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a b s t r a c t

Obtaining accurate solutions for convection–diffusion equations is challenging due to the presence of lay-
ers when convection dominates the diffusion. To solve this problem, we design an adaptive meshing algo-
rithm which optimizes the alignment of anisotropic meshes with the numerical solution. Three main
ingredients are used. First, the streamline upwind Petrov–Galerkin method is used to produce a stabilized
solution. Second, an adapted metric tensor is computed from the approximate solution. Third, optimized
anisotropic meshes are generated from the computed metric tensor by an anisotropic centroidal Voronoi
tessellation algorithm. Our algorithm is tested on a variety of two-dimensional examples and the results
shows that the algorithm is robust in detecting layers and efficient in avoiding non-physical oscillations
in the numerical approximation.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

We are interested in constructing numerical methods for solv-
ing partial differential equations whose solutions contain steep
boundary and interior layers. In these layers, the solution varies
much more quickly in some directions than it does in others. How-
ever, it is not always known a priori where these layers are located
or in which directions the solution varies most quickly. A numeri-
cal method should detect the layers automatically and be robust
and efficient in resolving the layers without causing non-physical
oscillations in the numerical approximations. In this paper, we
consider, as a model problem, the singularly perturbed convec-
tion–diffusion equation in two dimensions:

�aMuþ v � ru ¼ f ; in X;

u ¼ g; on C;

�
ð1Þ

where X � R2 is a bounded polygonal domain with boundary C; 0 <
a 6 1 is a given constant diffusion coefficient, vðxÞ 2 ½W1;1ðXÞ�2 is a
given convective/velocity field, f ðxÞ 2 L2ðXÞ is a given source func-
tion, and g 2 H

1
2ðCÞ is a given boundary function. We use standard
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notations for Sobolev spaces; see e.g., [1]. The boundary C can be di-
vided into three parts:

inflow boundary C� ¼ fx 2 C : v � n < 0g;
characteristic boundary C0 ¼ fx 2 C : v � n ¼ 0g;
outflow boundary Cþ ¼ fx 2 C : v � n > 0g;

where n denotes the unit outward normal vector to C.
Problem (1) models the transport of a quantity u through diffu-

sion and convection processes. It arises in many science and engi-
neering problems including pollutant or heat transport in a
flowing fluid, in which case u denotes the concentration of the pol-
lutant or the temperature, respectively. Several other examples of
the application of (1) are given in [30]. In addition, (1) also serves
as a prototype for a wider class of problems in which diffusion
and convection processes play a central role. In fact, in [30], the
problem (1) is identified as the most widespread fundamental
sub-problem in science and engineering.

Solving (1) becomes challenging when convection dominates
diffusion, i.e., when a� kvk. In such cases, the solution usually
exhibits very thin layers across which the derivatives of the solu-
tion are large. The layers can be classified into four main types:

� Regular boundary layers – appear at the outflow boundary Cþ

where the velocity field v is not parallel to C.
� Parabolic boundary layers – appear at the characteristic boundary

C0 where the velocity field v is parallel to C.
� Corner boundary layers – appear in the neighborhood of a corner

of the domain X where two boundary layers intersect.
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� Interior layers – appear due to discontinuities in the boundary
data at the inflow boundary C�; the discontinuities are propa-
gated across the domain along the vector lines of the velocity
field v.

When convection dominates diffusion, the solution of (1) has
two parts, a smooth one and a rapidly varying one; the latter part
describes the type of the boundary layer [15]. Regular boundary
layers have width of OðaÞ; this is due to the significant difference
between solutions of (1) and of the reduced equation ((1) with
a ¼ 0) at points near the outflow boundary. On the other hand, par-
abolic boundary layers are thicker in that they have width of
Oð

ffiffiffi
a
p
Þ. Interior layers have properties similar to the parabolic

boundary ones in that they also have width of Oð
ffiffiffi
a
p
Þ.

In cases where the solution contains steep layers, standard
Galerkin finite element methods or central finite volume methods
yield inaccurate oscillatory results unless the mesh is fine enough
(relative to the ratio a

kvk). In one dimension, it has been proved [30]
that for linear finite elements on a uniform grid, non-physical oscil-
lations occur when the mesh Peclet number Pe ¼ kvkh2a is greater
than unity. This situation, however, is still not fully understood
in two or more dimensions [13,34]. The difficulties are partly due
to the many partial differential equation issues related to the
smoothness of the solution, the compatibility of the data, and the
geometry of the domain.

One common approach to solving Eq. (1) is to use a stabilizing
scheme to enhance the stability of a standard method. Popular meth-
ods include upwinding [18], Galerkin least-squares [22], and
streamline upwind Petrov–Galerkin (SUPG) [3] methods. If a simula-
tion is effected using uniform meshes, a lot of computational work is
required but, in some cases, oscillations still appear near the layers
[24]. As a result, non-uniform meshes such as those referred to as
Bakhvalov and Shishkin type meshes [15] have been developed to
adapt to the layers and improve the numerical approximation. How-
ever, the construction of the B- and S-meshes requires a priori
knowledge of the locations and structures of the layers. In practice,
it is impossible to know about all the non-smooth behavior of the
solution. Hence, methods that adaptively generate meshes to cap-
ture the layers are of very substantial interest.

In adaptive mesh generation, a posteriori error estimators are
used to detect regions of large error for subsequent mesh refine-
ment [2,23,38]. The refined meshes can be isotropic (regularly-
shaped elements) or anisotropic (stretched elements). However,
despite the advantage of reducing the computational cost, there
are problems with using an a posteriori error estimator for equa-
tions of the type (1). First, it is difficult to achieve both the upper
and lower bounds predicted by the error estimator; moreover,
the error estimator gives no indication of the quality of the mesh.
Consequently, non-physical oscillations still exist and convergence
rates are low.

Most recent efforts directed at constructing adaptive aniso-
tropic meshes are based on a stabilized scheme and some mesh
modification strategy [31]. Such efforts are still in the very early
stages of development. According to the survey article [36], there
has been no adaptive anisotropic mesh generation method for
the two-dimensional convection–diffusion equations that comes
with a guaranteed bound for the error in the computed solution.

