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ABSTRACT
Proper orthogonal decompositions (POD) have been used

to define reduced bases for low-dimensional approximations of
complex systems, including turbulent flows. Centroidal Voronoi
tessellations (CVT) have been used in a variety of data com-
pression and clustering settings. We review both strategies in
the context of model reduction for complex systems and propose
combining the ideas of CVT and POD into a hybrid method that
inherets favorable characteristics from both its parents. The use-
fulness of such an approach and various practical implementation
strategies are discussed.

INTRODUCTION
Model reduction plays an important role in the approxima-

tion of turbulent and chaotic systems and in the real-time feed-
back control of complex systems. In the former case, there is a
need to identify highly persistent spatio-temporal structures us-
ing simple approaches. In the latter case, low-dimensional state
models are needed so that actuation can be determined quickly
from sensed data. Furthermore, typical strategies for approxi-
mating solutions of optimal flow control problems require mul-
tiple solutions of the state system, i.e., of the fluid equations.
This renders such strategies too costly for routine use, and, in
fact, makes them near impossible to implement for most practical
three-dimensional flow control problems. As a result, there have
been many studies devoted to the development, testing, and use
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of reduced-order models for complex dynamical systems such as
unsteady fluid flows.

A popular technique for model reduction is based on
proper orthogonal decomposition (POD) which is also known
as Karhunen-Loève analysis or the method of empirical orthog-
onal eigenfunctions. POD has become popular due to its poten-
tial for extracting empirical information from experimental data
or from data obtained from high-fidelity numerical simulations.
For model reduction in the context of partial differential equa-
tions, approximation is effected by solving partial differential
equations for long time periods or for various parameter values,
then performing the POD analysis on snapshots of the solution,
and then using the Galerkin method to project the partial differ-
ential equation model onto the reduced POD basis. The many
studies devoted to the use of POD for obtaining low-dimensional
dynamical system approximations include, among others, refer-
ences (Aubry, et al., 1993)–(Volkwein, 1999). The use of POD
analysis in control problems for partial differential equations has
been considered in references (Arian, et al., 2002)–(Volkwein,
2002).

Centroidal Voronoi tessellation (CVT) is a clustering tech-
nique which for discrete data sets is also known as k-means clus-
tering. It is a widely used method for data compression and for
determining the similarities or dissimilarities of members of data
sets. Here, we propose the use of CVTs of snapshot sets as an
alternative to POD analyses for reduced order modeling. In addi-
tion, CVT and POD may be combined to define a generalization
of POD. There are several reasons related to costs and benefits
that make the CVT and POD+CVT approaches promising in the
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context of model reduction. The purpose of the paper is to ex-
plore these alternatives to POD and to discuss their potential ad-
vantages.

PROPER ORTHOGONAL DECOMPOSITION
In the proper orthogonal decompositions (POD) technique,

dominant features from experimental or numerical data are ex-
tracted through a set of orthogonal functions which are related to
the eigenfunctions of the correlation matrix of the data.

For n snapshots ũ j ∈ RN , j = 1, . . . ,n, let µ̃ = 1
n ∑

n
j=1 ũ j.

Then, u j = ũ j − µ̃ for j = 1 . . . ,n define the set of mod-
ified snapshots. Let d ≤ n. Then, the POD basis
{φi}d

i=1 of cardinality d is found by successively solving, for
i = 1, . . . ,d, λi = max|φi|=1

1
n ∑

n
j=1 |φT

i u j|2 and φT
i φ` =

0 for `≤ i−1 . If n ≥ N, this decomposition is known as the
direct method; if n < N, then it is known as the snapshot method.
For the latter case, φi = 1√

nλi
Aχi, where χi with |χi|= 1 denotes

the eigenvector corresponding to the i-th largest eigenvalue λi of
the n×n correlation matrix K = (K j`), where K j` = 1

n uT
j u`. From

now on, we will only consider the case n < N.
The POD basis is optimal in the following sense (Holmes,

et. al, 1996). Let {ψi}n
i=1 denote an arbitrary orthonormal basis

for the span of the modified snapshot set {u j}n
j=1. Let Pψ,du j

be the projection of u j in the subspace spanned by {ψi}d
i=1 and

let the error be defined by E = ∑
n
j=1 |u j −Pψ,du j|2. Then, the

minimum error is obtained when ψi = φi for i = 1, . . . ,d, i.e.,
when the ψi’s are the POD basis vectors. If one wishes for the
relative error to be less than a prescribed tolerance ε, i.e., if one
wants E ≤ δΣn

j=1|u j|2, one should choose d to be the smallest
integer such that

(
∑

d
j=1 λ j/∑

n
j=1 λ j

)
≥ γ = 1− ε.

