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Abstract. A reduced-basis method based on centroidal Voronoi tessellations

(CVT’s) is introduced. A discussion of reduced-ordering modeling for complex

systems such as fluid flows is given to provide a context for the application of

reduced-order bases. Then, detailed descriptions of CVT-based reduced-order

bases including their construction from snapshot sets their application to the
low-cost simulation of complex systems are given. Some concrete incompress-
ible flow examples are used to illustrate the construction and use of CVT-based
reduced-order bases.

1. Introducion

Numerical solutions of nonlinear complex systems such as the Navier-Stokes
system are expensive with respective to both storage and CPU costs. Even with
the use of good mesh generators, discretization schemes, and solution algorithms,
the computational simulation of complex, turbulent, or chaotic systems still remains
a formidable endeavor. For example, typical finite element codes may require many
thousands of degrees of freedom for the accurate simulation of fluid flows. The
situation is even worse for optimization problems for which multiple solutions of
the complex state system are usually required or in feedback control problems for
which real-time solutions of the complex state system are needed. The types of
reduced-order models that we study are those that attempt to determine accurate
approximate solutions of a complex system using very few degrees of freedom. To
do so, such models have to use basis functions that are in some way intimately con-
nected to the problem being approximated. Once a very low-dimensional reduced
basis has been determined, one can employ it to solve the complex system by ap-
plying, e.g., a Galerkin method. There have been many reduced-order modeling
techniques proposed. The most popular reduced-order modeling approach for com-
plex systems is based on proper orthogonal decomposition (POD) analysis. POD
begins with a set of m̃ snapshots; these could be generated by evaluating the compu-
tational solution of a transient problem at several instants of time or by evaluating
the computational solution for several values of the parameters appearing in the
problem description or by a combination of the two. The computational solutions
that are used to determine the snapshot set are determined using costly, large-scale,
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high-fidelity e.g., finite element, codes. The K-dimensional POD basis is then deter-

mined from the K eigenvectors corresponding to the d̃ most dominant eigenvalues
of the correlation matrix for the snapshots. The POD basis is then used, usually by
applying a projection procedure, to determine an approximate solution for differ-
ent values of the system parameters. POD-based model reduction has been applied
with some success to several problems, most notably in fluid mechanics settings.
For detailed discussions, one may consult [1–5,15,18,19,21–23,31–36,39–45,49,50].

Centroidal Voronoi tessellations (CVT’s) have been successfully used in sev-
eral data compression settings, e.g., in image processing and the clustering of data.
Reduced-order modeling of complex systems is another data compression setting,
i.e., replacing high-dimensional approximations with low-dimensional ones. Thus,
one can ask if CVT’s can be used for the reduced-order modeling of complex sys-
tems? In CVT-reduced order modeling, we start with a snapshot set just as is done
in a POD-based setting. However, instead of determining a POD basis from the
snapshot set, we apply our CVT methodologies to determine the generators of a
CVT of the snapshot set; these generators constitute the reduced-order basis. We
then use the CVT-based basis in just the same way as one uses a POD-based basis
to determine a very low-dimensional approximation to the solution of a complex
system. CVT also possesses an optimality property, although it is different from
that possessed by POD bases.

The efficiency of CVT-based reduced bases depends on the their dimension,
i.e., if a CVT-based basis is low-dimensional and can still approximate the state
well, then approximations of the state of a complex system can be inexpensively
determined. However, the ability of a CVT-based basis to approximate the state
of a system is totally dependent on the information contained in the snapshot set
used to generate the basis. Certainly, a CVT-based basis cannot contain more
information than that contained in the snapshot set. Thus, crucial to the success of
the CVT-based approaches to model reduction is the generation of “good” snapshot
sets. (All this is equally true for POD-based bases.)

