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Abstract During the next decade and beyond, climate
system models will be challenged to resolve scales and
processes that are far beyond their current scope. Each
climate system component has its prototypical example
of an unresolved process that may strongly influence
the global climate system, ranging from eddy activity
within ocean models, to ice streams within ice sheet
models, to surface hydrological processes within land
system models, to cloud processes within atmosphere
models. These new demands will almost certainly result
in the develop of multiresolution schemes that are able,
at least regionally, to faithfully simulate these fine-scale
processes. Spherical centroidal Voronoi tessellations
(SCVTs) offer one potential path toward the develop-
ment of a robust, multiresolution climate system model
components. SCVTs allow for the generation of high-
quality Voronoi diagrams and Delaunay triangulations
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through the use of an intuitive, user-defined density
function. In each of the examples provided, this method
results in high-quality meshes where the quality mea-
sures are guaranteed to improve as the number of
nodes is increased. Real-world examples are developed
for the Greenland ice sheet and the North Atlantic
ocean. Idealized examples are developed for ocean–ice
shelf interaction and for regional atmospheric model-
ing. In addition to defining, developing, and exhibiting
SCVTs, we pair this mesh generation technique with
a previously developed finite-volume method. Our nu-
merical example is based on the nonlinear, shallow-
water equations spanning the entire surface of the
sphere. This example is used to elucidate both the po-
tential benefits of this multiresolution method and the
challenges ahead.

Keywords Voronoi diagram · Delaunay triangulation ·
Climate modeling · Multiresolution

1 Introduction

Climate system models (CSMs) are an increasingly
important tool for assessing anthropogenic climate
change. CSMs, along with observations and theory,
form the basis for the Intergovernmental Panel on
Climate Change (IPCC) Working Group 1 Assessment
Reports that detail the anticipated consequences of
rising concentrations of atmospheric greenhouse gases
(International Panel on Climate Change 2007). While
CSMs have been highly successful in interpreting ob-
servations, confirming theory and providing gross es-
timates of climate sensitivity, the climate modeling
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community will be challenged in the coming decade to
extend the utility of CSMs well beyond their current
scope.

At least two drivers are pushing CSMs into new and
expanding roles. The first is the increasingly urgent
need to resolve scales and processes that are far beyond
the current scope of these models. There are likely
to be unresolved processes and currently misrepresen-
ted processes that have significant influence on the
global climate system. Every component of the Earth
system has its own prototypical example, ranging from
eddy activity within ocean models (Hallberg and
Gnanadesikan 2006), to ice streams within ice sheet
models (Joughin et al. 1999), to surface hydrological
processes within land system models (Newman et al.
2006), to cloud processes with atmosphere models
(Tomita et al. 2007). All of these processes are not
faithfully included in IPCC-class CSMs primarily due
to lack of resolution; the degrees of freedom required
to comprehensively simulate these processes are com-
putationally prohibitive given the current (and foresee-
able) resources.

The second driver pushing the evolution of CSMs
is the rapidly growing demand for high-fidelity assess-
ments of regional climate change driven by increasing
concentrations of atmospheric greenhouse gases. As
appreciation for the possible consequences of anthro-
pogenic climate change improves, we are confronted
with the need to characterize the regional aspects of
climate change in order to support adaption and mit-
igation strategies. As indicated by the last chapter of
the IPCC WG1 Fourth Assessment Report (AR4),
the push in this direction is already underway (Inter-
national Panel on Climate Change 2007). To be suc-
cessful in providing the relevant information regarding
regional climate impacts, CSMs will require significant
increases in resolution, at least regionally, along with
the incorporation of new processes.

The magnitude of the problem that must be ad-
dressed by the climate modeling community in order
to transition from coarse-grain global CSMs to robust
multiresolution CSMs is portrayed in chapter 8 of AR4.
Every one of the 23 models contributing to AR4 uti-
lizes an ocean model based on structured quadrilat-
eral grids using low-order (∼second-order) numerics
based on compact finite-difference/finite-volume sten-
cils (See Table 8.2.1 in AR4). In addition, as a group,
these 23 models showed a rapid migration in their
atmospheric component from global spectral methods
to finite-volume methods built on traditional latitude–
longitude grids. Not a single model contributing to AR4
utilized unstructured grids or multiresolution methods.
So, while the scientific and societal needs for multireso-

lution CSMs are strikingly clear, the path to that end is
not at all obvious.

CSM components are presently testing various types
of quasiuniform tessellations (also referred to as grids
or meshes) to discretize the surface of the sphere.
These quasiuniform tessellations are a significant im-
provement over their predecessor, latitude–longitude
grids, by removing both the strong grid-pole singu-
larities and the accompanying numerical filters re-
quired to regularize these singularities. Various types of
meshes have been proposed as alternatives to the tradi-
tional latitude–longitude grid. For example, the cubed-
sphere, which offers the same topological structure
as the latitude–longitude grid without the strong pole
singularities, has been successfully implemented in var-
ious efforts (McGregor 1996; Adcroft et al. 2004; Nair
et al. 2005). Voronoi tessellations (also referred to as
geodesic, icosahedral or hexagonal grids) have some-
times been chosen for their remarkable uniformity and
isotropy (Ringler et al. 2000). Finally, closely related
to these Voronoi tessellations are the Delaunay trian-
gulations that have been successfully implemented in
an idealized setting and are now being integrated into
full CSMs (Bonaventura and Ringler 2005; Comblen
et al. 2008). While all of these methods have success-
fully removed the grid pole singularities associated with
latitude–longitude grids, it is not clear that any of these
methods, as presently formulated, will be able to meet
the challenges outlined above.