CENTROIDAL VORONOI TESSELLATIONS
A centroidal Voronoi tessellation (CVT) is a Voronoi tessel-

lation of a given set such that the associated generating points
are centroids, i.e., the centers of mass with respect to a given
density function, of the corresponding Voronoi regions. In the
current context, we will use the set {û j}n

j=1 of modified, normal-
ized snapshots, where û j = u j/|u j|.

Given the discrete set of modified, normalized snapshots
W = {û j}n

j=1 belonging to RN , a set {Vi}k
i=1 is a tessellation of

W if Vi⊂W for i = 1, . . . ,k, Vi∩Vj = /0 for i 6= j, and∪k
i=1Vi =W .

Given a set of points {zi}k
i=1 belonging to RN (but not necessarily

to W ), the Voronoi set corresponding to the point zi is defined by
V̂i = {u ∈W | |u−zi| ≤ |u−z j| for j = 1, . . . ,k, j 6= i}, where
equality holds only for i < j. The set {V̂i}k

i=1 is called a Voronoi
tessellation or Voronoi diagram of W .

Given a density function ρ(y) ≥ 0, defined for y ∈ W ,
the mass centroid z∗ of any subset V ⊂W is defined by z∗ =

∑y∈V ρ(y)y
/

∑y∈V ρ(y). Note that, in general, z∗ 6∈W . (One can
constrain the center of mass to belong to the set W by general-
izing the definition of the center of mass.) The density function
can be used to assign weights to the snapshots, e.g., to allow for
some snapshots to have greater influence than others. This flexi-
bility in the definition of CVTs may be useful in model reduction
applications.

If zi = z∗i for i = 1, . . . ,k, where {zi}k
i=1 is the set of gen-

erating points for the Voronoi tessellation {V̂i}k
i=1 and {z∗i }k

i=1
are the set of mass centroids of the Voronoi regions, we refer
to the Voronoi tessellation as a centroidal Voronoi tessellation.
CVT’s of discrete sets are closely related to optimal k-means
clusters and Voronoi regions and centroids are referred to as clus-
ters and cluster centers, respectively. The concept of CVT’s
can be extended to more general sets, including regions in Eu-
clidean spaces, and more general metrics. They have a variety
of applications including data compression, optimal allocations
of resources, cell division, territorial behavior of animals, opti-
mal sensor and actuator location, and numerical analysis includ-
ing both grid-based and meshfree algorithms for interpolation,
multi-dimensional integration, and partial differential equations;
see references (Du, et al., 1999)–(Okabe, et al., 2000).

Given the discrete set of points W = {û j}n
j=1 belonging to

RN , we define the error with respect to a tessellation {Vi}k
i=1 of W

and a set of points {zi}k
i=1 belonging to W or, more generally, be-

longing to RN by F
(
(zi,Vi), i = 1, . . . ,k

)
= ∑

k
i=1 ∑y∈Vi ρ(y)|y−

zi|2. It can be shown that a necessary condition for the error F
to be minimized is that the pair {zi,Vi}k

i=1 form a CVT of W .
We note that the error F is also often referred to as the variance,
cost, distortion error, or mean square error.

Algorithms for constructing CVT’s

There are several algorithms known for constructing cen-
troidal Voronoi tessellations of a given set; see references (Du,
et al., 1999; Ju, et al., 2002; Lloyd, 1982; MacQueen, 1967).
One representative is MacQueen’s method (MacQueen, 1967)
(see also (Du, et al., 1999; Ju, et al., 2002)), a very elegant prob-
abilistic algorithm which divides sampling points into k sets or
clusters by taking means of clusters. A second representative is a
deterministic algorithm known in some circles as Lloyd’s method
(Lloyd, 1982) (see also (Du, et al., 1999)) and which is the ob-
vious iteration between computing Voronoi diagrams and mass
centroids, i.e., a given set of generators are replaced in an itera-
tive process by the mass centroids of the Voronoi regions corre-
sponding to those generators. A new probabilistic method, given
in (Ju, et al., 2002), may be viewed as a generalization of both
the MacQueen and Lloyd methods and is amenable to efficient
parallelization.
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CVT BASED POD
As was already mentioned, the concept of centroidal

Voronoi tessellations can be extended to more general notions
of distance. This allows for combining POD and CVT to take
advantage of the best features of both approaches. To effect the
generalization, we need new definitions for the concepts of dis-
tance and center of mass.