The method introduced in this paper attempts, in the context of
convection-dominated problems, to robustly, efficiently, and
automatically detect layers and produce accurate approximate
solutions that do not exhibit non-physical oscillations. The con-
struction of the method is based on three observations:

� A good choice of stabilized method can lead to small discretiza-
tion errors and rapid convergence.
� An optimized anisotropic meshing scheme can reduce the com-
putational cost and improve the accuracy of the solution by not
only placing more nodes in layer regions, but by also distribut-
ing them in such a way that mesh elements are stretched along
the layers.

� The stabilized method and the optimized meshing scheme can
be tied together by a metric tensor that can be determined from
the approximate solution of the stabilized method and then
used to generate the mesh.

This motivates us to efficiently construct an adaptive algorithm
that involves three main ingredients: a good stabilized method, a
reliable metric tensor, and an optimized meshing scheme. The
resulting algorithm effectively and robustly solves (1) on a general
domain and automatically deals with different types of layers pres-
ent in a solution. Here, we briefly discuss the choices we make for
the three ingredients.

Stabilized scheme – Standard Galerkin methods are unstable for
convection–diffusion equations when convection dominates diffu-
sion. We choose to use the streamline upwind Petrov–Galerkin
(SUPG) method [3]. Even though the SUPG is not monotone (i.e.,
it does not satisfy a discrete maximum principle), it is globally sta-
ble and has good higher-order accuracy in regions where the solu-
tion is smooth. Furthermore, the SUPG method is easy to
implement and does not require higher-order or complicated
weighting functions. SUPG adds extra diffusion to a standard dis-
cretization, but only along the streamlines, i.e., along directions
parallel to v. However, finding the optimal stabilization terms to
completely diminish non-physical oscillations is still an open prob-
lem. Therefore, in practice, it might be impossible to achieve opti-
mal convergence rates (i.e., second-order convergence for the L2-
error and first-order convergence for the H1-error when using lin-
ear elements) if the solution possesses steep layers. A recent trend
is to improve the convergence rate by adapting the mesh using
approximate solutions of the stabilized scheme [8].

Metric tensor – Adaptive anisotropic mesh refinement has the
advantage of improving the accuracy of the solution (particularly
in layer regions) while reducing computation cost relative to meth-
ods using isotropic meshes. A suitable anisotropic mesh has to sat-
isfy two principles: alignment and equi-distribution. Alignment
guarantees that mesh elements are aligned with the geometry of
the solution and can have large aspect ratio. Equi-distribution
forces the estimated error to be distributed uniformly over the
mesh elements. These two principles are important in mesh adap-
tation to control the size, shape, and orientation of mesh elements.
In our adaptive algorithm, we use a metric tensor to serve as a
guide to align the mesh with the anisotropy of the computed solu-
tion. Metric tensors that are useful for anisotropic grid generation
are discussed in, e.g., [4–6,11,10,20]. We use a metric tensor devel-
oped in [20], mainly because it is derived by minimizing the upper
bound of the interpolation error on a mesh satisfying the equi-dis-
tribution and alignment conditions. The metric tensor is deter-
mined from the approximate solution (more to the point, from
the Hessian matrix of the computed solution) obtained on a mesh
and is then used to define a metric from which a new mesh can be
constructed.

Anisotropic mesh generator – Several anisotropic mesh genera-
tors in two dimensions are available for research purposes. Two
examples are the BL2D [29] and the BAMG [17] packages that cre-
ate two-dimensional isotropic or anisotropic meshes and can be
integrated into an adaptive process. Anisotropic mesh generators
in three dimension are obviously more complex and are usually
found only in commercial software. We study our own mesh opti-
mization method so that we instead need software that determines
a triangulation of a set of points directly from the metric tensor,
without any internal optimization; we use the Simmetrix [35] soft-
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ware package for this purpose. For the mesh optimization process,
we use anisotropic centroidal Voronoi tessellations (ACVT)
[11,12,33]. Given a metric tensor, ACVT distributes the nodes by
minimizing a cost function so as to improve element quality and
reduce sizing distortion. The nodes are the mass centers (centroids)
of associated Voronoi regions with respect to the metric deter-
mined from a metric tensor. The process of moving the initial
nodes to the optimal positions is effected by the generalized Lloyd
iteration method. ACVT with an input of the metric tensor returns
high-quality meshes to solve convection-dominated problems.

Our study is based on constructing an optimal adaptive strategy
that can automatically refine, stretch, and orient the mesh ele-
ments so that the approximate solution of (1) can be computed
more efficiently and accurately. The rest of the paper is organized
as follows. The model problem is introduced and discretized by the
SUPG scheme in Section 2. In Section 3, we discuss the metric ten-
sor we use; see [20] for its derivation. Section 4 contains some the-
oretical and algorithmic discussions about ACVTs. In Section 5, the
adaptive algorithm is presented. In Sections 6 and 7, we present
the results of computational experiments with known and un-
known exact solutions, respectively. Possible extensions are dis-
cussed in Section 8.

2. The streamline upwind Petrov–Galerkin method (SUPG)

For a non-negative integer s, let HsðXÞ denote the Sobolev space
of functions having square integrable derivatives of order up to s;
note that H0ðXÞ ¼ L2ðXÞ. Let H1

0ðXÞ ¼ f/ 2 H1ðXÞ : / ¼ 0 on Cg.
The standard Galerkin variational formulation of (1) is given by:
find u 2 H1ðXÞ such that u ¼ g on C and

Bðu;vÞ ¼ FðvÞ 8v 2 H1
0ðXÞ; ð2Þ

where

Bðu; vÞ ¼ aðru;rvÞ þ ðv � ru;vÞ;
FðvÞ ¼ ðf ;vÞ

�
with ðu; vÞ ¼

R
X uv dxdy. For convection-dominated problems

ða� kvkÞ, discretizations of (2) using practical grid sizes are not
able to capture steep layers without introducing non-physical oscil-
lations. To improve stability, the SUPG method was introduced in
[3].