By their nature, quasiuniform tessellations imply a
substantial increase in computational costs with an in-
crease in horizontal resolution. A halving of the nom-
inal grid spacing implies an increase in computational
cost of approximately a factor of eight; a factor of four
arises from doubling the degrees of freedom in each
of the horizontal directions and a factor of two arises
due to halving the time step. The computational bur-
den associated with increasing resolution everywhere
within the domain quickly exhausts available com-
putational resources. For example, conducting eddy-
resolving ocean simulations as a part of century-long
coupled climate simulations is impracticable now and
will likely continue to be so for at least the next decade
or more. The current NCAR coupled CSM (Collins
et al. 2006) uses an ocean component model with a
320 × 384 grid and a time step of approximately 1 h.
The eddy-resolving version of this ocean model uses
a 3,600 × 2,400 grid and a time step of approximately
6 min (Maltrud and McClean 2004). The two configu-
rations differ by a factor of about 1,000 in terms of their
computational burden. Similarly daunting computa-
tional burdens are found in ice sheet modeling, surface
hydrology modeling, and atmospheric modeling.
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The obvious implication here is that CSMs will not
be able to fulfill their expanding roles by solely using
quasiuniform tessellations. The corollary to this asser-
tion is that multiresolution schemes will be required
if CSMs are to meet the growing challenges over the
next decade. In many ways, ocean models are ahead
of the other climate system components in develop-
ing models amenable to multiresolution modeling (e.g.
Stuhne and Peltier 2006; Giraldo and Warburton 2008).
Yet, even within the limited context of ocean modeling,
a large gap remains between the idealized dynamical-
core simulations conducted to date and the goal of full-
physics simulations of the real ocean. Clearly, a host of
scientific complexities arise as we begin to contemplate
the construction of a multiresolution IPCC-class CSM.

The recent work of St-Cyr et al. (2007) clearly indi-
cates that a successful multiresolution scheme requires
attention to the combination of method and mesh. The
authors develop a multiresolution mesh by implement-
ing an adaptive, hierarchical nesting technique in which
quadrilateral elements are bisected to locally increase
resolution. When this adaptive meshing technique was
used in combination with a high-order spectral method,
the resulting multiresolution scheme produced positive
results. Alternatively, when the same technique was
used in combination with a low-order, finite-volume
technique, the results were equivocal at best; adding
degrees of freedoms did not reduce numerical solution
error. The implication is that robust, multiresolution
climate system components will require close attention
to both the quality of the variable-resolution meshes
and to the numerical techniques we place “on top” of
these meshes.

An alternative to hierarchical nesting is to pro-
duce a smoothly varying tessellation. By their design,
smoothly varying tessellations provide strong control
over the spatial patterns of truncation error. While this
control may be superfluous when used in combination
with high-order methods, it may prove to be critically
important when used with the low-order, finite-volume
methods that are ubiquitous in IPCC-class component
models discussed above. The primary purpose of this
paper is to develop a class of robust, variable-resolution
meshes, called spherical centroidal Voronoi tessella-
tions (SCVTs), that have the requisite characteristics
necessary to meet the present and future challenges of
climate system modeling.

SCVTs contain a host of qualities that should pro-
duce tangible benefits in the context of climate mod-
eling. First, SCVTs are a superset of the quasiuniform
Voronoi tessellations currently being used in the cli-
mate modeling community (e.g., Randall et al. 2002;
Satoh et al. 2008). Thus, SCVTs are a logical extension

to meshes already being utilized. Second, as discussed
in Section 2, even nonuniform SCVTs always produce
smoother, more locally uniform meshes as the degrees
of freedom are increased. The implication here is clear;
SCVTs offer a robust means of producing multiresolu-
tion meshes that are guaranteed to increase in qual-
ity as computational resources grow. As discussed in
Section 3, the technique to produce variable-resolution
SCVTs is intuitive and straightforward to implement.
Finally, each SCVT is associated with a Delaunay tri-
angulation. The positive attributes associated with the
SCVTs are also present in the associated Delaunay
triangulation. While a tremendous amount of work is
required to translate these positive attributes into ro-
bust climate simulations, we begin the task here by
taking two steps. First, we develop example meshes for
several types of climate system components to demon-
strate the method’s ability to produce high-quality,
variable-resolution meshes in a diversity of systems.
Second, we will demonstrate the ability of these meshes
to reduce solution errors, at least locally, in the context
of the shallow-water system.