First, the distance δ(u,Z) from a vector u to a d-dimensional
subspace Z is given by δ2(u,Z) = 1 − (∑d

i=1(uT θi)2)/|u|2,
where {θi}d

i=1 forms an orthonormal basis for Z. Then, given
a set of vectors (e.g., normalized, modified snapshots) W =
{û j}n

j=1 and a set of d-dimensional subspaces {Zi}k
i=1 (which

are called the generators), we define the generalized Voronoi tes-
sellation of W by Vi = {û j ∈W | δ2(û j,Zi)≤ δ2(û j,Z`) ∀` 6= i}
for i = 1, . . . ,k. A tie-breaking rule may be applied to insure that
in the case equality holds in the above definition, each normal-
ized, modified snapshot only belongs to one generalized Voronoi
region.

Second, given a set of vectors V = {û j} that span an m-
dimensional subspace of RN (e.g., again, for us these are a
subset of cardinality m of the modified snapshots), the concept
of d-generalized centroid (d ≤ m) of V may be defined by an
orthonormal basis {φi}d

i=1 which minimizes D = ∑u j∈V |u j −
Pu j|2, where P denotes the projection operator into the d-
dimensional subspace spanned by {φi}d

i=1. For simplicity, we
call such a centroid or basis the d-g centroid of V . Note that the
optimal basis {φi}d

i=1 is the d-dimensional POD basis for the set
V .

We are now ready to define CVT based POD. We note that
the generators {Z j} in general may not be required to have the
same dimension. Thus, if k denotes the number of generators,
we may use a multi-index d = {di}k

i=1 to replace the scalar index
d.

Definition 1. A set of finite subspaces {Z j}k
i=1 with dimensions

d = {di}k
i=1, respectively, along with the corresponding general-

ized Voronoi tessellation {V j}k
i=1 is called a d-g CVT if and only

if the Zi’s are themselves the d-g centroids of the Vi’s.

Definition 2. The union of basis vectors corresponding to a d-g
CVT is called a CVT based POD or a centroidal Voronoi orthog-
onal decomposition (CVOD).

To recapitulate, CVOD can be viewed as a generalization of
CVT for which the set W of normalized, modified snapshots is
divided into k clusters or generalized Voronoi regions {Vi}k

i=1
and for which the generators are di-dimensional spaces each of
which is spanned by the di-dimensional POD basis for the cluster.
CVOD can also be viewed as a generalization of POD for which
the set of modified snapshots is divided into k clusters and then
a POD basis is separately determined for each cluster. In fact,
if di = 1 for i = 1, . . . ,k, then CVT based POD reduces to the

standard CVT. On the other hand, if k = 1, then CVT based POD
reduces to the standard POD.

Algebraically, one may also interpret CVOD as follows.
First, the original correlation matrix for the whole set of nor-
malized, modified snapshots W is replaced by a block diagonal
matrix with diagonal blocks being the correlation matrices for the
snapshots in individual Voronoi sets {Vi}; then, the POD analy-
sis is separately performed on each of the blocks. These Voronoi
sets form a generalized centroidal Voronoi tessellation of W in
the sense given in Definition 1. Thus, the role of CVT within
CVOD may be viewed as providing, in some sense, an optimal
clustering of the modified snapshots; the role of POD is then to
provide an optimal reduced basis for each cluster.

There are cases where certain snapshots need to be weighted
more heavily; thus, weighted POD’s have been defined (Chris-
tensen, et al., 2000). In light of the fact that a nonuniform
density function can be used in the standard CVT construc-
tion, we may also define the weighted CVOD with a prescribed
discrete density or a set of weights, i.e., we may minimize
∑û j∈V ρ(û j)δ2(û j,Zi) over a di-dimensional subspace of V for
a given density function ρ.

Optimization properties of CVT based POD
Similar to the original CVT, the d-g CVT minimizes the er-

ror functional

G
(
(Zi,Vi), i = 1 . . . ,k

)
=

k

∑
i=1

∑
û j∈Vi

ρ jδ
2(û j,Zi) .

over all possible subdivisions of the set {û j}n
j=1 of normalized,

modified snapshots into k clusters {Vi}k
i=1 and all possible di-

dimensional spaces Zi, i = 1, . . . ,k, where {ρ j}n
j=1 the values

of denotes a density function. This optimization property is one
of the key properties of CVT based POD that may make it very
useful in practice.

