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1. Introduction

The development of image processing techniques has
brought many technological advances in communica-
tions, entertainment, security, medicine, and manufac-
turing [1, 13, 18]. Image processing includes the en-
hancement, restoration, coding, and understanding of
images and is aimed not only at providing quality picto-
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rial information and transmission efficiency, but also at
assisting in machine reasoning and recognition. Nat-
urally, the enhancement and restoration of an image
often depends on a good understanding of the image
itself. One of the oldest and yet still popular tools em-
ployed to analyze and understand images is provided
by clustering [8, 18]. Broadly speaking, clustering is
a commonly used technique for the determination and
extraction of desired features from large data sets and
for the determination of similarities and dissimilarities
between elements in the data set [14, 19]. In the context
of image processing, data sets take the form of one or
more images.

The concept of centroidal Voronoi tessellations
(CVT’s) has recently received much attention in nu-
merous applications, including computer graphics and
image processing [9–11, 16, 20, 21]. CVT’s can be
viewed as being a very natural clustering strategy.
In its simplest from, CVT-based clustering coincides
with the well-known k-means clustering scheme. Ap-
plied to image segmentation problems, CVT’s also fall
within the class of thresholding segmentation methods.
Among such methods, CVT has the distinct feature
that as part of the CVT methodology, the threshold
values are determined through an optimization proce-
dure. This feature of the CVT methodology accounts
for much of its effectiveness in the segmentation and
other image processing settings. Furthermore, CVT’s
provide a general mathematical framework that allows
for a natural means for developing substantial exten-
sions, improvements, and enhancements of k-means
clustering and other existing clustering and threshold-
ing methods.

In this paper, we apply CVT-based clustering to the
problems of image compression, segmentation, and
multichannel restoration. The central task in image
compression is to faithfully represent a given image us-
ing less data than that which describes the given image.
In image segmentation, the central tasks are to divide
an image into segments or clusters such that the mem-
bers of each segment have like attributes and to deter-
mine the boundaries or edges separating the segments.
In multichannel image restoration, one is given several
incomplete versions of an image and the task is to try to
recover the complete image. Of course, there have been
many other approaches proposed for image compres-
sion, segmentation, and multichannel restoration; see,
e.g., [1–8, 13, 18, 24, 26, 27, 30]. Compared to some
existing methods (especially partial differential equa-
tion and variationally based methods), CVT-based im-
age compression, image segmentation, and multichan-
nel image restoration methods are considerably less

expensive to apply and are more flexible. As a result,
certain tasks are greatly facilitated; these include seg-
mentation into more than two segments, handling mul-
tichannel data, and the differential weighting of data.

2. Image Compression

One can regard an image as a function u defined on a
domain � in Euclidean space. The most familiar im-
ages correspond to � being two-dimensional rectan-
gular domains, but all ideas and algorithms discussed
in this paper are also applicable in higher dimensions
and to non-rectangular images. The values of u repre-
sent some attribute of the picture, e.g., color or bright-
ness.1 Here, we consider digital images so that, after
appropriate coordinate scalings, the function u can be
defined over a set � of integral points, i.e., in two
dimensions, the points (x, y) = (i, j), where (i, j)
are integer pairs that range over the image domain. In
fact, we specialize, without any essential loss of gen-
erality, to two-dimensional rectangular images so that
the domain of u(i, j) can be defined by the index set
D = {(i, j) | i = 1, 2, . . . , I, j = 1, 2, . . . , J } for
positive integers I and J .

One way to compress an image, i.e., to approxi-
mate an image by representing it using less data, is to
replace the possibly many colors or brightness levels
in an image by a fewer number of colors or bright-
ness levels, respectively, chosen from a smaller set.
Centroidal Voronoi tessellations (CVT’s) can be an ef-
fective means for compressing images in this sense.

Not surprisingly, once a smaller set of replacement
colors is chosen, the colors in the original image are
replaced by the closest color in the replacement set.
Thus, if Z = {z�}L

�=1 denotes the set of replacement
colors, then the color u(i, j) found at the physical lo-
cation (i, j) is replaced by a color zk ∈ Z such that

|u(i, j) − zk | ≤ |u(i, j) − z�| for � = 1, . . . , L .

Note that this comparison compares color values and
not physical distances.

The remaining question is how does one choose the
set Z = {z�}L

�=1 of replacement colors? Here, we use
an optimization criteria which we now describe.

Centroidal Voronoi tessellations as “energy” min-
imizers. For a given image u and for any set of L
distinct replacement colors W = {w�}L

�=1, we define
the CVT-energy by

E(W) ≡
∑

(i, j)∈D

min
�=1...,L

|u(i, j) − w�|2. (1)
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In the CVT image compression method, the replace-
ment colors are chosen so that the CVT-energy is
minimized, i.e., the set of CVT replacement colors
Z = {z�}L

�=1 satisfy

E(Z) = min
W={w�}L

�=1

E(W) ,

where the minimum is with respect to all possible sets
of replacement colors having cardinality L .

Geometric definition of centroidal Voronoi tessel-
lations. The terminology “centroidal Voronoi tessel-
lations” arises from another, equivalent definition of
CVT’s. Given an image u, let2

U = {u(i, j)}(i, j)∈D

denote the set of (not necessarily distinct) color values
in the original image. Then, for any set of replacement
colors W = {w�}L

�=1, let

Vk = {u(i, j) ∈ U : |u(i, j) − wk | ≤ |u(i, j) − w�|
for � = 1, . . . , L}, k = 1, . . . , L . (2)

Note that there are a total of I ∗ J values for u(i, j)
and that Vk denotes the subset of those values that
are closest to wk than to any of the other w�’s. The
subset of color values Vk is called the Voronoi cell
or Voronoi cluster corresponding to wk and the set of
subsets V = {V�}L

�=1 is called a Voronoi tessellation
or Voronoi clustering [23] of the set U of color val-
ues appearing in the original image. The replacement
colors w�, � = 1, . . . , L , are called the Voronoi gen-
erators. Note that we have that V� ∩ Vk = ∅ if k �= �

and that U = ∪L
�=1V� so that the set of subsets V is a

non-overlapping covering of U .
On the other hand, for any non-overlapping covering

ofU = {U�}L
�=1 into L subsets, we can define the means

or centroids of each subset U� as the color w� ∈ U�

that minimizes

min
w�∈U�

∑

u(i, j)∈U�

|u(i, j) − w�|2 .