2. The CVT reduced-basis method for the Navier-Stokes equations

Let Ω be a bounded region in <2 whose boundary is denoted by ∂Ω = ΓD ∪ΓN

and let T denote a positive constant. Let u(t,x) and p(t,x) denote the velocity and
pressure fields, respectively, f(t,x) the given body force per unit mass, and u0 the
given initial velocity. Furthermore, let b denote a specified the boundary velocity.
The Navier-Stokes equations are then given by

ut − ν∆u + (u · ∇)u + ∇p = f in Ω × (0, T ](2.1)

∇ · u = 0 in Ω × (0, T ](2.2)

u = b on ΓD × (0, T ](2.3)

−p + ν
∂u

∂n
= 0 on ΓN × (0, T ](2.4)

u(0,x) = u0(x) in Ω,(2.5)

where ν is the kinetic viscosity.

2.1. Variational formulation. We use a variational formulation and finite
element method to approximate (2.1)–(2.5), but other methods can be also used in
the context of reduced-basis methods.
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A variational formulation of the problem (2.1)–(2.5) is following: Find u ∈
L2(0, T ;Vb) and p ∈ L2(0, T ;L2

0(Ω)) such that
∫

Ω

ut · v dΩ + ν

∫

Ω

∇u : ∇v dΩ +

∫

Ω

(u · ∇)u · v dΩ −

∫

Ω

p∇ · v dΩ

=

∫

Ω

f · v dΩ for all v ∈ H1

0(Ω)(2.6)

∫

Ω

q∇ · udΩ = 0 for all q ∈ L2

0(Ω)(2.7)

u(0,x) = u0(x) in Ω,(2.8)

where Vb = {u ∈ H1(Ω) : u = b on ΓD,b ∈ H1/2(∂Ω)} and H1
0 = {u ∈ H1(Ω) :

u = 0 on ΓD}.
A typical finite element approximation of (2.6)–(2.7) is to seek solutions uh(t, ·) ∈

Vh
b ⊂ Vb and ph ∈ Sh

0 ⊂ L2
0(Ω),

∫

Ω

uh
t · vh dΩ + ν

∫

Ω

∇uh : ∇vh dΩ +

∫

Ω

(uh · ∇)uh · vh dΩ

−

∫

Ω

ph∇ · vh dΩ =

∫

Ω

f · vh dΩ for all vh ∈ Vh
0(2.9)

∫

Ω

qh∇ · uhdΩ = 0 for all qh ∈ Sh
0(2.10)

where Vh
0 ⊂ H1

0(Ω) and Sh
0 ⊂ L2

0(Ω).

2.2. Centroidal Voronoi tessellations. Given a discrete set of modified
snapshots W = {~un}

N
n=1 (see Section 3.1 for a discussion of snapshots, including

how they are generated and how they are modified to satisfy zero boundary condi-
tions) belonging to <J , a set {Vk}

K
k=1

is a tessellation of W if {Vk}
K
k=1

is a subdivi-
sion of W into disjoint, covering subsets, i.e., Vk ⊂ W for k = 1, ...,K, Vk ∩ Vi = ∅
for k 6= i, and

⋃K
k=1

Vk = W . Given a set of points {~zk}
K
k=1

belonging to <J (but
not necessarily to W ), the Voronoi region corresponding to the point ~zk is defined
by

V̂k = {~u ∈ W : |~u − ~zk| ≤ |~u − ~zi| for i = 1, ...,K, k 6= i},

where equality holds only for k < i. The set {V̂k}
K
k=1

is called Voronoi tessellation

or Voronoi diagram of W corresponding to the set of points {~zk}
K
k=1

. The points

~zk, k = 1, . . . ,K, are called the generators of the Voronoi diagram {V̂k}
K
k=1

of W .
Given a density function ρ(~y) ≥ 0, defined for ~y ∈ W , the mass centroid ~z∗ of any
subset V ⊂ W is defined by

∑

~y∈V

ρ(~y)|~y − ~z∗|2 = inf
~z∈V ∗

∑

~y∈V

ρ(~y)|~y − ~z|2,

where the sums extend over the points belonging to V . The set V ∗ can be taken
to be V or it can be an even larger set such as all of <J . In case V ∗ = <J , ~z∗ is
the ordinary mean

~z∗ =

∑
~y∈V ρ(~y)~y

∑
~y∈V ρ(~y)

.

