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Abstract

Centroidal Voronoi tessellations (CVTs) are Voronoi tessellations of a region such

that the generating points of the tessellations are also the centroids of the corresponding

Voronoi regions. Such tessellations are of use in very diverse applications, including

data compression, clustering analysis, cell biology, territorial behavior of animals, and

optimal allocation of resources. In this paper, we explore the use of CVTs in grid

generation in connection with finite element approximations of partial differential

equations. We being by describing these tessellations and methods for their determi-

nation. We then discuss their application to mesh generation and finish with some ex-

amples of their use for the solution of partial differential equations.
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1. Introduction

During recent years, there has been a concerted effort in the scientific
computing community to develop automated methodologies for the solution of
complex problems. A key element of the methodologies is the generation of
meshes that are optimal in some sense related to minimizing the costs of solving
the complex problem. The search for such mesh generation methodologies
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continues and motivates further studies of fast, automatic, and optimal algo-
rithms for generating quality meshes [5].

Meshes are often classified as either being structured or unstructured [25].
While also applicable to the former, the main focus of this paper is on the
latter.

A very popular method for unstructured mesh generation is the Voronoi–
Delaunay triangulations [8]. Given a set of input points fzigki¼1 belonging to a
domain X � RN , the Voronoi region V̂Vi corresponding to the point zi consists of
all points in X that are closer to zi than to any other point in the set. The set
fV̂Vigki¼1 forms a partition of X and is known as a Voronoi tessellation or Voronoi
diagram of X. The points fzigki¼1 are called generating points or generators. The
dual Delaunay triangulation is formed by connecting pairs of generating points
which correspond to adjacent Voronoi regions [1,16,22].

Voronoi tessellations and Delaunay triangulations are very useful in a va-
riety of applications. Historically, these concepts have been reinvented, given
different names, generalized, studied, and applied many times over in many
different fields [6]. For a comprehensive treatment of Voronoi diagrams, see
[22].

In the context of unstructured mesh generation, Delaunay, triangulations
have often been used as a good starting point. The triangulation may contain
triangles with small angles, or triangles with greatly varying area so that most
of the algorithms related to the Voronoi–Delaunay triangulations do not
provide a guarantee about the quality of the resulting mesh.

The quality of the Voronoi–Delaunay triangulations is often associated with
the distribution of the generating points. To find good distribution of points,
several techniques have been proposed such as the advancing front method
[10,11], the method of sphere packing [20,21], and the method of successive
insertion of Steiner points [5,24]. Some of these techniques can indeed produce
meshes satisfying certain quality constraints, e.g., the minimum angle is larger
than a user provided lower bound [5].

Recently, we have been studying the concept of centroidal Voronoi tessel-
lations [6] which offer many superior properties compared to ordinary Voronoi
tessellations. Thus, it may be expected that the centroidal Voronoi tessellation
based Delaunay triangulation (CVDT) might provide better alternatives to
existing methodologies for generating high quality meshes.

The CVDT provides, in some sense, an optimal distribution of generating
points; indeed, we show that the construction of CVDT generalizes many ex-
isting local smoothing techniques. In fact, a centroidal Voronoi tessellation
(CVT) is constructed based on an associated density function and cost (or error,
or distortion measure, or energy) functional. Within such a framework, it be-
comes possible to establish an important theoretical connection between mesh
smoothing techniques and some mesh quality measure. In the context of the
numerical solution of partial differential equations, the density function and
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cost functional can be related to error estimators for the underlying discrete
approximation so that the CVDT should also be useful in an adaptive solution
strategy.

The paper is organized as follows. In Section 2, we describe the basic con-
cepts used. In Section 3, we present various algorithms for determining CVDTs
and, in Section 4, we discuss applications to mesh generation. In Section 5, we
present some preliminary numerical studies on the construction of CVDTs and
the use of CVDTs for the solution of model partial differential equations. Some
comments are provided in Section 6.