For a general Voronoi tessellation of U , we have
that w� �= w� for � = 1, . . . , L , i.e., the color values
that generate the Voronoi clustering are not the means
or centroids of the corresponding clusters. Centroidal
Voronoi tessellations of U are special Voronoi cluster-
ings {V�}L

�=1 whose generators {z�}L
�=1 satisfy

z� = z� for � = 1, . . . , L ,

i.e., the color values that generate the Voronoi clus-
tering are also the means or centroids of the associated
clusters.

By rewriting the CVT-energy in the cluster termi-
nology as

E(w1, . . . , wL ; U1, . . . , UL )

=
L∑

�=1

∑

u(i, j)∈UL

|u(i, j) − w�|2,

we see that the two definitions for CVT’s are con-
nected since it can be shown (see, e.g., [9]) that among
all possible non-overlapping coverings {U�}L

�=1 and all
possible replacement color sets {w�}L

�=1, minimizers of
the energy are CVT’s, i.e., special Voronoi clusterings
for which the generators of the clustering are also the
means of the clusters.

As defined so far, a CVT is merely a k-means clus-
tering [18]; such clusterings are widely used in image
segmentation, e.g., in the Digital Image Processing
package of the Mathematica software suite. However,
as will be demonstrated in this paper, viewing k-means
clusterings as CVT’s enables simple paths to useful
generalizations.

The relation between the CVT-energy and the num-
ber of generators. Given an image data set, then, ac-
cording to the theory of quantization [12], we have, for
the generators Z = {z�}L

�=1 of a CVT clustering, that
the CVT-energy satisfies

EL = E(Z) ≈ C L−2/d as L → ∞, (3)

where d denotes the dimension of the image and C
is a constant whose value depends on the dimension d
and the distribution of colors within the data set. It is
easy to see from (3) that

EL − EL+1 ≈ 2

d
C L−(2/d)−1 as L → ∞ ,

i.e., the CVT-energy reduces more and more slowly as
the number of generators increase.

For data sets that do not cluster well, i.e., if the set is
uniformly distributed in some sense, (3) can hold even
for small values of L . However, if the data set clusters
well, then it has been observed that even for small
values of L , the CVT-energy EL decays much faster
than that indicated by (3); this behavior is known as
the elbowing effect. The elbowing effect can be used to
rationally measure the “goodness” of a CVT clustering
and to choose an effective value for L , the number of
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CVT generators: if the given data naturally clusters,
EL reduces quickly as L increases until the data is
well clustered; further increases in L will then effect
much smaller decreases in EL .

In practice, the detection of when the addition of
more generators becomes unproductive is more trans-
parent if one monitors the indicator IL = EL L2/d in-
stead of the CVT-energy EL . From (3), we have that

IL = EL L2/d → C as L → ∞ (4)

so that the once IL is detected to remain nearly constant
as L increases, one knows that the given data is well
clustered.

2.1. Algorithms for Determining CVT’s

The special nature of CVT’s require their construction,
i.e., given a positive integer L and a digital image
U = {u(i, j)}(i, j)∈D , one has to determine a set of
replacement colors {z�}L

�=1 that are simultaneously the
generators of a Voronoi clustering of the colors in the
image and the means of the associated clusters. The
following algorithm can be used to construct CVT’s;
see, e.g., [15, 28, 29] for details.

Algorithm 1. Given a positive integer L and a digital
image U = {u(i, j)}(i, j)∈D , choose any L color values
{z�}L

�=1 and determine the associated Voronoi cluster-
ing {V�}L

�=1.

1. For each cluster V�, � = 1, . . . , L , determine the
cluster mean z�.

2. Determine the Voronoi clustering associated with
the color values {z�}L

�=1.
3. If the Voronoi clusterings corresponding to {z�}L

�=1
and {z�}L

�=1 are the same, exit the loop; otherwise,
set z� = z� for � = 1, . . . L and return to Step 1.

It is easy to see that Steps 1 and 2 will result in a
strict decrease in the energy except if local minimizer
is reached. Thus, due to compactness, it is guaranteed
that the algorithm will converge. The initial set of color
values should be chosen so that none of the associated
Voronoi clusters are empty. Note that, since a digital
image is a finite data set, the algorithm terminates in
a finite number of steps. However, it is often the case
that a very good approximation to the final CVT con-
figuration can be obtained in substantially fewer steps.
For this reason, at each iteration, one should calculate
the energy of the current configuration and terminate

when that energy is within some prescribed tolerance
of the energy of the previous configuration. In our cal-
culations, we terminate the iteration when the ratio of
the absolute value of the change in the energy to the
value of the current energy is less than 0.01L .

Algorithm 1 does not transfer elements of the given
data set U from one cluster to another until the end
of each iteration step. When a point is transferred to a
new cluster, the cluster mean will move closer to that
point, something that Algorithm 1 misses until the iter-
ation step is complete, i.e., until all points in the given
data set are treated. The following accelerated version
of Algorithm 1 works with a transfer test that directly
measures the change in energy that occurs when a point
moves from one cluster to another and then immedi-
ately re-determines the cluster means before moving
to the next point in the given data set.