Assume that T is a triangulation of X. Let Vh � H1ðXÞ denote
the space of continuous, piecewise linear functions with respect
to T. Let V0;h ¼ Vh \ H1

0ðXÞ and gh 2 VhjC be a piecewise linear
function approximation of g which may be determined by interpo-
lating the given function g. Then, the SUPG variational formulation
of problem (1) is given by: find uh 2 Vh � H1ðXÞ such that uh ¼ gh

on C and

Bdðuh;vhÞ ¼ FdðvhÞ 8vh 2 V0;h; ð3Þ

where

Bdðuh; vhÞ ¼ Bðuh;vhÞ þ
P

T2T
dTð�aMuh þ v � ruh;v � rvhÞT ;

FdðvhÞ ¼ FðvhÞ þ
P

T2T
dTðf ;v � rvhÞT

8><>:
with dT 2 L1ðXÞ a non-negative stabilization parameter. Comparing
(2) and (3), we see that the SUPG method is a modified version of
the standard Galerkin method for which more diffusion is added
in the streamline direction to deal with the instability caused by
the convective field. Note that (3) is a consistent discretization of
(1) since the additional stabilization terms vanish for the exact solu-
tion of (1); thus, the SUPG method is referred to as a consistently sta-
bilized method.

Many heuristic choices for the parameter dT have been pro-
posed; for a review, see [25]. However, finding the optimal choice
that does the best job of diminishing non-physical oscillations is
still an open problem.

In one dimension and with constant data, the SUPG solution
with continuous piecewise linear finite elements on a uniform
mesh is nodally exact [7] if

dT ¼
hT

2kvkL2ðTÞ
cothðPeTÞ �

1
PeT

� �
;

where PeT ¼
kvk

L2 ðTÞhT

2jaj is the mesh Peclet number and hT is the ele-

ment length. In [3], it was suggested that the stabilization parame-
ters can be approximated by

dT ¼
hT

2kvkL2ðTÞ
max 0;1� 1

PeT

� �
; ð4Þ

or

dT ¼
hT

2kvkL2ðTÞ
min 1;

PeT

3

� �
: ð5Þ

For our computational experiments, we choose hT as the length of
the longest edge of the element T projected onto the convective
field v.

The formulation (4) of the stabilization parameter means that if
the mesh size is not ‘‘fine” enough (for PeT > 1 we have that
hT >

2jaj
kvk), then extra diffusion is added in the direction of the

streamwise direction. So, dT > 0 if PeT > 1, i.e., for the convec-
tion-dominated case. Otherwise, the standard Galerkin method is
used, i.e., dT ¼ 0 in the diffusion-dominated case. The formulation
(5) for the stabilization parameter shows that dT > 0 for both the
convection-dominated and diffusion-dominated cases:

dT ¼
c1hT ; if PeT > 3;

c2
h2

T
a ; if PeT 6 3;

(
ð6Þ

where c1 and c2 are appropriate positive constants. From our exper-
iments, we have observed that, when the mesh Peclet number is
large, i.e., for convection-dominated problems, numerical solutions
obtained using the stabilization parameter (5) are more stable.

Using the Lax-Milgram theorem, the existence and uniqueness
of the solution of the SUPG variational formulation (3) can be
proved because it can be shown that

� the bilinear form Bdð�; �Þ is coercive and continuous with respect
to the streamline diffusion norm kwksd ¼ ðakrwk2 þ dkv�
rwk2Þ

1
2, where k � k denotes the L2ðXÞ-norm;

� the linear functional Fdð�Þ is continuous with respect to the
streamline diffusion norm k � ksd.

For the standard Galerkin method, Bðvh;vhÞ ¼ aðrvh;rvhÞþ
ðv � rvh;vhÞ so that the coercivity of Bð�; �Þ becomes compromised
as a! 0. For the SUPG method, coercivity does not degrade when
a! 0. Similarly, the error bounds also suggest that the standard
Galerkin discretization will fail to produce accurate solutions in
the convection-dominated case. The error bound for the standard
Galerkin method is given by the following result [14,16].

Theorem 1. If piecewise linear approximations are used on a shape
regular triangulation of X, then, there exists a constant C, asymptot-

ically as a! 0 proportional to the mesh Peclet number Pe ¼ kvk1h
a ,

such that

krðu� uhÞk 6 Chkuk2;

where h is the length of the longest element edge and k � k2 denotes the
H2ðXÞ norm.

The error bound for the SUPG method is given by the following
result [14].
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Fig. 1. Geometric meaning of the application of the metric tensor; e1 and e2 are the
columns of ET .
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Theorem 2. If piecewise linear approximations are used on a uniform
mesh with h > 2a, then there exists a constant C, bounded indepen-
dently of a, such that

ku� uhksd 6 Ch
3
2kuk2:

The derivation of this bound takes advantage of the fact that the
coefficient a is of order h.

L2ðXÞ-norm bounds for the errors for the SUPG method are
shown, in [26,32], to be of O h

3
2

� �
on general quasi-uniform meshes

when linear or bilinear elements are used. The apparent loss of a
half-order rate of convergence in the L2-norm for the SUPG method
illustrates the difficulty of solving convection-dominated prob-
lems. Because the optimal value of the stabilization parameter is
unknown, it might be impossible to achieve the optimal conver-
gence rate, i.e., second-order convergence for L2-error and first-or-
der convergence for H1-error, when the solution possesses steep
layers. Attempts have been made (see e.g., [8]) to improve the con-
vergence rate through mesh adaptation.

3. Metric tensor for anisotropic mesh generation

In the convection-dominated case, (1) has layered solutions that
exhibit small variation in some directions but rapid changes in
other directions. Therefore, it is natural to use a small mesh size
in directions of rapid changes and a larger mesh size in directions
of small variations. Consequently, in an anisotropic mesh, stretched
elements are created along thin layers of the solution. In this way, it
is possible to capture the important features of the solution with a
much lower number of anisotropic elements compared with the
number of elements for an isotropic mesh. To obtain full control
of the shape, size, and orientation of anisotropic elements, a metric
tensor is required.

In [19–21], general formulas were developed for metric tensors
based on error estimates for polynomial preserving interpolation
on simplicial elements. Because the error estimates were redefined
in terms of mesh qualities, e.g., geometry, alignment, equi-distri-
bution, and adaptation, the metric tensor reflects the overall qual-
ity of the mesh with respect to the approximate solution. We
choose a metric tensor given in [21] that, specialized to our needs,
can be defined as follows.