2. Centroidal Voronoi tessellations and Delaunay triangulations

Given a region V and a density function qðyÞ defined on V , the mass centroid
z� of V is defined by

z� ¼
R
V yqðyÞdyR
V qðyÞdy : ð1Þ

Thus, given k points zi, i ¼ 1; . . . ; k, in the domain X, we can define their as-
sociated Voronoi regions Vi , i ¼ 1; . . . ; k, which forms a tesselation of X. On the
other hand, given the regions Vi , i ¼ 1; . . . ; k, we can define their mass centroids
z�i , i ¼ 1; . . . ; k.

Definition 1. Given the set of points fzigki¼1 in the domain X and a positive
density function q defined on X, a Voronoi tessellation is called a CVT if

zi ¼ z�i ; i ¼ 1; . . . ; k; ð2Þ

i.e., the points zi that serve as generators for the Voroni regions Vi are them-
selves the mass centroids of those regions. The corresponding dual Delaunay
triangulation is referred to as the CVDTs.

CVTs are special in that, given an arbitrary set of points fzigki¼1 in X � RN ,
these points will not in general be the centroids of their associated Voronoi
regions; see Fig. 1.

The notion of Voronoi regions and centroids, and therefore, of centroidal
Voronoi regions, may be generalized to more abstract spaces and to metrics
other than the Euclidean ‘2 norm [6]; for example, one can instead use
dðx; yÞ ¼ kx	 yk‘p to define the Voronoi partition. The generalized mass
centroid of V may then be defined by the point x in V (or RN ) that minimizesR
V qðyÞdðx; yÞdy. One may also define CVTs for more abstract objects other

than points; see [6,22] for more details.
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For any tesselation fVigki¼1 of the domain X and a set of points fzigki¼1 in X,
we can define the following cost (or error or energy) functional:

F fVigki¼1; fzig
k
i¼1

� �
¼

Xk

i¼1

Z
Vi

qðxÞkx	 zik2
dx: ð3Þ

The standard CVTs along with their generators are critical points of this cost
functional. It was shown in [6] that it is possible to have a CVT as a saddle
point, though the minimizers of F are geometrically more stable.

In practice, the positions of the generators may be limited by various con-
straints. For example, in the context of mesh generation, it may be required
that a certain number of generators be located on the boundary of X. This
motivates another generalization of the CVT concept, that is, the constrained
CVT defined as the minimum of F under some specified constraints. Thus, we
may consider the abstract optimization problem with P symbolizing some
constraints on the location of the generating points.

Definition 2. Given the set of points fzigki¼1 in X, a density function q, and a
constraint set P , a Voronoi tessellation is called a constrained centroidal
Voronoi tessellation (CCVT) if ffVigki¼1; fzig

k
i¼1g is a solution of the problem

min
fzigki¼12P ;fVig

k
i¼1

F fVigki¼1; fzig
k
i¼1

� �
: ð4Þ

The dual Delaunay triangulation is referred to as the constrained centroidal
Voronoi–Delaunay tesselation (CCVDT).

It is understood that the set P should be chosen so that the minimization
problem is solvable. This is mostly the case in the mesh generation context as
geometrical constraints often make P well defined and compact.

Fig. 1. A Voronoi tessellation of a square with 10 randomly selected points ((a) (�) centroids;

(�) generators) and a 10-point centroidal Voronoi tessellation ((b) (�) generators and centroids).
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Our current research effort is aimed at advancing the theoretical under-
standing of CVDTs and their properties, developing various algorithms and
software tools for the computation of CVDTs on various computation plat-
forms (in particular, on modern, high performance, parallel supercomputers
and computer clusters), and, together with scientists and engineers from other
disciplines, applying the concepts of CVDTs and the software tools to solve
problems in diverse fields of applications.

3. Algorithms for CVDTs

Usually there are two components in the algorithms for finding CVDTs: the
first being the calculation of the generators of the CVT and the second being
the construction of the corresponding Delaunay triangulation from those
generators. Once the generators are found, the second component can be ac-
complished using standard Delaunay triangulation algorithms. Thus, we focus
on methods for finding the generators of CVTs. We only discuss two such
methods which are the simplest representatives of the two method classes, i.e.,
probabilistic and deterministic. More sophisticated and efficient probabilistic
algorithms are discussed in [15].