Algorithm 2. Given a positive integer L and a digital
image U = {u(i, j)}(i, j)∈D , choose any L color values
{z�}L

�=1 and determine the associated Voronoi cluster-
ing {V�}L

�=1.

1. For every u(i, j) ∈ U ,

(a) evaluate the CVT energy for all possible trans-
fers of u(i, j) from its current cluster V� to any
of the other clusters Vk , k = 1, . . . , L , k �= �;

(b) if moving u(i, j) from its current cluster V� to
the cluster Vm most reduces the CVT energy,
then

(i) transfer u(i, j) from cluster V� to cluster Vm ;
(ii) replace the colors z� and zm by the means

of the newly modified clusters V� and Vm ,
respectively.

2. If no transfers occurred, exit; otherwise, go to Step
1.

Algorithms 1 and 2 both result in a k-means clus-
tering (in color space) of the digital image. Both are
guaranteed to reduce the energy after every iteration,
and they converge to a (local) minimizer of the CVT-
energy. Each iteration of Algorithm 2 is more costly
than those of Algorithm 1 since for Algorithm 2 one
must determine the effect that each potential transfer
has on the energy. On the other hand, an iteration of
Algorithm 2 leads to a larger decrease in the energy
than does an iteration of Algorithm 1, and thus a
smaller number of iterations is required for Algorithm
2. A hybrid approach is also possible in which one
starts with Algorithm 1 and then switches to Algorithm
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2. Presumably, after several iterations of Algorithm
1, only a very few of the more expensive iterations of
Algorithm 2 are needed to obtain accurate results.

The costs of both Algorithms 1 and 2 may be reduced
at the price of increased storage. One recognizes that
points that are close to their current cluster means will
likely not be transferred to another cluster. Thus, for
Algorithm 1, we do not need to consider every point
u(i, j) ∈ U when we determine a new clustering; we
only need to consider those points whose distances to
their old cluster mean is larger than the average dis-
tance of all points in its cluster to the cluster mean.
Similarly, for Algorithm 2, we do not need to loop
over every point u(i, j) ∈ U ; we only need to loop
over points whose distances to their current cluster
mean are larger than the average distance of all points
in its cluster to the cluster mean. The latter requires one
to determine and store the average distance between
points in a cluster and the mean of the cluster. How-
ever, such a strategy will roughly halve the cost of each
iteration of Algorithm 2 because it is very cheap to cal-
culate the average distances by storing the summation
of all the distances and the number of points of each
cluster. It is transparent that a suitable data structure
that takes into account such stored information could
lead to a much more efficient implementation [21].

Another improvement to Algorithm 2 is possible
by not comparing reductions in the CVT-energy for
possible transfers to far away clusters [25]. Thus, in
Step 1(a) of Algorithm 2, one would only consider
clusters with means having a distance to the mean of
the current cluster for the point u(i, j) that is less than
twice the distance from the point u(i, j) itself to its
own cluster mean. Implementing this strategy requires
the computation and storing of the distances between
cluster means. A similar strategy could be employed
with Algorithm 1 and may be more effective in that
case since, for Algorithm 2, one would have to do
the additional computation of the distances between
cluster means within the inner loop. This strategy is

very useful in the case that the number of clusters L
is very large since it effects a factor of O(L−1) cost
decrease.

We note that CVT-based image compression algo-
rithms are sufficiently inexpensive so that one usually
does not have to resort to the implementation of any
cost-saving strategies. We also note that Algorithm 1 is
easier to parallelize while Algorithm 2 is easier to gen-
eralize, e.g., to determine weighted CVT’s; see Section
2.3.

2.2. CVT-based Image Compression

Figure 1 provides an example of the effectiveness of
CVT-based image compression. The contouring effect
seen in the middle image is not specific to CVT im-
age compression; it results from the assignment step
during which a slowly varying color distribution in the
original image is mapped to a piecewise constant color
distribution in the approximate image. The contouring
effect may be removed by a simple dithering algorithm;
see [9] for details.

CVT-based image compression is very effective for
images having large, essentially uniform backgrounds.
For example, consider the image on the left in Fig. 2
that was created by embedding the original image of
Fig. 1 into a larger image with a nearly uniform back-
ground. The resulting image contains 256 shades of
gray which can be represented by the integers 0 to 255.
The background was created by randomly choosing, at
each pixel, one of the 8 contiguous shades from 126 to
133. The gray shade density plot for the resulting image
is given in Fig. 3 from which one clearly sees that the
background shades dominate. The interesting part of
the image, i.e., the upper left-hand corner, is relegated
to shades with small densities. Clearly, one should be
able to very well approximate the background with
just one or two of the shades within the set of back-
ground shades; this is exactly what CVT-based image

Figure 1. Left: the original image containing 256 shades of gray. Center: the CVT-approximate image containing 8 shades of gray. Right: the
CVT-approximate image containing 8 shades of gray after dithering is applied to eliminate contouring.
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Figure 2. Left: the original image of Fig. 1 embedded in a nearly uniform background; there are 256 shades of gray used in the image. Right:
the 8-shade CVT approximate image.

Figure 3. The number of times each shade of gray appears in the image on the left of Fig. 2.

compression effects. The 8-shade CVT approximate
image contains only two shades in the background
(127 and 132) and 6 shades that are not in the back-
ground (49, 76, 101, 154, 177, 205) so that a sufficient
number of shades are available to well approximate
the interesting part of the picture; see the image on the
right in Fig. 2. In contrast, a random choice (according
to the density distribution of Fig. 3, suitably normal-
ized) for the 8 replacement colors picks, in one real-
ization, 7 shades within the set of background shades
(126–129 and 131–133) and only 1 shade (50) that
is not in the background. Further improvements that
may be effected in compressing images with large,
nearly uniform backgrounds are discussed in Section
2.3 where weighted CVT clustering is discussed.