In this case, ~z∗ /∈ W in general.

If {~zk}
K
k=1

is the set of generating points of the Voronoi tessellation {V̂ K
k } and

{~z∗k}
K
k=1

is the set of mass centroids of the Voronoi regions {V̂ K
k }, then, in general,
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~zk 6= ~z∗k for k = 1, ...,K. If ~zk = ~z∗k for k = 1, ...,K, then we refer to the Voronoi
tessellation as being a centroidal Voronoi tessellation (CVT). CVT’s of discrete
sets are closely related to optimal K-means clusters so that Voronoi regions and
centroids can be referred to as clusters and cluster center, respectively.

There are several algorithms known for constructing centroidal Voronoi tessel-
lations of a given set. Lloyd’s method is a deterministic algorithm which is the
obvious iteration between computing Voronoi diagrams and mass centroids, i.e., a
given set of generators is replaced in an iterative process by the mass centroids of
the Voronoi regions corresponding to those generators. MacQueen’s method is a
very elegant probabilistic algorithm. Other probabilistic methods have been devised
that may be viewed as generalization of both the MacQueen and Lloyd methods
and that are amenable to efficient parallelization; see [20].

2.3. The CVT reduced-order model. If {~zk}
K
k=1

are the generators of a
CVT of the set of (modified) snapshot vectors {~un}

N
n=1, we choose for the reduced-

basis space

UK = span{zk : i = k, . . . ,K},

where, for k = 1, . . . ,K, zk is the finite element function having ~zk as coefficients.
As will be illustrated in Section 3.1, the reduced-basis functions satisfy homogeneous
boundary conditions. We then seek a reduced-basis approximation of the form
uK(t, ·) = uK

p (t, ·) + uK
h (t, ·), where uK

h (t, ·) ∈ UK = span{uk : k = 1, . . . ,K} ⊂

Vh and uK
p (t, ·) is a particular finite element function chosen to satisfy the boundary

conditions (again, see Section 3.1); uK
h (t, ·) is determined from

∫

Ω

uK
t · v dΩ + ν

∫

Ω

∇uK : ∇v dΩ

+

∫

Ω

(uK · ∇)uK · v dΩ =

∫

Ω

f · v dΩ ∀v ∈ UK(2.11)

(uK ,v)∂Ω = (ub,v)∂Ω ∀v ∈ UK |∂Ω,(2.12)

and

(2.13) (u(0,x),vM ) = (u0(x),v) for all v ∈ UK .

Note that the pressure does not appear in these equations; also, the continuity
equation (2.2) is absent. This is because the reduced basis functions are constructed
so that they automatically discretely divergence free.

In our computational example, because of the special form chosen for the inho-
mogenous data b, we will be able to choose the particular solution uK

p (t,x) to have

the form uK
p = α0(t)φ0(x), where φ0 is a steady-state finite element solution of the

discretized Navier-Stokes equations and α0(t) is chosen so that uK
p (t,x) satisfies

the time-dependent boundary condition. If we let φk = uk for k = 1, . . . ,K, then
the reduced-basis approximation of the velocity takes the form

(2.14) uK(t) =

K∑

k=0

αk(t)φk.
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Then, (2.11) and (2.13) respectively take the form

(2.15)

K∑

k=0

d

dt
αk(t)(φk,φk) + ν

K∑

k=0

αk(t)(∇φk,∇φi)