Given a function v defined on X, let HðvÞ denote its Hessian ma-
trix and let Hð�Þ ¼ Qdiagðk1; k2ÞQT denote its eigen-decomposition
so that Q is the orthogonal matrix consisting of the eigenvectors
and ki; i ¼ 1;2, are the eigenvalues of HðvÞ. Let Hþð�Þ ¼ Qdiag
ðjk1j; jk2jÞQT . The adaptation function (this and other terminology
used here is adopted from [21]) is defined by

q ¼ Iþ 1
a

HþðvÞ
				 				1

2

det Iþ 1
a

HþðvÞ
� �� �1

4

:

The intensity parameter a is defined implicitly through the equation

r ¼
Z

X
qðxÞdx ¼ jXj

1� b
;

where jXj denotes the volume of X and b roughly indicates the per-
centage of mesh points concentrated in the regions of large q. In
[21], it is recommended that b be chosen in the range 0.5 to 0.8.
Then, the metric tensor is given by (see [21, Eq. (4.10)])

MðxÞ ¼ qN
r

det Iþ 1
a

HþðvÞ
� �� ��1

2

Iþ 1
a

HþðvÞ
� �

; ð7Þ

where the integer N is the number of ‘‘target” elements; see Section
5 for how N is chosen. Note that MðxÞ is normalized so that it sat-
isfies the unitary volume condition
Z
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMðxÞÞ

q
dx ¼ 1 8T; ð8Þ

where T denotes an element in the mesh.
Due to the regularized form with an intensity parameter a, the

metric tensor (7) is a positive definite matrix that can be used to
generate an anisotropic mesh satisfying the equi-distribution and
alignment conditions. A regularized form of the metric tensor for
isotropic meshes is given by [21, Eq. (4.8)]:

MðxÞ ¼ N
r

1þ 1
a
kHðvÞkp

� �
I; ð9Þ

where k � kp denotes the Lp matrix norm. In our computational
experiments, the metric tensors (9) and (7) are used to generate
isotropic and anisotropic meshes, respectively. The results of the
comparisons agree with the expectation that, in the convection-
dominated problem, anisotropic meshes are preferred.

In [4–6], metric tensors similar to that in (7) are discussed; the
difference is that they conclude that different exponents may be
desirable. It would certainly be valuable to test and compare the
effectiveness of metric tensors of the form (7) but with different
exponents.

The metric tensor can be given a geometric interpretation. In
two-dimensions, the metric tensor is a positive definite 2� 2 ma-
trix which we have denoted by M. Let x be a point in X. Then,
MðxÞ ¼ ETðxÞUðxÞEðxÞ, where

EðxÞ ¼
cos hðxÞ sin hðxÞ
� sin hðxÞ cos hðxÞ

� �
; UðxÞ ¼

l1ðxÞ 0
0 l2ðxÞ

� �
:

This is interpreted to mean that the metric tensor MðxÞ has trans-
formed a unit circle (around the point x) into an ellipse. Assuming
that the mesh is quasi-uniform under the metric MðxÞ, the eigen-
values and eigenvectors of MðxÞ can be used to determine the ele-
ment aspect ratio and mesh alignment direction for anisotropic
mesh generation. The magnitudes of the axes of the ellipse are given
by 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
l1ðxÞ

p
and 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
l2ðxÞ

p
. Fig. 1 shows an example of how the

metric tensor rotates and stretches the coordinate axes.

4. Anisotropic centroidal Voronoi tessellations (ACVT)

As discussed above, standard Galerkin finite element methods
on a uniform mesh produce inaccurate numerical solutions of
singularly perturbed problems. As a result, several different types
of non-uniform meshes have been developed. The simplest
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non-uniform mesh is a piecewise-uniform one which consists of a
fine mesh in boundary layer regions, a coarse mesh outside the
boundary layer, and a transition mesh connecting the two. B-
and S-meshes (for Bakhvalov and Shishkin) are well-known exam-
ples of this type of mesh. Such meshes require knowledge about
the structure of the layers. Furthermore, it is essential to properly
construct the transition mesh. Due to the above issues, we use the
ACVT algorithm [11,27,28,9] as a mesh generator because of its
optimality and robustness. The following algorithms and theorems
are taken from [11].

4.1. The optimality property

Assume that X � R2 is a compact set with continuous boundary
@X. Given a metric tensor (a positive definite matrix) MðxÞ and a
set of distinct points fzigk

i¼1 belonging to X, the anisotropic Voronoi
region (AVR) of a generator zi in X is defined by

ViðziÞ ¼ fx 2 X : dxðx; ziÞ < dxðx; zjÞ for j ¼ 1; . . . ; k; j – ig;

where dxðx;pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp
!

TMðxÞxp
!

q
is a directional distance and xp

!
de-

notes the vector pointing from p to x. The set fVigk
i¼1 is referred to

as an anisotropic Voronoi tessellation (AVT) of X; the set fzigk
i¼1 is
p

ai

bi

ci

qj

qlj

Fig. 2. The discretization used to approximate the AVR in Algorithm 1.

Fig. A.1. Example 1: plots of the exact solution (top) and its contou
the set of generators of the anisotropic Voronoi tessellation. There
are two types of AVR’s: interior AVR’s for which Vi \ @X ¼ ; and
boundary AVR’s for which Vi \ @X–;. Given a metric tensor MðxÞ,
the anisotropic center of mass (centroid) of the AVR VðziÞ is given by

z	i ¼
Z

VðziÞ
Mdx

 !�1 Z
VðziÞ

Mxdx: ð10Þ

Each AVR ViðziÞ and its associated generator zi define the aniso-
tropic distortion value FiðziÞ given by

Fi zið Þ ¼
Z

ViðziÞ
d2

xðx; ziÞ dx:

The total distortion is given by

F fzigk
i¼1

� �
¼
Xk

i¼1

FiðziÞ ¼
Xk

i¼1

Z
ViðziÞ

d2
xðx; ziÞ dx: ð11Þ
Proposition 1. [11] A necessary condition for F to be minimized is
that, for each i ¼ 1; . . . ; k, the generator zi of the AVR Vi is itself the
centroid z	i of Vi.