Figure 4 provides another example of CVT-based
image compression. As one expects, when one in-
creases the number of replacement colors, the approx-
imate image improves. One also sees that CVT-based
image compression produces good approximate im-
ages with few approximate colors.

Examining a plot of the CVT-energy associated with
the CVT-approximate images vs. the number of re-
placement colors L can be illuminating. For the case
of Fig. 4, a plot of the normalized CVT-energy associ-
ated with the CVT-approximate images vs. the number
of replacement colors L is provided in Fig. 5 (left).
For comparison purposes, the hyperbolic curve 1/L is
also plotted. We observe that the CVT-energy changes
smoothly and also the elbowing effect discussed in
Section 4, i.e., the fast reduction in the CVT-energy
for small values of L (much faster than that for the
hyperbolic curve) and the slower reduction for a larger
number of colors. This behavior is even more apparent
from Fig. 5 (right) which provides a plot of the indica-
tor ratio IL/I1 (see (4)) vs. the number of replacement
colors L; recall that for images that do not cluster nat-
urally, this ratio should remain roughly unity. Instead,
one observes from Fig. 5 (right) that as one increases
the value of L , at first a large reduction in the value
of IL/I1 occurs but that for L > 5 or so, that ratio
remains roughly constant. One can then conclude that
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Figure 4. The original image containing 1434 different colors is on the top left. The remaining 5 images from left to right and top to bottom)
are CVT-approximate images containing 4, 8, 16, 32, and 64 colors, respectively.

Figure 5. Plots of normalized CVT-energy EL/E1 and 1/L (left) and the indicator ratio IL/I1 of the CVT-approximate images of Fig. 4 vs.
the number of replacement colors L .

the data of the digital image of Fig. 4 clusters naturally
into about 6 clusters.

2.3. Weighted CVT’s

The examples of Section 2.2 are all for the k-means
clustering version of CVT-based image compression.
In this section, we begin to show how the CVT
approach can be generalized to treat more challenging
images. We note that in some situations, it is desirable
to change the definition of the CVT-energy so that the
contributions from each of the clusters are weighted.
This allows, for example, for a given data point to
be included in a large cluster, somewhat analogous
to the gravitational situation wherein a large planet
has greater attraction. Such a change in the definition

of the CVT-energy gives rise to weighted CVT’s.
Applied to a digital image, weighted CVT’s can let
color generators focus on selected details of the image
and not be overwhelmed by other colors.

To define weighted CVT’s, we amend the defini-
tion of the CVT-energy to allow for cluster-dependent
weights, i.e., we let

E(w1, w2, . . . , wL ; U1, . . . , UL )

=
L∑

�=1

λ�

∑

u(i, j)∈U�

|u(i, j) − w�|2 ,

where λ�, � = 1, . . . , L , are positive weighting fac-
tors. The case λ� = 1 for all � leads to the situation
already discussed. In general, λ� is allowed to depend
on factors such as the cardinality |U�| of the subset
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U�, the within cluster variance, etc. [17], but not on
the individual members within a cluster. The concept
of center of mass is not affected by the introduction of
weights. However, due to the presence of the weights
{λ�}, the minimization of the weighted CVT-energy
leads to weighted Voronoi tessellations [23]. In the
current context, we choose the weights λ� to be only a
function of |U�|. In particular, the choice λ� = 1/|U�|
has a statistical meaning: the weighted CVT-energy is
then given by the summation of the average deviation
of each cluster. Instead, one could select the power
function λ� = |U�|α for values other than 0 and −1.
Different choices for the cluster weights result in dif-
ferent CVT clusterings. If α < 0, larger clusters will
tend to attract points from smaller ones; this may re-
sult in an interesting phenomenon: large clusters eating
small ones. If |α| is too large, one may end up with only
a single cluster, a situation that should be avoided. On
the other hand, if α > 0, smaller clusters will tend
to attract points from larger ones and clusters will be
prevented from becoming too large.

Before providing examples of the use of weighted
CVT’s for image compression, we give an algorithm
(that is a direct generalization of Algorithm 2) for their
construction.

Algorithm 3. Given a positive integer L and a
digital image U = {u(i, j)}(i, j)∈D , choose any L color
values {z�}L

�=1 and determine the associated Voronoi
clustering {V�}L

�=1 and the associated weights {λ�}L
�=1,

possibly dependent on |V�|, the cardinality of the
subset V�.

1. For every point u(i, j) ∈ U ,

(a) evaluate the weighted-CVT energy for all pos-
sible transfers of u(i, j) from its current cluster
V� to any of the other clusters Vk , k = 1, . . . , L ,
k �= �;

(b) if moving u(i, j) from its current cluster V� to
the cluster Vm most reduces the weighted-CVT
energy, then

(i) transfer u(i, j) from cluster V� to cluster Vm ;
(ii) if the number of points in cluster V� is less

than a preset value, delete that cluster and
transfer all its elements to the cluster Vn

which results in the smallest total weighted-
CVT energy;

(iii) replace the colors z�, zm , and, if necessary,
zn by the means of the newly modified clus-
ters V�, Vm , and Vn , respectively.

2. If no transfers occurred, exit; otherwise, go to Step
1.

Note that in Step 1(b)-(ii), the total energy may in-
crease for some choices of cluster weights. Since gen-
erally a cluster containing too few points may not be
of great interest, we delete it whenever it occurs. By
deletion, the number of clusters is nonincreasing. Fur-
thermore, for a fixed number of clusters, the total en-
ergy is decreasing. Thus, Algorithm 3 is guaranteed to
converge to a local minimizer of the weighted energy
function.