The functional G also provides a natural error tolerance
measure in the sense that

G
(
(Zi,Vi), i = 1 . . . ,k

)
=

k

∑
i=1
|Vi|

|Vi|

∑
j=di+1

λi j ,

where |Vi| denotes the cardinality of the Voronoi set or cluster
Vi and the λi j ’s are the eigenvalues (in decreasing order) of the
(weighted) local correlation matrix of the snapshots in the clus-
ter. In addition, for k large, it has been conjectured (Du, et al.,
1999) that CVT’s enjoys the equi-partition of error property; it is
natural to extend such a conjecture to CVT based POD. Such an
error equi-partition property leads naturally to adaptive strategies
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to refine the CVOD analysis. Intuitively, one may compare the
relative local error

|Vi|
|Vi|

∑
j=di+1

λi j

/
G
(
(Zi,Vi), i = 1 . . . ,k

)

with a given tolerance. One possible strategy is to enlarge the
index di if the local error for the corresponding cluster (Voronoi
set) Vi is much bigger than the errors for other clusters. On the
other hand, if the error for one cluster is much smaller, then the
index may be reduced. If the overall local errors are all very
big, then besides enlarging di’s, a larger value of k may also be
desirable, i.e., more clusters may be used. While enlarging di
may reduce the global error more efficiently, it also increases the
computational cost in solving the eigenvalue problem. Thus, a
balance needs to be maintained between enlarging k and increas-
ing the di’s.

Lloyd’s method for CVT based POD
A natural extension of the Lloyd method for computing stan-

dard CVT’s is readily available. Let us begin with a given set of
di-dimensional subspaces {Zi}k

i=1. One may then construct the
generalized Voronoi tessellation of the set of modified snapshots
and then compute the d-g centroid of each generalized Voronoi
set; these new centroids replace {Zi}k

i=1 for the next iteration.
More precisely, we have the following algorithm.

Algorithm 1. Generalized Lloyd’s method (a deterministic it-
eration)

Given a set of normalized, modified snapshots {û j}n
j=1

and a discrete density function {ρ j}n
j=1, a positive inte-

ger k, and a multi-index d = {di}k
1;

0. choose an initial set of k subspaces {Zi}k
1 with di-

mensions d = {di}k
1;

1. determine the generalized Voronoi tessellation Vi =
{û j ∈W | δ2(û j,Zi) ≤ δ2(u j,Z`) ∀` 6= i } for
i = 1, . . . ,k, along with a tie-breaking rule;

2. find the d-g centroids {Z∗i }k
i=1 of {Vi}k

i=1;
3. set {Zi = Z∗i }k

i=1 as the new set of generators;
4. if the new generators meet some convergence crite-

rion, terminate; otherwise, return to step 1.

Note that the determination of the d-g centroids in Step 2 is
equivalent to conducting a POD analysis of each of the Voronoi
regions. Thus, one may also view Lloyd’s method as an iterative
procedure that decomposes the whole process of finding a d-g
CVT into a sequence of POD analyses in sets with a smaller num-
ber of modified snapshots. Since the computational complexity
of the POD analysis for n snapshots is related to that of solving

the eigenproblem for an n×n matrix, it is very demanding com-
putationally when n is large. The POD analysis of the smaller set
of snapshots in Step 2, on the one hand, reduces the dimension
of the matrix eigenproblem and thus requires less memory and
computation time; on the other hand, it can also be done concur-
rently for each generalized Voronoi region, thus leaving much
room for improvements in efficiency through parallelization.

The above algorithm has the desirable feature that the d-g
CVT error functional G

(
(Zi,Vi), i = 1 . . . ,k

)
decreases during

the iteration. Moreover, as in the case of the original Lloyd itera-
tion for the standard CVT (Du and Wang, 2002), it can be shown
that if the local minimizers of G share the same functional value,
then the iteration is globally convergent. For the more general
case, we also expect the iteration to converge to local minimizers
based on earlier computational experiences, though no rigorous
theory is yet available.