+

(
K∑

`=0

α`(t)φ` · ∇
k∑

i=0

αk(t)φk,φi

)
= (f ,φi)

and

(2.16)

k∑

i=1

αk(0)(φk,φi) = (u0,φi)

for i = 1, . . . ,K. Equivalently, we have the nonlinear system of ordinary differential
equations that determine {αk(t)}K

k=1

M
d

dt
~α(t) + H~α(t) + (~α(t))T

N~α(t) = ~f(t)(2.17)

where the mass matrix M, the stiffness matrix H, the solution vector ~α(t), the

convection tensor N, and the forcing vector ~f(t) are respectively given by

Mik =

∫

Ω

φk · φi dΩ, Hik = ν

∫

Ω

∇φk : ∇φi dΩ, (~α)k = αk(t),

Ni`k =

∫

Ω

(φ` · ∇)φk · φi dΩ, (~f)i =

∫

Ω

f · φi dΩ

for k, i, ` = 1, . . . ,K. Note that some terms on the left-hand side of (2.17) involve α0

only (and not the other αk’s); those terms should be shifted to the right-hand side.
Also note that all of these matrices and tensors are full; however, since K will be
chosen small (see Section 3.2), this does not cause any computational inefficiencies.

3. Computational experiments illustrating the mplementation of the

CVT-reduced-order model

To compare the use, efficiency, and accuracy of the CVT-based reduced-order
modeling technique, one example is considered, which we denote the T-Cell prob-

lem. This is a incompressible, viscous flow problem having boundary conditions
that include an inflow shape function containing a multiplicative parameter γ that
controls the strength of the inflow.

The governing equations for the two dimensional incompressible, viscous flow
in the T-shaped region (see Figure 1) are the Navier-Stokes system (2.1) and (2.2)
(with f = 0) along with, for the specific problems considered here, the initial and
boundary conditions

u(0,x) = u0(x) in Ω,(3.1)

u = 100 γ(t) (1 − y) (0.5 − y) on (0, T ) × Γi,(3.2)

−p + (n · ∇)u = 0 on (0, T ) × Γo,(3.3)

u = 0 on (0, T ) × Γd,(3.4)

where x = (x, y), Γi = {x = 0 ; 0.5 < y < 1.0} and Γo = {x = 1 ; 0.5 < y < 1.0} are
the inflow and outflow parts of the boundary, respectively, and Γd = ∂Ω\(Γi ∪Γo);
see Figure 1. In (3.2), γ(t) is a parameter that determines the strength of the
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parabolic inflow velocity profile. We choose ν = 1 and T = 0.05 for generating
snapshots.

Inlet  Γ
i

Outlet  Γ
o

Figure 1. The flow region for the T-Cell example.

Accurate Galerkin-mixed method finite element approximations of the solutions
of (2.1), (2.2), and (3.1)–(3.4) are obtained using the P2–P1 Taylor-Hood finite
element pair on a grid of 4961 nodes. Finite element solutions are used for the
generation of snapshots and later for comparison with CVT-based reduced-order
solutions.

For the generation of snapshots, we will also solve, by the finite element method,
stationary versions of our governing system for which the time derivative term in
(2.1) and the initial condition (3.1) are omitted and γ in (3.2) is chosen independent
of t.

3.1. Generating snapshots. We use the following procedure to determine a
set of snapshot vectors. First, the finite element approximation to the stationary
version of (2.1), (2.2), and (3.1)–(3.4) with γ = 1 is obtained. Using that steady
state solution as the initial data u0 in (3.1) and using γ = 5 for 0 < t < T/2 = 0.025
and γ = 1 for 0.025 < t < T = 0.05 in the boundary condition (3.2), we then

determine a finite element approximation
∑J

j=1
Uj(t)ψj(x) of the solution of (2.1),

(2.2), and (3.1)–(3.4), where J denotes the dimension of the finite element space
used for the velocity and {ψj}

J
j=1

denotes the basis functions for that space. This
is the flow we use to generate the snapshots; it can be viewed as one for which the
steady state solution for γ = 1 is suddenly jolted, at t = 0, by increasing the value
of γ to five, and jolted again at t = T/2 = 0.025 by decreasing the value of γ back
to one. The 500 snapshot vectors

(3.5) ~un =




U1(tn)

U2(tn)
...