Examples of weighted CVT image compression are
given in Fig. 6 for three choices of the exponent α. For

Figure 6. The left column contains the original images, with the bottom one being part of the top one. The remaining three columns correspond
to weighted CVT-based compressed images with weight function λ� = |U�|α with, from left to right, α = 0, 1, and 2.
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these examples, we only consider clusterings into two
clusters. Our objective is to select a value of α such
that the resulting two-color weighted CVT image is
better than the non-weighted CVT image determined
with α = 0. First, let us examine the first row of Fig.
6 for which there are clear differences in the results
for different values of α. The left-most image is the
original image. The second image is the non-weighted,
two-color CVT image determined using α = 0. The
third and fourth images are weighted CVT images
determined using α = 1 and α = 2, respectively. In
the original image, the airplane is made up of mostly
dark shades while the background contains light and
intermediate shades. Varying α can affect how the
intermediate shades are assigned to generators. In the
non-weighted image, part of the background (cor-
responding mostly to the intermediate shades in the
original image) is clustered together with the airplane
to produce the large cluster. Using the weight α = 1,
more of the background is assigned to the background
cluster, i.e., the smaller cluster for α = 0 now
attracts more points having an intermediate shade
and becomes the larger cluster. Then, for α = 2,
the roles are reversed; the cluster corresponding
to the darker shade of the airplane takes points
away from the cluster corresponding to the lighter
shade of the background. It seems clear that the
image corresponding to α = 1 is the best one since,
relative to the other two compressed images, there
is a much better separation of the airplane and
background.

We now examine the second row of Fig. 6. The
left-most original image is part of the image above it,
with the remaining images corresponding to using the
same values of α as the images in the first row. Now,
in the original image, the background is much more
uniform than that for the original image of the first row
so that now there is less possibility of having back-
ground colors assigned to the generator representing
the airplane. As a result, in this case, the weighted-
CVT image for α = 1 is almost the same as the non-
weighted one; increasing the value of α from 0 to 1
does not appreciable change the clustering. However,
for α = 2, the clusters are sufficiently changed so that
a visible difference in the CVT-weighted image can be
observed.

Systematic means for choosing α or, for that mat-
ter, weight functions in general, have not yet been de-
veloped. However, the weighting flexibility allowed
within the CVT methodology may prove to be very
useful.

3. Image Segmentation and Edge Detection

Image segmentation is the process of identifying the
parts of an image that have a common attribute, e.g.,
that are roughly the same color or have the same bright-
ness, and to also identify edges, i.e., the boundaries
between the different segments of the image. The seg-
mentation is done on the physical picture. CVT clus-
tering in color space of an image can be easily and
effectively used for image segmentation and edge de-
tection.

Recall that the CVT clustering of an image is done
in color space. Suppose that an image represented in
color space by u(i, j) for (i, j) ∈ D is partitioned
into the CVT clusters {V�}L

�=1. In physical space, this
corresponds to the segmentation of the image into the
L segments {D�}L

�=1, where

D� = {(i, j) : u(i, j) ∈ V�} .

Edges can be detected by seeing if neighboring points
belong to a different cluster, i.e., (i, j) ∈ D� is an
edge point if one of its neighboring points belongs to a
different segment Dk , k �= �. Equivalently, (i, j) is an
edge point of the segment D� if u(i∗, j∗) �∈ V�, where
(i∗, j∗) denotes one of the neighbors of (i, j). Thus,
the key to CVT-based image segmentation and edge
detection is the construction of the CVT of an image
by the methods discussed in Section 2.

Figure 7 provides an example of CVT-based image
segmentation and the corresponding edges of the seg-
ments for a grayscale image of some relatively simple
geometric shapes. Figure 8 provides the CVT-based
image segmentation and edge detection into 2, 3, and
4 segments for a bone tissue image.

We also computed CVT-based segmentations of the
bone tissue image of Fig. 8 into higher numbers of seg-
ments. A plot of the normalized CVT-energy EL/E1

and the indicator ratio IL/I1 vs. the number of seg-
ments L are provided in Fig. 9. We see that for this par-
ticular image, the best segmentation occurs at around
4 segments. Using fewer segments results in unlike
points being clustered together so that using a larger
number of segments is useful for identifying more de-
tails in an image. However, having too many segments
may result in the separation of features that one may
want to have clustered together.

The indicator IL can again be used to provide an
automatic way for choosing the number of segments
that balances these two competing objectives. For ex-
ample, one could use the the following segmentation
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Figure 7. Left: the original image. Center: the CVT-based segmentation into two segments. Right: the edges detected via CVT-based image
segmentation superimposed on the original image.

Figure 8. On the top-left is an original grayscale bone tissue image. The left of each pair of images shows a CVT-based segmentation and the
right of each pair shows the edges detected via CVT-based image segmentation superimposed on the original image. The three image pairs are
for segmentations into 2 (top-right), 3 (bottom-left), and 4 (bottom-right) segments.

algorithm that includes a simple way to automatically
choose the number of segments.

Algorithm 4. Given a digital image U =
{u(i, j)}(i, j)∈D , choose small integers L0 and d L . Set
L = L0 and compute the clustering of U into L seg-
ments using any CVT algorithm.

1. Set L̃ = L + d L and compute the CVT clustering
of U into L̃ segments.

2. Compute ε = |IL̃ − IL |/IL0 .
3. If ε is within some prescribed tolerance, exit the

loop; otherwise, set L = L̃ and return to step 1.

Of course, more sophisticated algorithms of this type
can also be designed.