Whenever we have that zi ¼ z	i for all i, we refer to the AVT as
being a anisotropic centroidal Voronoi tessellation (ACVT). Accord-
ing to Proposition 1, ACVT’s can be characterized geometrically by
the condition zi ¼ z	i for i ¼ 1; . . . ; k or analytically as minimizers of
the total distortion function (11).

4.2. Approximation of AVR’s and computation of mass centers

To approximate the AVR’s of a given set of distinct points
fzigk

i¼1 � X with respect to a given metric tensor M, we use the tri-
angle and neighbor information provided by the anisotropic con-
strained Delaunay triangulation (ADT) of those points with
respect to the given metric tensor. To this end, we use the software
package Simmetrix [35]. The outputs are a set of node points fzigk0

i¼1,
their triangulation T, and the neighbor information for the set
of points. For notational purposes, we denote the Simmetrix
rs (bottom) with a ¼ 10�1;10�3, and 10�6 (from left to right).
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input–output relation as fzigk0

i¼1;T;N
� �

¼ SIMðX;M; fzigk
i¼1Þ,

whereT denotes the triangulation of the point set fzigk0
i¼1 and N de-

notes the neighbor information for T, i.e., for each zi, the points that
are connected to it by edges of the triangulation. Note that the num-
ber of output points may be different from the number of input
points because, depending on the particular properties of the given
metric tensor, Simmetrix may change the number of points in order
to produce a high-quality ADT.

With the help of the ADT, given an interior vertex p of the trian-
gulation T, we define the following sets:

� The set Tp of triangles in the ADT having p as a common vertex.
� The set T	

p of triangles that share the edges of the triangles in
Tp but do not contain p.
Fig. A.2. Example 1 ða ¼ 10�6Þ: approximate solutions on an isotropic mesh with
17,958 vertices (left) and an anisotropic mesh with 15,221 vertices (right).

Fig. A.3. Example 1 ða ¼ 10�6Þ: the isotropic mesh with 2,273 vertices (top) and the aniso
the right.
� The testing region Xp ¼Tp [T	
p which is the union of the trian-

gles in the ADT that contain the AVR Vp corresponding to p.
� The set of testing vertices Vp consisting of the vertices in Xp,

except for p itself.

Then, the procedure to construct the approximate AVR bV p cor-
responding to p is given as follows; see [11] for more details. See
Fig. 2 for a visual illustration of the discretization used to approx-
imate the AVR.

Algorithm 1. Given a region X � R2, a metric tensor M, and a set
of points fzigk

i¼1, determine the ADT ðfzigk0

i¼1;T;NÞ ¼ SIMðX;M;

fzigk
i¼1Þ. For each point p 2 fzigk0

i¼1, find Tp and T	p and order their
triangles in counter-clockwise (CCW) order. Let Np denote the
number of triangles in Tp. Determine the testing region Xp and the
set of testing vertices Vp. Denote by cVp the set of vertices of the
approximate AVR bV p. Initially, cVp ¼ ;.

For i ¼ 1 to Np, do the following:
� Denote the ith triangle of Tp and T	

p by Ti and T	i , respec-
tively; near the boundary of X; T	i might not exist.

� Let fp; ai;big denote the CCW-ordered vertices of Ti and
fbi; ai; cig the CCW-ordered vertices of T	i .

� Divide the edge aibi into Ne equal sub-edges and order the
endpoints of the sub-edges as fqjg

Ne
j¼0 with q0 ¼ ai.

� For j ¼ 0 to Ne � 1, do the following.
tropic
– Divide each of the segments pqj and qjci into MD equal
sub-segments.

– Connect pqj and ciqj, forming the polygonal segment
pqjci.
mesh with 2492 vertices (bottom) with zoom ins of the upper-right corner on
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– Order the endpoints of the 2MD sub-segments of the
polygonal segment pqjci as fq‘jg

2MD
‘¼0 with q0j ¼ p;qMD ;j ¼

qj, and q2MD ;j ¼ ci.
– For ‘ ¼ 1 to 2MD � 1, do the following.
100

101
For q 2Vp, compare the distances dq‘j ðq‘j;pÞ and
dq‘j ðq‘j;qÞ.
If there exists q̂ 2Vp such that dq‘j ðq‘j;pÞ > dq‘j ðq‘j; q̂Þ,
then

set cVp ¼ cVp [ q‘j

exit the ‘-index loop and move to the next polygo-
nal segment of the j-index loop.

end if
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end for f‘g
end for fjg

end for fig

Connect the points in cVp which are already in CCW-order to
obtain the closed polygon bV p. Then, bV p is regarded as an
approximation of the AVR Vp corresponding the point p 2 fzigk0

i¼1.

In our computational experiments, Ne and MD are set to 4. Our
experiments show that these values provide good accuracy with-
out unnecessarily increasing computation time. Since the AVR
Vp is approximated by bNp ¼ NpNe triangles of the form Di ¼
Dpq	i q	iþ1;q

	
i 2 cVp; i ¼ 1; . . . ; bNp, the center of mass (10) of Vp can

be approximated using the same triangles:

z	i 

XbNp

i¼1

jDij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMiÞ

q
Mi

0B@
1CA
�1XbNp

i¼1

jDij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMiÞ

q
Miyi;

where yi is the geometric center of Di;Mi is the metric tensor com-
puted at yi, and jDij is the area of Di.

4.3. An algorithm to construct the ACVT

The generalized Lloyd iteration method is used to produce the
approximate ACVT mesh.

Algorithm 2. Given a compact domain X � R2, a set of points
fzigk

i¼1 in X, and a background metric tensor MðxÞ, construct an
initial ADT T; fzigk0

i¼1

� �
¼ SIM X;M; fzigk

i¼1

� �
.

1. Construct the approximate AVR’s fbV igk0

i¼1 associated with fzigk0

i¼1.
2. Compute the centers of mass (centroids) of the approximate

AVR’s found in step 1.
3. Move the points fzigk0

i¼1 to the centroid positions.
4. Construct an new ADT T; fzigk00

i¼1

� �
¼ SIM X;M; fzigk0

i¼1

� �
.