UJ(tn)


 , n = 1, . . . , N = 500.

are then determined by evaluating the solution of this impulsively started prob-
lem at 500 equally spaced time values tn, n = 1, . . . , 500, ranging from t = 0 to
t = T = 0.05. Note that the time interval used for sampling snapshots is a multiple
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of the time interval used for the time discretization of the system of ordinary differ-
ential equations (2.17). The snapshot vectors {~un}

N
n=1 correspond to the snapshot

functions

un(x) =

J∑

j=1

Uj(tn)ψj(x) for n = 1, . . . , N = 500.

For subsequent use, it is convenient to modify the 500 snapshots so that they
satisfy homogeneous boundary conditions. To this end, we first obtain the reference

finite element approximation v(x) =
∑J

j=1
Vjψj(x) of the stationary version of

(2.1), (2.2), and (3.1)–(3.4) with γ = 3. We then modify the first 250 snapshots by

un ←

(
un −

5

3
v

)
or ~un ←

(
~un −

5

3
~v

)
for n = 1, . . . , 250.

and, in the same way, the second 250 snapshots are modified

un ←

(
un −

1

3
v

)
or ~un ←

(
~un −

1

3
~v

)
for n = 251, . . . , 500,

where

~v =




V1

V2

...
VJ


 .

In this way, all the snapshots satisfy homogeneous boundary conditions.

3.2. Generating the CVT reduced basis. For a given K, next apply a
CVT-generation algorithm algorithms to the snapshot set; the resulting set of CVT
generators is to be used as a reduced basis. CVT’s of the snapshot set having K = 4,
5, 6, 7, 8, 10, 12 and 16 generators are determined in this manner. Figure 2 displays,
for the K = 8 generator case, the CVT basis computed from the modified snapshots.
Note that since the original boundary conditions have been “subtracted away,” each
basis function satisfies a zero Dirichlet boundary condition at the inlet, and a zero
Neumann condition at the outlet. In the interior of the region, each basis function
satisfies the (discretized) continuity equation. It is important to note that the CVT-
basis set of size 8 is not built by augmenting a CVT-basis of smaller cardinality;
in general, one observes that elements of two CVT-bases generated from the same
snapshot set but having different cardinalities seem to differ significantly.

Each generator ~zk ∈ <K of a CVT defines a finite element function, i.e., if

~zk =




Zk
1

Zk
2

...
Zk

J




for k = 1, . . . ,K

denote the CVT basis vectors, we then have the corresponding finite element func-
tions

zk =
J∑

j=1

Zk
j ψj(x) for k = 1, . . . ,K.
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Figure 2. The CVT basis of cardinality 8 for the T-cell problem.
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3.3. Determining CVT reduced-order approximations. We now use the
Galerkin procedure discussed in Section 2.3 to determine a reduced-order approxi-
mation of the velocity field. The approximate velocity field ucvt(x, t) is represented
as a linear combination of the CVT basis functions as follows:

(3.6) ucvt(x, t) = α0(t)v(x) +

K∑

k=1

αk(t)zk(x),

where zk, k = 1, . . . ,K, denotes the k-th CVT basis function, αk(t), k = 1, . . . ,K,
the corresponding coefficient, v the reference solution used in Section 3.1 to mod-
ify the snapshots so that they satisfy homogeneous boundary conditions, α0(t) =
γ(t)/3, and K the cardinality of the CVT basis set. In our computations, K = 4,
5, 6, 7, 8, 10, 12, or 16. The first term in (3.6) is included so that u satisfies the
boundary condition (3.2).

Applying the Galerkin principle which forces the residual to be orthogonal to
each of the basis functions, we obtain

(3.7)

∫

Ω

∂

∂t
ucvt · zi dΩ + ν

∫

Ω

∇ucvt : ∇zi dΩ

+

∫

Ω

(ucvt · ∇)ucvt · zi dΩ = 0 for i = 1, . . . ,K.