3.1. Smoothing

Images often contain substantial amounts of noise or
have segments with highly irregular edges. To treat
such cases, CVT-based image segmentation and edge
detection can be combined with averaging techniques.
From the beginnings of the development of image pro-
cessing theory and algorithms, averaging has been a
standard tool [22]. For digital images, an effective av-
eraging formula is given by

û(i, j) =
∑

(ĩ, j̃)∈Br

u(i − ĩ, j − j̃) g(ĩ, j̃)
∑

(ĩ, j̃)∈Br

g(ĩ, j̃)
, (5)

where g(·, ·) is an averaging kernel and Br =
Br (i, j) = {(ĩ, j̃) | (i − ĩ)2 + ( j − j̃)2 < r2} is
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Figure 9. The normalized CVT-energy EL/E1 (left) and the indicator ratio IL/I1 (right) vs. the number of segments L for CVT-based
segmentations of the bone tissue image of Fig. 8.

Figure 10. Left: an original grayscale bone tissue image. Middle: a CVT-based segmentation into two segments with subsequent averaging
(with σ = 2 and β = 0.05). Right: the corresponding edges superimposed on the original image.

an averaging ball of radius r . The averaging formula
(5) is an example of smoothing via discrete convolution
with a kernel. The averaging radius r is typically cho-
sen so that the integral of the averaging kernel g(x, y)
over the ball Br is some prescribed large fraction of the
integral of that kernel over the whole plane. For exam-
ple, for the Gaussian kernel g(x, y) = e−(x2+y2)/σ 2

, if
one wants the ratio of the integral of g(x, y) over the
ball of radius r and its integral over the whole plane to
equal (1 − β), 0 < β < 1, then the averaging radius
r = −σ 2 ln β.

Although the use of Gaussian kernels is natural,
there are many other, simpler, averaging kernels that
are effective in practice. For our computational exper-
iments that involve averaging, we use

g(i, j) = σ

2π (i2 + j2 + σ 2)
3
2

, (6)

where, as for the Gaussian kernel, σ > 0 may be
thought of as a smoothing parameter; in practice, the
choice for the value of σ is based on the level of noise
in the image; the larger the amount of noise, the larger
should σ be. For the averaging kernel (6), one finds

that r = σ
β

√
1 − β2. Typically, one chooses β ≤ 0.05

so that a good approximation for the averaging radius
is simply r ≈ σ/β.

Averaging may also be combined with weighted
CVT’s. Figures 11 and 12 provide two examples.

CVT-based image segmentation and averaging can
be combined in either order:

1. average the original image first, then apply a
CVT segmentation technique to the averaged
image;

2. apply a CVT segmentation technique to the origi-
nal image, then average the original image, but use
the replacement colors as determined by the CVT
segmentation technique to determine the colors in
the final image.

For the examples given here, we use the second ap-
proach since computational experiments indicate that
it is more effective. Figure 10 shows the original bone
tissue image of Fig. 8 along with the images and edges
that result from a two-color CVT segmentation fol-
lowed by averaging, i.e., the second approach listed
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Figure 11. Left: an original grayscale image of an airplane. Middle: a weighted-CVT-based segmentation into two segments (with weights
λ� = |U�|, i.e., α = 1) and with subsequent averaging (with σ = 1.5 and β = 0.05). Right: the corresponding edges superimposed on the
original image.

Figure 12. Left: an original grayscale image of a house. Middle: a weighted-CVT-based segmentation into two segments (with weights
λ� = |U�|, i.e., α = 1) and with subsequent averaging (with σ = 1.5 and β = 0.05). Right: the corresponding edges.

above. The CVT/averaging results should be compared
with the top-right pair of images in Fig. 8 for which no
averaging is done. Clearly, the segments and edges for
the CVT/averaging images of Fig. 10 are considerably
smoother than the ones in the corresponding images in
Fig. 8.

3.2. Additional Examples of CVT-Based Image
Segmentation

We provide some additional examples of CVT-based
image segmentation that serve to illustrate its effi-
ciency, flexibility, and effectiveness.

In Fig. 13, we consider a “fuzzy” ball image. We
show its CVT segmentation into two segments with
and without applying an averaging step (as described
in Section 3) to the original image. Another exam-
ple of the CVT-segmentation of a noisy image is pro-
vided in Fig. 14. Here the original image is a simu-
lated noisy minefield image which is then averaged
before it is segmented into two segments. A final
example of combining image averaging with CVT-
based image segmentation is given in Fig. 15. The
original image is non-symmetrically averaged using

the kernel

g(i, j) =
{

1 if |i − j | < 2

0 otherwise.

The resulting averaged image and the CVT segmen-
tation into two segments of the averaged image are
given in Fig. 15. Further improvement can be effected
by averaging the segmented image (see Fig. 15).

The final example is the “Europe-by-night” image.
In Fig. 16, we show weighted CVT-based segmen-
tations of the original image into two, three, and
four segments. Note that we segment the whole
“Europe-by-night” image, and not just the “easier”
part. In particular, note that even the two-segment
image does a very good job of capturing Iceland, a
part of the original image that is difficult to capture.
The two-segment image shows that CVT-based image
segmentation does a good job of differentiating be-
tween land and sea masses. By increasing the number
of segments, CVT-based image segmentation can
also separately capture the areas that are lit up. Note
that a large positive exponent is used for the weight
functions in the segmentation into two segments, but
negative exponents are used for segmentation into
three and four segments. The original image contains a
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Figure 13. Left: original image. Middle: CVT segmentation into two segments without averaging. Right: CVT segmentation into two segments
after averaging the original image.

Figure 14. Left: original image. Middle: Original image after averaging. Right: CVT segmentation into two segments after averaging the
original image.

Figure 15. Left: original image. Middle left: averaged image. Middle right: CVT segmentation into two segments of the averaged image.
Right: average of the segmented image.

very dark sea mass, a slightly less dark land mass, and
very bright lit areas. In the two-segment case, the large
positive exponent is used to make sure that the dark
land mass is clustered together with the lit up areas and
not with the sea. On the other hand, when using three
of more segments, we have the flexibility to differenti-
ate between dark land masses and lit up areas, so that
we do not want these to be clustered together; thus we
switch to positive exponents in the weight functions.
This example points out one of the strengths of CVT-
based image segmentation: segmenting and image into
more than two segments is hardly more difficult or
costly than it is to segment it into just two segments.