3.1. Probabilistic approaches

We focus on the random MacQueen’s method which has the advantage that
it does not require the calculation of the Voronoi tessellation until the final
step. The method is defined as follows. Given a set X; a positive integer k, and a
probability density function q defined on X:

0. select an initial set of k points fzigki¼1 in X, using a Monte Carlo method;
initialize the index ji ¼ 1 for all i ¼ 1; . . . ; k;

1. select a y 2 X at random according to the probability density function
qðyÞ;

2. find a zi in fzigki¼1 that is closest to y; denote the index of that zi by i�;
3. set

zi�  
ji�zi� þ y

ji� þ 1
and ji�  ji� þ 1;

the new zi� , along with the unchanged fzigi6¼i� , form the new set fzigki¼1;
4. if this new set of points meets some convergence criterion, find the cor-

responding Delaunay triangulation and terminate; otherwise, return to
step 1.

Note that the index ji represents the number of times that the point zi has been
updated.
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MacQueen’s algorithm has the following interpretation in the language of
clustering methods. At the ‘th stage of the algorithm, one starts with the po-
sitions of the cluster centers, i.e., the means, zi, i ¼ 1; . . . ; k, and a clustering of
ð‘þ kÞ points (the original k points of step 0 plus the ‘ points y’s previously
selected in step 1) into k corresponding clusters. One then selects a new random
point y, locates the closest cluster center, and adds it to the corresponding
cluster. Of course, one also updates the mean, i.e., the cluster center, of the
enlarged cluster. For more detailed discussions, see [18]; see also [6] for a more
comprehensive list of references.

An advantage of MacQueen’s method lies in the fact that there is no need to
compute the Voronoi tessellations or the Delaunay triangulations until the
termination step. This is very attractive in a situation where only the generators
are sought after. However, in the context of grid generation, the final com-
putation of the Delaunay triangulation cannot be skipped.

3.2. Deterministic approaches

We only describe an algorithm based on the popular Lloyd’s method which
is an obvious iteration between constructing Voronoi tessellations and cent-
roids. Given a set X, a positive integer k, and a probability density function q
defined on X:

0. select an initial set of k points fzigki¼1, e.g., by using a Monte Carlo
method;

1. construct the Voronoi tessellation fVigki¼1 of X associated with the points
fzigki¼1;

2. compute the mass centroids of the Voronoi regions fVigki¼1 found in step
1; these centroids are the new set of points fzigki¼1;

3. if this new set of points meets some convergence criterion, find the cor-
responding Delaunay triangulation and terminate; otherwise, return to
step 1.

We keep the convention of naming the above algorithm Lloyd’s method. The
original Lloyd’s method [17] was used to just find the CVT and it may be
viewed as a fixed point iteration for the mapping between generators and
centroids. A more detailed discussion along with a list of references can be
found in [6].

3.3. Algorithms for constrained CVDTs

Various generalizations are possible for the construction of CCVDTs. We
illustrate with a few examples. In the simplest setting of the one-dimensional
case, two of the generators may be confined to be the two endpoints of the
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given interval X ¼ ½a; b�. We propose the following modification to Mac-
Queen’s method:

0. let z1 ¼ a and zk ¼ b and select an initial set of k 	 2 points fzigki¼1, using
a Monte Carlo method; set ji ¼ 1 for all 1 < i < k;

1. select a y 2 X at random, according to the probability density function
qðyÞ;

2. find that zi that is closest to y; denote the index of that zi by i�;
3. if i� ¼ 1 or i� ¼ k, return to step 1; otherwise set

zi�  
ji�zi� þ y

ji� þ 1
and ji�  ji� þ 1;

the new zi� , along with the unchanged fzigi 6¼i� , form the new set fzigki¼1;
4. if this new set of points meets some convergence criterion, construct the

Delaunay triangulation and terminate; otherwise, return to step 1.

Generalizations to more complicated constraint sets may be done in the same
spirit.