Constrained CVT based POD
Sometimes, the physical system and thus the modified snap-

shots inherit certain symmetry properties, such as rotational sym-
metry, which are to be preserved by the selected representations
(Aubry, et al., 1993). In other situations, constraints needs to be
enforced such as the vectors need to be divergence free or are
constrained to a hypersurface, etc. (Christensen, et al., 2000).
For CVT, it is easy to modify the basic definition to allow addi-
tional constraints to be placed on the centroids; see (Du, et al.,
1999) and (Du, et al., 2002). Thus, we can introduce the notion
of constrained CVOD by extending the definition of generalized
mass centroids from Euclidean spaces to other manifolds or more
general constrained sets.

ADAPTIVE CVOD VIA A PENALIZED FUNCTIONAL
The standard CVOD is defined with a given number of gen-

erators k and a multi-index {di}k
i=1. Determining the number k

and the associated dimensions di of local POD bases can be an
interesting problem in itself. In fact, in many applications, this is
perhaps more important than constructing the bases. Thus, it is
critical that a practical implementation of the CVOD analysis to
allow for adapatively choosing k and {di}k

i=1. There are certainly
many choices and the decision rule is not unique. For instance,
one possible route to systematic adaptivity is to consider mini-
mizing the energy functional

c̃g =
k

∑
i=1

∑
u j∈Vi

ρ jδ
2(u j,Zi)+α

k

∑
i=1

β(di)

among all feasible sets {k,{di}k
i=1,{Vi}k

i=1,{Zi}k
i=1}. Here, α

may be viewed as a positive penalization constant. β can be any
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increasing, convex function satisfying β(0) = 0, though it may
be of a problem-specific form that reflects the decay properties
of the variance (error) within the a clustered set of snapshots as
the dimension of the generating vectors increases.

The two terms in the energy represent different properties
of the CVOD: the first term measures the quality of the repre-
sentation by the CVOD while the second term measures the di-
mensions of the reduced model. The convexity of the function
β would imply that for a given sum, ∑

k
i=1 di, and given the same

value in the first term, it is optimal to evenly distribute the indices
{di}k

i=1 in order to reduce the second term.
Obviously, for a given α, taking ∑

k
i=1 di to be the same as

the number of snapshots would minimize the first term of the
energy. However, since no reduction of the model is made, the
second term would be large. On the other hand, taking smaller k
and smaller {di}k

i=1 would mean a reduction in the second term,
but the value of the first term would become larger. Thus, α

plays a natural role of balancing the two terms. The larger α

is, the smaller the dimension of the CVOD one would get, re-
sulting in a more efficient representation; the smaller α is, the
larger dimension one would get for the CVOD which also gives
a representation of higher quality.

Currently, we are developing deterministic and probablistic
algorithms for adaptively computing the CVOD that minimizes
the above functional.

MODEL REDUCTION
We mentioned previously that CVT’s have been used in data

compression; one particular application was to image reconstruc-
tion; see (Du, et al., 1999). Therefore, it is natural to examine
CVT’s and CVOD’s in another data compression setting, namely
model reduction. A reduced basis, be it POD or CVT or CVOD,
can be used to define a low-order model in the usual manner.
The partial differential equations governing the dynamics of the
system are projected over the subspace spanned by a particular
basis and a system of ordinary differential equations for the tem-
poral modes is obtained. The projection is effected through the
standard Galerkin method.

In the CVT case, the idea, just as it was in the POD setting,
is to extract, from a given set of normalized, modified snapshots
{û j}n

j=1 of vectors in RN , a smaller set of vectors also belonging
to RN . In the POD setting, the reduced set was the d-dimensional
set of vectors {φ j}d

i=1. In the CVT setting, the reduced set is the
k-dimensional set of vectors {zk}k

i=1 that are the generators of a
centroidal Voronoi tessellation of the set of normalized, modified
snapshots. Just as POD produced an optimal reduced basis in the
sense that the error E is minimized, CVT produces an optimal
reduced basis in the sense that the error F is minimized.

We provide a little more detail in the CVOD setting. Let
F(t,x,u(x, t)) = 0 be a system of partial differential equations

with suitable boundary and/or initial conditions for the unknown
function u. Here, t could be the time variable or some system
parameter. Then, the CVOD based model reduction is performed
as follows.

Algorithm 2. CVOD based model reduction procedure

1. Construct a set of normalized, modified snapshots
{u j}n

1 by solving (most probably approximately)
the system of differential equations for different
values of t.