Note that due to the fact that the basis functions zk, k = 1, . . . ,K, are discretely
solenoidal, the pressure does not appear in this system. Using (3.6), it is easy to see
that (3.7) is equivalent to the system of K nonlinear ordinary differential equations

(3.8)

K∑

k=1

d

dt
αk(t)

(
zk, zi

)
+ ν

K∑

k=1

αk(t)
(
∇zk,∇zi

)

+

(
K∑

`=1

α`(t)z` · ∇
K∑

k=1

αk(t)zk, zi

)

+α0(t)

K∑

k=1

αk(t)
(
zk · ∇v + v · ∇zk, zi

)

= −
d

dt
α0(t)

(
v, zi

)
− α0(t)

(
α0(t) − 1

)(
v · ∇v, zi

)

along with the initial conditions

(3.9)

K∑

k=1

αk(0)
(
zk, zi

)
=

(
u0 − α0(0)v, zi

)

for i = 1, . . . ,K, where (·, ·) denotes the L2(Ω) inner product. The set of ordi-
nary differential equations (3.8)–(3.9) is solved by using a 4-th order Adam-Multon
method.

3.4. Computational experiments. To illustrate the use and effectiveness
of the low-dimensional, CVT-based reduced-order model, we choose two shapes for
the inlet velocity factor γ(t) and several different choices for the cardinality of the
CVT basis set. The two choices for the inlet velocity factor γ(t) are given by

• Case 1: a hat function with respect to time (see Figure 3)

γ(t) =

{
400

3
t + 1 for 0 ≤ t ≤ 0.03

− 400

3
t + 9 for 0.03 ≤ t ≤ 0.06
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• Case 2: a “general” function with respect to time (see Figure 3).

γ(t) = 3 + 2 cos(18πt) sin(70π(t + 10)) for 0 ≤ t ≤ 0.06.

0 0.01 0.02 0.03 0.04 0.05 0.06

1

1.5

2

2.5

3

3.5

4

4.5

5

The various values of γ  in time

Figure 3. The two choices for the inflow function γ(t); Case 1:
solid curve; Case 2: dashed curve.

For both Case 1 and 2, solutions of the system (2.1), (2.2), and (3.1)–(3.4) were
also approximated using the full finite element discretization employing thousands
of unknowns.

Computing the CVT-based reduced-order solution for basis function sets of
cardinality K = 4, 5, 6, 7, 8, 10, 12, and 16 allowed for a study of the behavior of
the error in the reduced-order approximations. The L2 error was computed at each
time step, based on the difference between the full finite element and reduced-order
solutions. The plots of these L2 errors versus time are displayed in Figures 4 and 5
for Cases 1 and 2, respectively. We see that the CVT-reduced order model produces
approximations that are quite accurate and generally improve as the cardinality of
the basis increases.
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Figure 4. L2-norm of difference between CVT-based reduced-
order solutions and the full finite element simulation vs. time for
Case 1.
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Figure 5. L2-norm of difference between CVT-based reduced-
order solutions and the full finite element simulation vs. time for
Case 2.

It is of interest to compare the the CPU times for effecting a simulation of the
T-cell problem using the CVT-based reduced-order model with that needed for a
full finite element simulation. Such a comparison is given in Table 1 for the input
data of Case 2 for computations carried out on a Dell Precision Workstation 650
with dual 3.02 Ghz CPU’s. (It required 32855 sec to obtain 500 snapshots which
recall were generated by a calculation over the shorter time interval (0, 0.05).) We
see from the table the tremendous reduction in computing time that is effected by
using a reduced-order model.

Number of CVT CPU time
basis functions in seconds

4 0.641
5 0.719
6 1.375
7 2.078
8 3.515
10 8.093
12 15.438
16 52.438

Full FEM 39426.62

Table 1. CPU times for the Case 2 simulation for the CVT and
full finite element models.
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