5. If the new points meet some convergence criterion, terminate;
otherwise, set k0 ¼ k00 and return to step 1.
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Fig. A.4. Example 1: the L1; L2, and H1 norms (top to bottom) of the error vs. the
number of triangles NT.
5. Adaptive algorithm

Putting the ingredients defined in Sections 2–4 together, we can
define the adaptive anisotropic mesh generation algorithm. We be-
lieve that the combination of a stable discretization scheme (the
SUPG method) and well-adapted anisotropic meshes (using the
metric tensor from [21] and ACVT) can significantly improve the
numerical approximation of the convection-dominated problems.
Following is our proposed algorithm to determine approximate
solutions of (1).

Algorithm 3. Let X � R2 be a bounded polygonal domain. Given
an initial coarse mesh of X, do the following.

Initial step

Solve (1) by the SUPG method (3).
Use the approximate solution to compute the metric tensor (7).
For each level of the refinement, the following steps are done:

1. Given the computed metric tensor, the adaptivity is done by
(a) Using Simmetrix to create the initial ADT.
(b) Constructing the ACVT mesh using Algorithm 2.



Fig. A.5. Example 2 ða ¼ 10�8Þ: plots of the approximate solution (top) and its contours (bottom) on the isotropic mesh with 21,920 vertices (left) and the anisotropic mesh
with 21,840 vertices (right).

Fig. A.6. Example 2 ða ¼ 10�8Þ: the isotropic mesh with 17,404 vertices (top) and the anisotropic mesh with 15,762 vertices (bottom) with zoom ins of the interior layer on
the right.
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2. Based on the optimized mesh from Step 1, solve the (1) by the
SUPG method (3).

3. Compute the metric tensor (7) from the approximate solution
from Step 2.
Note that at the beginning of each level of refinement (step 1a),
we use the metric tensor (7) computed from the mesh of the pre-
vious level. Based on the metric tensor and the generators of the
previous mesh, Simmetrix will automatically add more points to
the mesh to satisfy the unitary volume condition (8).

Algorithm 3 determines approximations of the solution of (1)
on adaptive anisotropic meshes. To compare this solution with
the one on adaptive isotropic meshes, one can replace the aniso-
tropic metric tensor (7) with the isotropic tensor (9).

Since we use piecewise linear finite element approximations, we
should note how an approximation to the Hessian matrix in the def-
inition (7) of the metric tensor is determined. Following [21, p. 649],
solution first derivatives are approximated using a linear least-
squares fit to the nodal values of the computed solution and sec-
ond-order derivatives are obtained in a similar manner, but based
on the nodal values of the computed first-order derivatives.

The linear system of algebraic equations resulting from the SUPG
method (3) with the stabilization parameter (5) is solved using the
iterative method mGMRes with incomplete LU preconditioner.
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Fig. A.7. Example 2: the L1; L2, and H1 norms (top to b
Then, the computed solution is given as an input to generate the
metric tensors. The parameter N used in the metric tensors (7)
and (9) is prescribed as the number of triangles in the mesh used
to determine the approximate solution.

In the next two sections, we present computational examples to
illustrate the robustness and efficiency of our adaptive algorithm for
solving convection–diffusion problems, including convection-dom-
inated problems. We choose b ¼ 0:5 for all the examples, except for
Example 3 of Section 6.3. There, we compare solutions and meshes
for b ¼ 0:5 with those for b ¼ 0:95. In order to keep the presentation
smooth, we collect the figures and plots in Appendix A.
6. Computational experiments with manufactured solutions

Denote by NT and NV the number of triangles and vertices in a
mesh, respectively, and let u and uh denote the exact and approx-
imate solutions, respectively. The convergence rate CR [27,28] with
respect to a norm k � k at the refinement level m is roughly com-
puted by

CR ¼
2 log kehm k

kehm�1
k

� �
log

NVm�1
NVm

� � ; ð12Þ
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Fig. A.8. Example 3 ða ¼ 0:005Þ: plots of the approximate solution (top) and its contours (bottom) on the isotropic mesh with 14,901 vertices (left) and the anisotropic mesh
with 15,315 vertices (right).

Fig. A.9. Example 3 ða ¼ 0:005Þ: the isotropic mesh with 1444 vertices (top) and the anisotropic mesh 1143 vertices (bottom) with zoom ins of the interior layer on the right.
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where hm denotes the grid size, NVm denotes the number of vertices,
and ehm ¼ u� uhm , all at the refinement level m.

6.1. Example 1: Regular boundary layers

We consider an example taken from [37]. In (1), set X ¼ ð0;1Þ2

and vðx; yÞ ¼ ð1;1ÞT and choose a from the set f10�1;10�3;10�6g.
Choose the exact solution uðx; yÞ ¼ xy 1� e�1�x

a

� �
1� e�

1�y
a

� �
that is

continuous but has regular boundary layers at x ¼ 1 and y ¼ 1.
The right-hand side and boundary conditions are determined from
the exact solution. As observed in Fig. A.1, the solution becomes
much steeper as a! 0. When a ¼ 10�6 and adaptive isotropic
meshes are used, the approximate solution contains non-physical
oscillations in the layer regions as seen in Fig. A.2-left. However,
the solution is much smoother on the adaptive anisotropic meshes;
see Fig. A.2-right. This is due to the fact that the amount of extra
diffusion in the SUPG scheme depends on the mesh size hT inside
the layer region. Fig. A.3 shows the isotropic and anisotropic adap-
tive meshes. The anisotropic mesh leads to smaller errors in the
L1- and H1-norms for a ¼ 10�1 and a ¼ 10�6. However, the L2 error
is slightly bigger in the anisotropic case; see Fig. A.4. This is due to
the averaging properties of the L2-norm of the errors over the
whole domain. So, local phenomena such as oscillations are not
captured by this norm. As mentioned in [15], the L2 error might
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Fig. A.10. Example 3: the L1; L2, and H1 norms (top to b
give misleading information for singularly perturbed problems.
This argument is supported by comparing the plots of errors on
these two meshes. The convergence rates are optimal or near-opti-
mal for both types of meshes, except for the L1 norm when a be-
comes small. This is expected for the isotropic case since the
non-physical oscillations appear in the solution. For the anisotropic
case, the H1-norm convergence rate is still optimal.