2. Calculate the CVOD for the set {u j}n
1 for some in-

teger k and multi-index {d j}k
j=1 to obtain a set of

basis vectors {φm}
|d|
m=1.

3. Solve the reduced system:

〈
φm,F(t,X ,

|d|

∑
l=1

βlφl)
〉

= 0 for m = 1,2, . . . , |d| .

Why should one use CVOD instead of POD? Although the
advantages of CVOD still have to be substantiated through nu-
merical experiments, one can make some arguments.

CVOD naturally introduces the concept of clustering into the
decomposition. By imposing a clustering, each sub-CVOD basis
for a specific cluster can be used to capture the dynamics of that
cluster. As we have already mentioned, CVOD also reduces the
amount of work relative to the full POD analysis. POD involves
the solution of an n×n eigenproblem, where n is the number of
snapshots; CVOD instead requires the solution of several smaller
eigenproblems. CVT itself requires no eigenproblem solution.
Another interesting feature of CVOD which has been observed
in other contexts, e.g., image processing (Du, et al., 1999), is
that it avoids the over-crowding of the reduced basis into a few
dominant modes which is a possible drawback of POD.
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Karhunen-Loève analysis, SIAM J. Sci. Comput., 18 (1997),
1526–1532.

Volkwein, S., Proper orthogonal decompositionand singu-
lar value decomposition, Spezialforschungsbereich F003 Op-
timierung und Kontrolle, Projektbereich Kontinuierliche Opti-
mierung und Kontrolle, Bericht Nr. 153, (1999), Graz.

Arian, E., M. Fahl, and E. Sachs, Trust-region proper or-
thogonal decomposition for flow control, to appear.

Kunisch, K., and S. Volkwein, Control of Burger’s equation
by a reduced order approach using proper orthogonal decompo-
sition, JOTA, 102 (1999), 345–371.

Kunisch, K., and S. Volkwein, Galerkin proper orthog-
onal decomposition methods for parabolic problems, Spezial-
forschungsbereich F003 Optimierung und Kontrolle, Projekt-
bereich Kontinuierliche Optimierung und Kontrolle, Bericht Nr.
153, (1999), Graz.

Ravindran, S., Proper orthogonal decomposition in optimal
control of fluids, Int. J. Numer. Meth. Fluids, 34 (2000), 425–448.

Ravindran, S., Reduced-order adaptive controllers for fluid
flows using POD, to appear.

Volkwein, S., Optimal control of a phase field model using
the proper orthogonal decomposition, ZAMM, 81 (2001), 83–
97.

Du, Q., V. Faber, and M. Gunzburger, Centroidal Voronoi
tessellations: Applications and algorithms, SIAM Review, 41
(1999), 637–676.

Du, Q., and M. Gunzburger, Grid generation and optimiza-
tion based on centroidal Voronoi tessellations, to appear in Appl.
Comp. Math., (2002).

Du, Q., M. Gunzburger, and L.-L. Ju, Meshfree, probabilis-
tic determination of point sets and support regions for mesh-
less computing, to appear in Comp. Meth. Appl. Mech. Engrg.,
(2002).

Du, Q., M. Gunzburger, and L.-L. Ju, Centroidal Voronoi
tessellations on surfaces, to appear.

Du, Q., and T. Wong, On the Lloyd’s algorithm for comput-
ing CVTs, to appear.

Faulds, A., and B. King, Sensor location in feedback con-
trol of partial differential equation systems, in Proc. 2000 IEEE
CCA/CACSD, IEEE, Washington, (2000), 536–541.

Ju, L.-L., Q. Du, and M. Gunzburger, Probabilistic methods
for centroidal Voronoi tessellations and their parallel implemen-
tations, to appear in Parallel Comput.

Okabe, A., B. Boots, K. Sugihara, and S. Chiu, Spatial Tes-
sellations: Concepts and Applications of Voronoi Diagrams, 2nd
edition, Wiley, Chichester, (2000).

Lloyd, S., Least squares quantization in PCM, IEEE Trans.
Infor. Theory, 28 (1982), 129–137.

MacQueen, J., Some methods for classification and analysis
of multivariate observations, Proc. Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Vol. I, Ed. by L. Le
Cam and J. Neyman, University of California, Berkeley, (1967),
281–297.

Golub, G., and C. van Loan, Matrix Computation, 2nd edi-
tion, John Hopkins, Baltimore, (1991).

6 Copyright  2002 by ASME


