by an identity operator and subsequent
elimination of the dual or the primal variables, respectively.

If the dual variables are substituted by the primal ones according to

ξ = φ and q = u,

then the dual equation in (4.2) must be modified to account for the fact that u
is a proxy of a 1-form, rather than of a 2-form. As such, u is in the domain of
the curl operator but not in the domain of the divergence operator. Thus, in the
dual equilibrium equation, we replace the divergence operator by a weak divergence
operator defined through the following variational statement:

∇̃· : W1(Ω) �→ W0(Ω), ∇̃ · u = φ,

if and only if ∫
Ω

φψ dΩ = −
∫

Ω

u · ∇ψ dΩ ∀ψ ∈ W0(Ω).

This changes the original factorization diagram to one in terms of only the primal
variables:

W0(Ω) φ
∇−→ −u W1(Ω)

η = φ ↓ ↓ v = u

W0(Ω) f − γφ
∇̃·←− u W1(Ω)

(4.3)
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The partial differential equation system represented by this diagram is17

∇φ + u = 0 in W1(Ω),

−
∫

Ω

u · ∇ψ − γφψ dΩ =

∫
Ω

fψ dΩ ∀ψ ∈ W0(Ω).

One recognizes (4.3) as the optimality system (2.4) for the Dirichlet principle. The
diagram (4.3) can be viewed as a representation of this principle.

If instead the primal variables are eliminated according to

φ = ξ and u = q,

then the primal equilibrium equation in (4.2) must be modified to account for the
fact that ξ is a proxy of a 3-form, rather than for a 0-form. As such, ξ is not in the
domain of the gradient operator, which therefore must be replaced by a weak one:

∇̃ : W3(Ω), �→ W2(Ω), ∇̃ξ = q,

if and only if ∫
Ω

q · v dΩ = −
∫

Ω

ξ∇ · v dΩ ∀v ∈ W2(Ω).

The factorization diagram in terms of the dual variables is then given by

W3(Ω) ξ
∇̃−→ −q W2(Ω)

φ = ξ ↑ ↑ u = q

W3(Ω) f − γξ
∇·←− q W2(Ω)

(4.4)

The problem represented by this diagram is∫
Ω

q · v dΩ −
∫

Ω

ξ∇ · v dΩ = 0 ∀v ∈ W2(Ω),

∇ · v + γξ = f in W3(Ω).

Now the second equation is an exact relation, and we see that, by elimination of the
primal variables, we recover the optimality system (2.10) for the Kelvin principle.

It is now clear that each of the classical variational principles for the system (1.1)
can be derived from (4.2) by elimination of one of the sets of variables (primal or dual)
and relaxation of the complementary equilibrium equation. Elimination of variables,
on the other hand, can be interpreted as approximation of the Hodge ∗-operator by
an identity. This, of course, immediately leads to the following question: what kinds
of variational principles can be obtained by using other ways of approximating the
Hodge operator? Here, we will focus on one particular method wherein this operator
is replaced by an L2 projection. Not surprisingly, we will see that this approximation
leads eventually to a least-squares principle for the first-order formulation of (1.1),
but one that is necessarily implemented with spaces for the scalar inherited from the

17The first equation can also be stated in variational form; see (2.4). However, we write it in
algebraic form to stress the fact that it represents an exact relationship.
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Dirichlet principle, and, for the flux, from the Kelvin principle. Thus, in a sense, the
least-squares method, when implemented in this manner, is indeed a mixture of the
two classical principles that combines their best properties.

The idea is to keep both the primal and dual sets of variables, but to replace the
Hodge operator by an optimization problem that penalizes the discrepancy between
these sets. Then, the primal and dual equations become linear constraints that must
be satisfied by the minimizers of this functional. Therefore, we are led to the following
constrained optimization problem: seek (φ,u, ξ,q) in W 0(Ω) × W1(Ω) × W2(Ω) ×
W3(Ω) such that

J (φ,u, ξ,q) =
1

2
(‖ξ − φ‖2

0 + ‖q − u‖2
0) �→ min(4.5)

subject to

∇φ + u = 0 and ∇ · q + γξ = f.(4.6)

In this problem, the Hodge operator is approximated by the L2 projections

(∗0) : W0(Ω) �→ W3(Ω) and (∗1) : W1(Ω) �→ W2(Ω)

defined implicitly via the optimization process.
It is possible to solve (4.5)–(4.6) by using Lagrange multipliers to enforce the

constraints. However, a better strategy (that also reduces the number of variables)
is to note that the constraint equations can be satisfied exactly if the spaces chosen
for φh, uh, ξh, and qh are from a discrete exact sequence. It is also important to
note that primal and dual variables can be approximated by discrete exact sequences
that are not necessarily defined on the same mesh. Thus, assume that for the primal
side we have chosen W0

m(Ω) and W1
m(Ω) to approximate φ and u, respectively, while

for the dual side we work with the spaces W2
k(Ω) and W3

k(Ω) to approximate q and
ξ, respectively. In this manner, each set of variables is represented in the discrete
problem by an internal approximation, and we can use the equilibrium equations
(rather than the constitutive relations) to eliminate ξh and uh. This leads to the
following discrete minimization problem in terms of φh and qh only:

min
W0

m(Ω)×W2
k
(Ω)

1

2
(‖∇ · qh + γφh − f‖2

0 + ‖qh + ∇φh‖2
0).(4.7)

While this problem appears identical to a least-squares formulation derived directly
from (2.5), the manner in which it was obtained retains the information about the
origins of the different variables. In particular, we see that in (4.7), the scalar variable
is inherited from the primal Dirichlet principle, while the flux is inherited from the
dual Kelvin principle. As was shown in section 3.2, when this is taken into account
in the choice of approximating finite element spaces, the computational properties
of both principles are recovered by (4.7). This is perhaps the most important point
of our discussion. Another important distinction between (4.7) and a nodal-based
implementation of a least-squares principle is that (4.7) leads to a conservative ap-
proximation in the following sense. Once φh and qh are found, we can recover the
eliminated dual and primal variables so as to obtain four fields φh, uh, ξh, and qh

that exactly satisfy the relations

∇φh + uh = 0 and ∇ · qh + γξh = Π3f.

The operator Π3 that appears above is the L2 projection into the subspace W3
k of

L2(Ω), while the discrete Hodge operators can be identified with L2 projections from
nodal to discontinuous elements and from edge to face elements, respectively.
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5. Conclusions. We have demonstrated that least-squares finite element meth-
ods for the first-order Poisson equation can combine the best properties of the clas-
sical Dirichlet and Kelvin principles if their implementation uses spaces consistent
with the origins of the scalar variable and the flux. In particular, we have shown
that a least-squares formulation can be viewed as resulting from a particular choice
in the approximation of the Hodge operator. From this point of view, the scalar
variable is inherited from the Dirichlet principle and requires approximation by nodal
elements. The flux is inherited from the Kelvin principle and must be approximated
by H(Ω,div) conforming families to enable recovery of optimal L2 rates without the
addition of curl constraints.

When implemented in this manner, the least-squares finite element method can
be deemed superior to both the classical Galerkin and mixed methods because, on
the one hand, it provides optimal approximation of all fields with the possibility of
recovering an approximation that is conservative in the sense explained earlier, while,
on the other hand, it leads to symmetric and positive definite algebraic systems of
equations.
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