6.2. Example 2: Interior layer with constant convective field

Choose the exact solution uðx; yÞ ¼ 1

1þe
�200

ffiffiffiffiffiffiffiffi
x2þy2
p

�0:8


 � that is con-

tinuous but has an interior layer along the quarter circle
x2 þ y2 ¼ 0:82. In (1), set X ¼ ð0;1Þ2; a ¼ 10�8, and vðx; yÞ ¼ ð2;3ÞT

and determine the right-hand side and boundary conditions from
the exact solution. A similar example was presented in [23], but
the equation treated there was the Poisson equation, i.e., without
a convective field.

Figs. A.5 and A.6 illustrates the ability of our algorithm to
clearly capture the interior layer in this example with both isotro-
pic and anisotropic meshes. Note that the anisotropic mesh with a
smaller number of vertices is able to produce a solution with
smaller errors than the isotropic mesh, as can be seen from
Fig. A.7. For both mesh types, the average convergence rates are
nearly optimal.
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6.3. Example 3: Interior layer with variable convective field

This example is taken from [20]. Choose the exact solution

uðx; yÞ ¼ 1þ e
xþy�0:85

2a

� ��1
that is continuous but has an interior layer

along the line y ¼ �xþ 0:85. Let X ¼ ð0;1Þ2; a ¼ 0:005, and
v ¼ ðuðx; yÞ;uðx; yÞÞT , and let the right-hand side and boundary con-
ditions be determined from the exact solution.

Fig. A.8 shows the numerical solutions and meshes when b ¼ 0:5
as specified in the other examples. Note how the mesh elements are
stretched along the layers in the bottom of Fig. A.9 as compared
with the top of Fig. A.9. Similar to Example 2, the anisotropic mesh
can achieve smaller errors with fewer vertices compared with the
isotropic mesh, as seen in Fig. A.10. The convergence rates are
nearly optimal for both mesh types.

To compare the isotropic and anisotropic meshes when b is
changed from 0.5 to 0.95, refer to Figs. A.11 and A.12. Because b
indicates roughly the percentage of mesh points concentrated in
the layer regions, the larger value of b results in the extremely long
thin triangles and a higher point concentration inside the layer. The
errors in Fig. A.10 when b ¼ 0:95 are smaller than the ones when
b ¼ 0:5. However, the convergence rate for the L2 norm shows
oscillation for the anisotropic mesh when b ¼ 0:95. For the isotro-
pic case, it remains optimal. This may be due to an increase in
interpolation or discretization errors because of the very thin ele-
ments in the anisotropic mesh. To avoid this problem, we can relax
the value of b as we observe when we change b from 0.95 to 0.5.
This is the reason why b ¼ 0:5 is used for all the examples although
clearly further studies of the effect of the parameter b are called
for. Alternatively, it may be possible to place a constraint on the
angles of the thin anisotropic elements. Mesh modification such
Fig. A.11. Example 3 ða ¼ 0:005Þ: isotropic meshes with b ¼ 0:5 (top, 1444 vertices) an
as edge swapping or local smoothing can also be considered in
the future.
7. Computational experiments with unknown solutions

In practice, we usually have to deal with more complicated
problems which do not have a known solution. Examples 4 to 6, ta-
ken from [15], have both components of the convective field v
being negative. This means that, on a unit square domain, the loca-
tions of regular boundary layers can happen at the outflow bound-
aries x ¼ 0 and y ¼ 0. A Shishkin type mesh is used in [15] and
requires this a priori information to construct the mesh. Example
7 is also taken from [15] and has the convective field vðx; yÞ ¼
�ð1;0ÞT . This means that, on a unit square domain, a regular
boundary layer can occur at the outflow boundary x ¼ 0 while par-
abolic layers can occur at y ¼ 0 and y ¼ 1. A corner boundary layer
can also occur at a corner of the unit square. The Shishkin mesh
type [15] again requires this a priori information for the mesh
construction.

7.1. Example 4: Regular boundary layers with smooth data

In (1), set X ¼ ð0;1Þ2 and vðx; yÞ ¼ �ð2;1ÞT and choose a ¼ 10�1

or a ¼ 10�6. The right-hand side is given by f ðx; yÞ ¼ �x2ð1� xÞ2y2

ð1� yÞ2 and the boundary condition is uðx; yÞ ¼ 0 on @X.
Figs. A.13–A.15 and A.16 show the numerical solutions and

meshes for isotropic and anisotropic meshes. Here, we observe sim-
ilar behavior as in Example 1, where the diffusion term a was also
varied. For a ¼ 10�1, the isotropic and anisotropic solutions are
not distinguishable to the eye. However, non-physical oscillations
d b ¼ 0:95 (bottom, 1536 vertices) with zoom ins of the interior layer on the right.



Fig. A.13. Example 4 ða ¼ 10�1Þ: plots of the approximate solution (top) and its contours (bottom) on the isotropic mesh with 2646 vertices (left) and the anisotropic mesh
with 4065 vertices (right).

Fig. A.12. Example 3 ða ¼ 0:005Þ: anisotropic meshes with b ¼ 0:5 (top, 1143 vertices) and b ¼ 0:95 (bottom, 1245 vertices) with zoom ins of the interior layer on the right.
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Fig. A.14. Example 4 ða ¼ 10�1Þ: the isotropic mesh with 1414 vertices (top) and the anisotropic mesh with 1867 vertices (bottom) with zoom ins of the lower left-hand
corner on the right.

Fig. A.15. Example 4 ða ¼ 10�6Þ: plots of the approximate solution (top) and its contours (bottom) on the isotropic mesh with 16,368 vertices (left) and the anisotropic mesh
with 16,423 vertices (right).
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appear in the isotropic solution when a ¼ 10�6 but the solution is
still smooth for the anisotropic case. These results support the argu-
ment that the adaptive anisotropic mesh is efficient in capturing the
layers and avoiding non-physical oscillations for convection-domi-
nated problems. For the remaining examples, we show only numer-
ical solutions on anisotropic meshes.

7.2. Example 5: Regular and corner boundary layers with non-smooth
data

In (1), set X ¼ ð0;1Þ2;vðx; yÞ ¼ �ð2þ x2y;1þ xyÞT , and a ¼ 10�6.
The right-hand side is given by f ðx; yÞ ¼ �ðx2 þ y3 þ cosðxþ 2yÞÞ
and the boundary condition is given by
Fig. A.16. Example 4 ða ¼ 10�6Þ: the isotropic mesh with 2064 vertices (top) and the anis
the right.