4. Reconstruction of Multichannel Images

We now consider the case for which one has in hand
several versions of a picture, none of which contains
all the information necessary to recover the complete
image. The question is how the information contained
in the different versions can be combined so as to
recover the whole image? This is a natural task for
CVT-based image processing.

Suppose we have M channels, i.e., M images,
U1,U2, . . . ,UM , where Um = (um(i, j)), and we wish
to represent the complete image using L colors Z =
{z1, z2, . . . , zL}. We now define the Voronoi cluster
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Figure 16. Top left: original “Europe-by-night” image. Top right: CVT segmentation into two segments with weights λ� = |U�|10. Bottom
left: CVT segmentation into three segments with weights λ� = |U�|−3. Bottom right: CVT segmentation into four segments with weights
λ� = |U�|−2.

corresponding to the color z� by

V� =
{

{um(i, j)}M
m=1 :

M∑

m=1

|um(i, j) − z�|2

≤
M∑

m=1

|um(i, j) − zk |2 for k = 1, . . . , L

}
(7)

and we now define the mean or centroid of a Voronoi
cluster to be the color that minimizes

M∑

m=1

∑

um (i, j)∈V�

|um(i, j) − z�|2. (8)

As before, we define a CVT as a special Voronoi tes-
sellation such that z� = z� for k = 1, . . . , L .

The energy of the multiple channels is defined by

E(Z) =
M∑

m=1

L∑

�=1

∑

um (i, j)∈V�

|um(i, j) − z�|2.

It can be shown that minimizers of the multichan-
nel energy are CVT’s of the multichannel data set

{u1, u2, . . . , uM } so that a multichannel CVT approxi-
mation of an image is found by minimizing that energy,
i.e., by determining the set {z�}L

�=1 that minimizes the
multichannel energy. We provide an algorithm for de-
termining multichannel CVT’s.

Algorithm 5. Given M versions Um =
{um(i, j)}(i, j)∈D , m = 1, . . . , M , of a digital im-
age and a positive integer L , choose any L color
values {z�}L

�=1 and determine the associated Voronoi
clustering {V�}L

�=1 defined by (7).

1. For each cluster V�, � = 1, . . . , L , determine the
cluster means {z�}L

�=1 as defined in (8).
2. Determine the Voronoi clustering associated with

the color values {z�}L
�=1.

3. If the Voronoi clusterings corresponding to {z�}L
�=1

and {z�}L
�=1 are the same, exit the loop; otherwise,

set z� = z� for � = 1, . . . L and return to Step 1.

Figure 17 provides a word extraction example of
multichannel CVT image processing.

Referring to Fig. 17, we see that sometimes, be-
cause the range of the colors in an image is relatively
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Figure 17. The left three images are noisy and incomplete versions of the same image that is to be recovered. The right two images are the
multichannel CVT-based approximate image using two replacement colors and its normalization.

Figure 18. The left and middle images are two noisy images of an airplane. The right image is a two-color multichannel CVT approximate
image using a weight ν1 = 5 for the less noisy image on the left and a weight ν2 = 1 for the more noisy image in the middle.

limited, the resulting CVT generators of the two clus-
ters may end up being “close” (in color space). In
this case, we can redefine the range of the colors in
the image so that, to the eye, the differences in the
resulting generators is more obvious. A well-known
method to do this, referred to as normalization, is to
expand the range of colors in an image to the largest
allowable. For example, suppose the possible shades
of gray in an 8-bit grayscale image are labeled by
the integers in [0, 255]. Suppose, however, that the
shades of gray in a particular image only range over
[a, b] ⊂ [0, 255]. If a and b are close, the eye may
have difficulty differentiating between the two shades
of gray appearing in a CVT (or any other kind of)
approximate image. To ameliorate the situation, after
we determine a CVT of the image, we redefine each
shade of gray u(i, j) ∈ [a, b] appearing in the image
to u(i, j) ← Int

(
255(u(i, j) − a)/(b − a)

) ∈ [0, 255],
where Int(·) is, say, the nearest integer function. In
Fig. 17, the right-most image is a normalization of
image to its left.

4.1. Weighted Multichannel CVT’s

We can incorporate two different types of weights into
the multichannel CVT-energy. We can assign a weight
νm , m = 1, . . . , M , to each channel and, as before,
we can also assign a weight λ�, � = 1, . . . , L , to each
cluster. If we only incorporate channel weights, we
have that the multichannel CVT-energy is given by

E(Z)
M∑

m=1

L∑

�=1

=
∑

um (i, j)∈V�

νm |um(i, j) − z�|2.

If we also use cluster dependent weights, the energy is
then given by

E(Z)
M∑

m=1

L∑

�=1

=
∑

um (i, j)∈V�

νmλ�|um(i, j) − z�|2.

The channel weights ν� can be chosen according to
the quality of the image corresponding to each channel.
The “clearer” the channel, e.g., the more complete or
less noisy is a particular channel image, the larger the
relative value of the corresponding weight. Selection
of the cluster dependent weights λ� was discussed in
Section 2.3. An algorithm for determining weighted,
multichannel CVT’s follows much the same lines as
Algorithm 5.

Figure 18 provides a two-channel example for which
one channel is less noisy than the other so that is as-
signed a higher channel weight in the CVT construc-
tion.