Similarly, let P be a constraint set, we propose the following modification to
the deterministic Lloyd method:

0. select an initial set of k points fzigki¼1 belonging to P ;
1. construct the Voronoi tessellation fVigki¼1 of X associated with the points
fzigki¼1;

2. compute, in the set P , the minimum of the functional

Gðfzigki¼1Þ ¼
Xk

i¼1

Z
Vi

qðxÞkx	 zik2
dx; ð5Þ

the minimizer is the new set of points fzigki¼1;
3. if this new set of points meets some convergence criterion, find the cor-

responding Delaunay triangulation and terminate; otherwise, return to
step 1.

The modified Lloyd algorithm again has the property that the functional F is
monotonically decreasing throughout the iteration.

4. Applications of CVDTs to mesh generation

In [6], we have discussed many applications of CVTs such as the optimal
quadrature rules, optimal representation, quantization, clustering, optimal
placement of resources, cell division, and territorial behavior of animals. Here,
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we are primarily interested in the application of CVTs and CVDTs to mesh
generation and the numerical solution of partial differential equations.

4.1. Unconstrained mesh generation

Generically, there are many geometrical properties associated with the
Delaunay triangulation that include the following.

Delaunay criterion: The interior of the circumsphere of a simplex in the
triangulation contains no generating points.

Dual Delaunay property: The edge is perpendicular to some face of the
Voronoi tessellation.

Empty circle property: For each edge, a sphere can be found which contains
the edge’s endpoints but does not contain any other generating points.

In two dimensions, the Delaunay triangulation also posses the smallest
angle, the largest circumscribing circle, and the largest minimum enclosing
circle properties [20,23]. The construction of Delaunay triangulations is well
studied and includes divide-and-conquer, plane-sweep, and randomized in-
cremental algorithms [3,8,14]. Thus, the application of the CVDT to uncon-
strained mesh generation deals mainly with the distribution of the generators
according to some density function q. The function q needs to reflect the
properties of the solution. It can either be given based on previously known
information or be given by some local error estimators of the underlying so-
lution.

4.2. Constrained mesh generation

In more practical applications, meshes are subject to constraints on the
position of the generating points and perhaps as well on the edges and faces of
the simplices. We focus on the important constraint of marking the meshes
conform with the geometrical boundary. There are many different approahces
to handling such constraints, some of which are discussed below.

From the boundary to the interior: One may predetermine a subset of gen-
erating points on the boundary, e.g., via a lower dimensional CVT construction
based on a pre-defined density function. The advantage of this approach is the
consistent use of the CVT concept which results in a relatively simple algo-
rithm. The drawbacks are that it may not be easy to determine a priori the
number of generating points on the boundary and the appropriate boundary
density function.

From the interior to the boundary: One may, of course, construct the CVT
and the CVDT without applying any constraints using a standard algorithm
such as the Lloyd iteration. Whenever a new set of generators is found, one
determines if any of the corresponding Voronoi regions extend to the exterior
of the domain. Some procedure can then be applied to project some or all of
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the corresponding generators to the boundary of the domain and then continue
the iteration process.

Variational formulation: In more generic settings, consider CVDTs for a
bounded domain where we have N generating points zi in the interior of the
domain X and M points yk on the boundary. Consider the minimization of the
modified functional

Eðfzi; Vig; fyk;WkgÞ ¼
XN
i¼1

Z
Vi

q1ðxÞkx	 zik2
dV

þ
XM
k¼1

Z
Wk

q2ðxÞkx	 ykk
2
dW

with respect to fzig � X, fykg � oX, fVig, and fWkg, where the sets fVig and
fWkg jointly form a partition of X. The density functions may be defined dif-
ferently to reflect the different weights placed on the interior and boundary
generating points. The Delaunay triangulation corresponding to the minimizer
can then be used for generating meshes which conform to the boundary. An
alternate formulation requires the yk’s to be fixed points on the boundary so
that one minimizes with respect to fzig, fVig, and fWkg. The variational
problem covers both cases mentioned above.

Again, the density functions q1 and q2 may be based on prior information or
on a local error estimator. They can be defined as the restrictions of the same
function but in general, they may also be allowed to take different forms. The
latter case may cause the resulting CVTs to have special geometric properties
near the boundary. For practical applications, the relation between q1 and q2

needs to be further investigated.