Fig. A.17. Example 5 ða ¼ 10�6Þ: plots of the approximate solution (left) a
uðx;0Þ ¼ 0; uðx;1Þ ¼
4xð1� xÞ; x < 1

2 ;

1; x P 1
2 ;

(

uð0; yÞ ¼ 0; uð1; yÞ ¼
8yð1� 2yÞ; y < 1

4 ;

1; y P 1
4 :

(
The boundary data are not differentiable at the points (0.5,1) and
(1,0.25). Figs. A.17 and A.18 show that the regular and corner bound-
ary layers are captured well by adaptive anisotropic mesh refinement.

7.3. Example 6: Interior and regular boundary layers

This example is similar to Example 5, except that the boundary
conditions are different. Let X ¼ ð0;1Þ2;vðx; yÞ ¼ �ð1;4ÞT , and a ¼
otropic mesh 2394 vertices (bottom) with zoom ins of the lower left-hand corner on

nd its contours (right) on the anisotropic mesh with 27,635 vertices.
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10�6. The right-hand side is f ðx; yÞ ¼ �ðx2 � y2Þ and the boundary
conditions are

uðx;0Þ ¼ 1; uðx;1Þ ¼ ð1� xÞ
1
6; uð0; yÞ ¼ 1; uð1; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� y

p
:

At the inflow corner (1,1), the exact solution is not differentiable.
This incompatibility in the inflow boundary data creates an interior
layer in the domain which is a line joining the points (1,1) and
(0.75,0). The layer follows the characteristic line of the convective
field. In Ref. [15], a Shishkin mesh is used with refinement along
the outflow boundary only, and was not able to capture the interior
layer. The authors of that work observed smearing in the layer area
because of the lack of interior mesh refinement. Our method is able
to detect this layer automatically and, as a result, the mesh is appro-
priately refined along the layer. Figs. A.19 and A.20 show our
results.

7.4. Example 7: Parabolic and corner boundary layers

Let X ¼ ð0;1Þ2;vðx; yÞ ¼ �ð1;0ÞT , and a ¼ 10�3. The right-hand
side is f ðx; yÞ ¼ 0 and the boundary condition is uðx;0Þ ¼
ð6

ffiffiffi
3
p

xð1� xÞð2x� 1ÞÞ3 and uðx; yÞ ¼ 0 if ðx; yÞ 2 @X n fðx;0Þg. At
y ¼ 0, the solution has a parabolic boundary layer and positive val-
ues when x > 1

2 and negative values when x < 1
2. A corner boundary

layer occurs at (0,0). Figs. A.21 and A.22 show our results, which
are similar to those in [15]. The boundary condition along the line
y ¼ 0 implies that the solution will be positive for x > 0:5 and neg-
ative for x < 0:5. However, some positive values of the solution can
be seen in the neighborhood of the midpoint (0.5,0) for x < 0:5.
Fig. A.19. Example 6 ða ¼ 10�6Þ: plots of the approximate solution (left) a

Fig. A.18. Example 5 ða ¼ 10�6Þ: the anisotropic mesh with 2307 ver
This indicates the influence of the convective flow along the
ð�1;0Þ direction.
8. Concluding remarks

Our adaptive anisotropic mesh algorithm has substantially
improved the numerical approximation for steady-state convec-
tion–diffusion problems. It works well on both diffusion-domi-
nated and convection-dominated problems. The results
converge at a quasi-optimal or optimal rate (depending on the
characteristics of the layers) and with low computational cost.
Due to the efficiency and robustness of our algorithm, non-phys-
ical oscillations in the numerical solutions in the layers are not
present. Since adaptive anisotropic meshes are used in our algo-
rithm, any local phenomena in the solutions (for example, layers,
singularities, etc.) are captured automatically. This capability will
allow us to explore more practical and complicated problems in
future.

We will continue optimizing our schemes and algorithms to ob-
tain better numerical approximation. Mesh modification tech-
niques such as edge swapping and local smoothing will be
explored. These techniques are designed to prevent the elements
from getting too thin and causing an increase in matrix condition-
ing and in interpolation or discretization errors. Comparing the
effectiveness of the metric tensor (7) with those discussed in [4–
6] is certainly also called for.

Furthermore, implementing the adaptive algorithm in three
dimensions is another possibility due to two reasons. First, Simme-
nd its contours (right) on the anisotropic mesh with 30,350 vertices.

tices with a zoom in of the lower left-hand corner on the right.
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trix can generate three-dimensional tetrahedral meshes. Second,
the other ingredients (stabilization scheme, metric tensor, and
ACVT) can also be generalized to three dimensions. Although the
core of the three-dimensional algorithm will be similar to the
two-dimensional one, the implementation for three-dimensional
mesh generation will likely be quite challenging.

Our studies will also be extended to the time-dependent case.
We believe that our achievements in the stationary problem make
this task very tractable. We are also interested in constructing the
adaptive algorithm for the incompressible Navier–Stokes equation.
Fig. A.21. Example 7 ða ¼ 10�3Þ: plots of the approximate solution

Fig. A.22. Example 7 ða ¼ 10�3Þ: the anisotropic mesh with

Fig. A.20. Example 6 ða ¼ 10�6Þ: the anisotropic mesh with
Understanding its linearized simplified version, i.e., the convec-
tion–diffusion equation, gives us more insights on how to apply
the SUPG formulation for the Navier–Stokes equations with respect
to the mesh adaptation.
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and its contours on the anisotropic mesh with 33,006 vertices.

2539 vertices with a zoom in of the layers on the right.

1765 vertices with a zoom in of the layers on the right.
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Appendix A. Figures and plots

A.1. Example 1

Figs. A.1–A.3 and A.4.

A.2. Example 2

Figs. A.5, A.6 and A.7.

A.3. Example 3

Figs. A.8–A.11 and A.12.

A.4. Example 4

Figs. A.13–A.15 and A.16.

A.5. Example 5

Figs. A.17 and A.18.

A.6. Example 6

Figs. A.19 and A.20.

A.7. Example 7

Figs. A.21 and A.22.
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