As for the single channel case, we can do averaging
in order to smooth out images. For the multichannel
case, averaging (with channel weighting) is based on
discrete versions of the formula

û = 1

M N

M∑

m=1

∫

R2
νmum(x − ξ, y − η)g(ξ, η) dξdη ,

where N = ∑M
m=1 νm . We can also combine mul-

tichannel CVT with averaging in order to extract
smoother edges. Figure 19 provides the results of com-
bining averaging and multichannel CVT segmentation
and edge detection for the example of Fig. 18.

Even after combining averaging with CVT segmen-
tation, the resulting image, e.g., the image on the left
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Figure 19. Multichannel CVT-image segmentation (left) and edge detection (middle) with averaging for the two-channel noisy images of
Fig. 18. The channel weights are the same as that for Fig. 18, β = 0.05, and σ = 1.5. The image on the right is the result of filtering the image
on the left.

in Fig. 19, contains some noise. The following simple
filtering procedure, which is applied after the clustered
image is obtained, can make further inroads into the re-
duction of noise in a CVT-based image. First, for each
(i, j) ∈ D, suppose the color at the point (i, j) in the
physical image belongs to cluster V� in color space.
Then, for a given filtering radius ρ, one determines
how many points within a radius ρ of the point (i, j)
belong to the same cluster V�; denote this number by
µi, j . (One can use percentages instead of raw counts.)
If µi, j is less than a preset value, one views the color at
the point (i, j) to be noise and then replaces the color
at that point with the color corresponding to the cluster
(in color space) that appears at the most points within
the circle of radius ρ centered at (i, j). The image on
the right in Fig. 19 is the result of applying this filtering
procedure to the image on the left of that figure. We
see that the filtered image has less noise.

5. Concluding Remarks

The examples provided in the paper indicate that CVT-
based methodologies are effective at several image
processing tasks; the main goal of this paper was to
present the CVT-based image compression, segmenta-
tion, and multichannel reconstruction methodologies
and to provide some examples of their use. We have
not included any explicit comparisons with other ap-
proaches, but CVT-based methodologies seem to be
very effective and are certainly much less costly to ap-
ply than, e.g., partial differential equation or variation-
ally based methodologies. Furthermore, some tasks,
e.g., segmentation into more than two segments, are
easily and efficiently accomplished by the CVT-based
methodologies.

Of course, this paper should be viewed as only a
starting point for studies in CVT-based image process-
ing; however, we believe that the examples provided in
this paper justify further study of CVT-based method-

ologies. Certainly, work remains to be done in order to
conclude that they provide a better means for treating
image compression, segmentation, and/or multichan-
nel reconstruction tasks. For example, the systematic
selection of weight functions should be studied in order
to make weighted CVT methods more “automatic.”
Further studies of how averaging and CVT segmen-
tation should be combined are also called for, as is
a more detailed consideration of multichannel CVT
methods. Explicit comparisons with other approaches
would also be desirable. Finally, it is possible that CVT-
based methodologies can be of use for other image pro-
cessing tasks, e.g., inpainting, so that studies in these
directions are also called for. All of the above sugges-
tions for further study are currently being pursued.
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Notes

1. The function u may be viewed as a scalar-valued function, e.g.,
in case it represents a brightness or grayscale level, or as a vector-
valued function, e.g., in case it represents a color in RGB or CMY
space.

2. A tie breaking rule should be invoked in case equality holds in (2),
i.e., in case |u(i, j) − wk | = |u(i, j) − wn | for some particular
k and n; for example, in this case, the color u(i, j) could be
assigned to Vk if k < n and to Vn if k > n.
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29. H. Späth, Cluster Dissection and Analysis, Theory, FOR-
TRAN Programs, Examples, Prentice Hall: Upper Saddle River,
1985.

30. L. Vese and T. Chan, “A multiphase level set frame-
work for image segmentation using the Mumford and Shah
model,” Inter. J. Comp. Vision., Vol. 50, pp. 271–293,
2002.

Qiang Du is a Professor of Mathematics at the Pennsylvania State
University. He received his Ph.D. from the Carnegie Mellon Univer-
sity in 1988. Since then, he has held academic positions at several
institutions such as the University of Chicago and the Hong Kong
University of Science and Technology. He has published over 100
papers on numerical algorithms and their various applications. His
recent research works include studies of bio-membranes, complex
fluids, quantized vortices, micro-structure evolution, image and data
analysis, mesh generation and optimization, and approximations of
partial differential equations.

Max Guzburger is the Frances Eppes Professor of Computational
Science and Mathematics at Florida State University. He received
his Ph.D. degree from New York University in 1969 and has
held positions at the University of Tennessee, Carnegie Mellon
University, Virginia Tech, and Iowa State University. He is the
author of five books and over 225 papers. His research interest
include computational methods for partial differential equations,
control of complex systems, superconductivity, data mining, com-
putational geometry, image processing, uncertainty quantification,
and numerical analysis.



194 Du et al.

Lili Ju is an Assistant Professor of Mathematics at the University of
South Carolina, Columbia. He received a B.S. degree in Mathematics
from Wuhan University in China in 1995, a M.S. degree in Com-
putational Mathematics from the Chinese Academy of Sciences in
1998, and a Ph.D. in Applied Mathematics from Iowa State Univer-
sity in 2002. From 2002 to 2004, he was an Industrial Postdoctoral
Researcher at the Institute of Mathematics and Its Applications at
the University of Minnesota. His research interests include numeri-
cal analysis, scientific computation, parallel computing, and medical
image processing.

Xiaoqiang Wang is a graduate student in mathematics at the Penn-
sylvania State University, working under the supervision of Qiang
Du. Starting in September 2005, he will be an Industrial Postdoctoral
Researcher at the Institute of Mathematics and its Applications at the
University of Minnesota. His research interests are in the fields of
applied mathematics and scientific computation. His work involves
numerical simulation and analysis, algorithms for image processing
and data mining, parallel algorithms, and high-performance com-
puting.