4.3. Adaptation and local smoothing

Adaptation of meshes in general involves refinement, coarsening, and
smoothing. For the smoothing part, various approaches have been studied
[7,9,19].

One popular approach is Laplacian smoothing [7,19]. By successively
moving each point to the centroid of its neighbors, it is often the case that the
resulting grids are improved. This practical procedure has been widely used in
engineering applications due to its simplicity, but theoretically, no connection
is made to guarantee any specific mesh quality criterion [4].

The CVDT concept provides a good theoretical explanation to the
smoothing process: by successively moving generators to the mass centers (of
the Voronoi regions), the cost functional is reduced. With a suitable choice
for the density function, the cost functional can be related to error estima-
tors for the underlying problem. The averages of the neighboring generators
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provide approximations to the mass centers of the Voronoi regions. Thus, the
smoothing process mimics the process of iteratively constructing CVTs such as
the Lloyd algorithm, and thus, contributes to the reduction of the discretiza-
tion error.

4.4. Equi-partition of errors

An interesting question is related to the distribution of the cost functional
(also referred to as the variance or distortion error, etc., in some contexts)
when the number of generators becomes large. Let us consider the one-
dimensional case and let hi ¼ jVi j. Under the condition that the density is
bounded and strictly positive, we have h ¼ max hi ! 0, as k, the number of
generators, goes to infinity. Then, it has been shown that [6]

jVi j � c1q
1=3ðmiÞ and

Z
Vi

qðxÞðx	 xiÞ2 dx � c2 8i;

for some constants c1; c2, where mi denotes the midpoint of the interval Vi . That
is, asymptotically speaking, the error is equally distributed in the Voronoi
intervals and the sizes of the Voronoi intervals are inversely proportional to the
one-third power of the underlying density at the midpoints of the intervals. For
multidimensional CVTs, in [12] an important conjecture is made which states
that asymptotically, as the number of generators becomes large, all Voronoi
regions are approximately congruent to the same basic cell that only depends
on the dimension. The basic cell was shown to be the regular hexagon in two
dimensions but the conjecture remains open for three and higher dimensions.
The equi-distribution of error principle can be established based on this con-
jecture [12,13].

5. Numerical experiments

In our preliminary numerical experiments, we have computed the CVDTs
for some sample density functions qðxÞ in a two-dimensional square and have
used CVDTs to solve model Poisson equations.

5.1. Centroidal Voronoi–Delaunay triangulations

We first present examples of CVDTs and make comparisons with some
generic Delaunay triangulations. In Fig. 2, two pairs of grids are presented
with the top pair corresponding to a constant, uniform density and the bottom
pair to the density expð	2ðxþ 1Þ2 	 2ðy þ 1Þ2Þ. For each pair, the Delaunay
grid on the right is determined from a CVT and are of much better quality than
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the corresponding Delaunay grid on the left which is obtained from randomly
generated Voronoi diagrams, both based on the same density function.

5.2. Applications to the numerical solution of partial differential equations

CVTs and their dual Delaunay triangulations can obviously be linked to the
numerical solution of partial differential equations. The optimal grid generation
strategy can be incorporated into the discretization methodology for PDEs. It
is hoped that a posteriori error estimates can be used to determine an effective
density function. This would lead to a CVT-based grid adaptation strategy
which can be incorporated into useful PDE solvers. Here, as a first small step
towards that goal, we present some exmaples for solving the Poisson equation
with Dirichlet boundary conditions in a unit square domain. In all cases, we
use standard continuous, piecewise quadratic finite element spaces based on a

Fig. 2. Two-dimensional Delaunay triangulations for random Voronoi diagrams (a) and CVTs (b).
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triangulation of the domain to effect the discretization. In the examples we
present, we compare computations on logically Cartesian grids with those of
comparable centroidal Voronoi-based grids. By comparable, we mean that two
grids have a similar number of nodes and triangles.

We first compare uniform grid computations. In the Cartesian setting, it is
well understood what one means by a uniform grid; see the figure on the left in
Fig. 3. For centroidal Voronoi-based grids and their dual Delaunay triangu-
lations, ‘‘uniform’’ implies that the grids were generated using a constant
density funtion; see the figure on the right in Fig. 3. The Cartesian grid has 98
triangles, 225 nodes, and 169 unknowns; the CVDT has 96 triangles, 223
nodes, and 163 unknowns.

In Table 1, we give the L2-norm and the H 1-seminorm of the error between
the exact solution and its finite element approximation. From the table, it
seems that there is not much to choose between using uniform Cartesian or
CVDT grids for well-behaved exact solutions.

Next, we examine the errors between the exact solution

uðx; yÞ ¼ 1

1þ 40x2 þ 40y2
ð6Þ

and its quadratic finite element approximation. The function in (6) decays
quickly away from the origin (one of the corners of the unit square domain)

Fig. 3. Uniform Cartesian (a) and centroidal Voroni (b) grids.

Table 1

Errors for uniform grid examples using Cartesian and CVDT grids

Exact solution Cartesian grid CVDT grid

L2 error H 1 error L2 error H 1 error

cos px cos py 0.000820 0.0440 0.000590 0.0318

e	x=2e2y 0.000269 0.0132 0.000342 0.0168

sin px sin py 0.000827 0.0441 0.000683 0.0323

sinð4xy2Þ 0.002348 0.1211 0.001141 0.0588

sin 2px sin 2py 0.006742 6.2833 0.005576 6.2842
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and thus has a large gradient near the origin. We approximate the solution of
the Poisson equation using a series of grids, of both Cartesian and CVDT type,
which are successively more refined near the origin. Of course, if the number of
points remains fixed, then refinement near the origin results in coarsening away
from the origin, i.e., near the upper right corner of the unit square.

For Cartesian grids, refinement in each coordinate direction is effected by
monomial mappings, i.e., the interval ½0; 1� is mapped into itself using the
mapping xs which, for s > 1, has the effect of piling up points near the left end
of the interval. We use the values s ¼ 1, 2, 3, and 4. For the case of an 8� 8
grid (225 nodes, 98 triangles, 169 unknowns), s ¼ 1, of course, yields the
uniform Cartesian grid of the figure on the left in Fig. 3. The other values of s
yield the grids of Fig. 4. We also consider the 16� 16 grids (961 nodes, 450
triangles, 841 unknowns) of Fig. 5 which correspond to the cases s ¼ 1, 2, and
3. The L2-norm and the H 1-seminorm of the error between the exact solution
and its quadratic finite element approximation are given in Table 2. We see that
if the number of grid points remains fixed, then refinement near the origin (with
the corresponding coarsening away from the origin) at first yields better ap-
proximations; compare the s ¼ 1 and s ¼ 2 cases. However, more refinement,
e.g., the s ¼ 3 and s ¼ 4 cases, near the origin causes sufficient coarsening away
form the origin so that the overall error increases. Of course, adding grid points

Fig. 4. 8� 8 Cartesian grids increasingly refined near the origin: s ¼ 2; 3; 4 (left to right).

Fig. 5. 16� 16 Cartesian grids increasingly refined near the origin: s ¼ 1; 2; 3 (left to right).
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for the same refinement exponent reduces the error. Comparisons between the
8� 8 and 16� 16 certainly illustrate the quadratic and cubic convergence of
H 1-seminorm and L2-norm of the error, respectively.

For CVDT grids, refinement is effected by appropriately choosing the
density function. Ultimately, we would like to relate the density function to an
a posteriori error estimate for the solution (see, e.g., [2]). Here, we merely
choose a series of density functions to see their effect on the accuracy of the
solution; we again use the example of the Poisson equation with Dirichlet
boundary conditions for which (6) is the exact solution. Since a priori error
estimates for quadratic finite element approximations involve local norms of
the third derivatives of the exact solution, we choose the density functions to be
proportional to powers of these local third derivative norms,

qðx; yÞ ¼
X3

i¼0

joixo3	i
y uðx; yÞj2

( )k=2

:

In Fig. 6, we give some example CVDT grids generated from the three density
functions corresponding to k ¼ 0:5, k ¼ 1:0, and k ¼ 1:5; of course, k ¼ 0
corresponds to the constant density function which generates the grid of the
figure on the right in Fig. 3. These grids all correspond to 64 Voronoi gener-

Table 2

Errors for Cartesian grid with different levels of refinement for the exact solution of (6)

Refinement

exponent, s
8� 8 Cartesian grid 16� 16 Cartesian grid

L2 error H 1 error L2 error H 1 error

1 0.002931 0.1333 0.0003038 0.03041

2 0.000580 0.0363 0.0000592 0.00818

3 0.000975 0.0427 0.0000977 0.00960

4 0.001660 0.0567 – –

Fig. 6. CVDT grids having roughly 100 triangles and increasing refinement near the origin;

k ¼ 0:5; 1:0; 1:5 (left to right).
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ators. The number of triangles is roughly the same as that for an 8� 8 Car-
tesian grid. The number of triangles differ slightly as one changes the density
function since it is in number of Voronoi generators that we are keeping fixed.
In Fig. 7, we give some example CVDT grids having 256 Voronoi generators
and different density functions corresponding to k ¼ 0:25; 0:5; 0:75; the number
of triangles for these grids is roughly the same as for a 16� 16 Cartesian grid.
The L2-norm and the H 1-seminorm of the error between the exact solution and
its quadratic finite element approximation are given in Table 3 for CVDT grids
generated by several density functions. As was the case for Cartesian grids,
refinement near the origin reduces the error from that of a uniform grid;
however, with a fixed number of Voronoi generators, too much refinement near
the origin causes excessive coarsening away from the origin and results in
increases in the error. To achieve further reduction in the error, refinement near
the origin should be accompanied by the addition of Voronoi generators, i.e.,
more triangles. We certainly see that having more points greatly reduces the
error and in fact, as was the case for Cartesian grids, we see, for CVDT grids,

Table 3

Errors for CVDT grid with different levels of refinement for the exact solution of (6)

Exponent in

density function

Number of

triangles

CVDT grid

L2 error H 1 error

k ¼ 0:00 96 0.001698 0.0841

k ¼ 0:25 95 0.000289 0.0271

k ¼ 0:50 95 0.000111 0.0120

k ¼ 1:00 98 0.000504 0.0136

k ¼ 1:50 102 0.003387 0.0459

k ¼ 2:00 104 0.009145 0.1135

k ¼ 0:25 443 0.0000178 0.00436

k ¼ 0:50 447 0.0000259 0.00262

k ¼ 1:75 460 0.0002880 0.00801

Fig. 7. CVDT grids having roughly 450 triangles and increasing refinement near the origin;

k ¼ 0:25; 0:50; 0:75 (left to right).
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the expected quadratic and cubic convergence of the H 1-seminorm and L2-
norm of the error, respectively.

6. Concluding remarks

We have presented some preliminary studies on the use of CVTs and
CVDTs for mesh generation. As CVTs posses a number of desirable geometric
and optimization properties, it seems very sensible to utilize the properties of
the dual Delaunay triangulations corresponding to CVTs especially for three-
dimensional settings. Though not being proven, we believe that CVDTs can be
very effective in avoiding slivers and for obtaining special-looking grids, e.g.,
long thin triangles aligned with the flow in boundary layers, wherever desirable.
It remains to investigate further the effects of nonuniform densities on Dela-
unay triangulations. Such results evidently will be useful for the generation of
optimal grids. Another question of both theoretical and practical importance is
CVTs and the corresponding CVDTs in general metrics and how to compute
them. For various applications, the use of Euclidean metric appears overly
restrictive. We plan to explore the use of various generalized CVTs to achieve
the purpose of designing anisotropic grids. For example, the metric could re-
flect the anisotropic properties. Another interesting investigation would be to
incorporate grid adaptation, e.g., for time-dependent problems, into MacQueen
grid generation strategy. One would also like to have the ability for refining and
coarsening the grid. All of these topics will be pursued in our future work.
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