The two primary purposes of this paper are the
following: (1) to introduce the climate modeling com-
munity to the basic principles of SCVT and (2) to high-
light the broad applicability of SCVT to climate system
modeling. Section 2 introduces and develops the mathe-
matical foundation for SCVTs. Section 3 develops real-
world SCVTs in the context of ice sheet and ocean
modeling. Section 4 combines our SCVT technique for
the generation of multiresolution meshes with a low-
order, finite-volume technique to produce a prototype
multiresolution scheme that is broadly applicable to
climate system modeling. We look toward future de-
velopments of SCVT and draw some conclusions in
Section 5.

2 Centroidal Voronoi tessellations

2.1 Definitions

Let � denote an open domain or a piecewise smooth
hyper-surface in R

d and ‖ · ‖ the corresponding stan-
dard Euclidean metric for R

d. Given a set of distinct
points {xi}n

i=1 ⊂ Ω , we define

Vi = {
y ∈ Ω | ‖xi − y‖ < ‖x j − y‖ for

j = 1, . . . , n and j �= i
}

for i = 1, . . . , n. Clearly, {Vi}n
i=1 forms a tessellation of

Ω , i.e., the union of Vi spans Ω written as ∪n
i=1Vi = Ω .
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We refer to {Vi}n
i=1 as the Voronoi tessellation or

Voronoi diagram (Okabe et al. 2000) of Ω associated
with the point set {xi}n

i=1. A point xi is called a gener-
ator and a subregion Vi is referred to as the Voronoi
region corresponding to the generator xi. The duality
(in a graph-theoretical sense) of a Voronoi tessellation
of Ω is the well-known Delaunay tessellation, which
always consists of triangles/tetrahedra. Algorithms for
the construction of corresponding Voronoi diagrams
and Delaunay triangulations have been well developed
(Okabe et al. 2000; Renka 1999).

Given a density function ρ(x) defined on Ω , for any
region V ⊂ Ω , we call xc the constrained mass centroid
of V with respect to Ω if

xc = arg min
x∈V

∫

V
ρ(y)‖y − x‖2 dy . (1)

The existence of solutions of Eq. 1 can be easily ob-
tained using the continuity and compactness of the
object function; however, solutions may not be unique.
It is worth noting that, if Ω is an open domain or a flat
hyper-surface, then xc coincides with x∗, the standard
mass centroid of V defined by

x∗ =

∫

V
yρ(y) dy

∫

V
ρ(y) dy

that is much easier to compute.
A Voronoi tessellation of Ω is called a constrained

centroidal Voronoi tessellation (CCVT) (Du et al.
2003a) if and only if the points {xi}n

i=1 that serve as
the generators of the associated Voronoi tessellation

{Vi}n
i=1 are also the constrained mass centroids {xc}n

i=1
of those regions, i.e., if and only if

xi = xc
i , i = 1, . . . , n. (2)

We often refer to the relation (2) as the cen-
troidal Voronoi tessellation (CVT) property. The dual
Delaunay grid is then called constrained centroidal
Voronoi Delaunay triangulation. We remark that, when
Ω is an open domain in R

d, {xi, Vi}n
i=1 is often just called

a CVT (Du et al. 1999).
A very important case should be specially addressed

for the application of CVT/CCVT to climate system
modeling, that is, Ω denotes the surface of a sphere in
R

3 or part of it. In this case, we often refer to {xi, Vi}n
i=1

as a SCVT. It is easy to verify that

xc = r
x∗

‖x∗‖ , (3)

where r denotes the radius of the sphere, so that xc can
be easily computed by first determining x∗.

General Voronoi tessellations do not satisfy the CVT
property; see Fig. 1 for an illustration. A square domain
is randomly seeded with ten points (dots in Fig. 1,
left panel). These ten points serve as generators for
the Vonoroi tessellation (cell boundaries in Fig. 1, left
panel). For each Voronoi region, the standard mass
centroid (open circles in Fig. 1, left panel) is computed.
As discussed below in Section 2.3, a simple iterative
calculation regularizes the initial Voronoi diagram on
the left to the diagram shown to the right. In this
example, we used a constant density to compute the
standard mass centroid; a variable density field would
have biased the resulting generator points toward the
region of high density. This relationship between den-
sity and generator position is the key aspect of this
grid-generation method.

Fig. 1 Left: a Voronoi
tessellation of a square in R

2

with 10 generators (the dots)
randomly selected (the circles
denote the centroid of
Voronoi region); right: a
10-point CVT with a constant
density function throughout
the domain
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2.2 Properties

Given any set of points {̃xi}n
i=1 on Ω and any tessellation

{Ṽi}n
i=1 of Ω , we define the energy functional

K
({

x̃i, Ṽi
}n

i=1

)
=

n∑

i=1

∫

Ṽi

ρ(y)
∥∥y − x̃i

∥∥2
dy.

The energy is often referred to as some physical quan-
tity such as variance, cost, distortion error, or mean
square error in practical applications. A priori, there is
no assumed relation between the point set {̃xi}n

i=1 and
the tessellation {Ṽi}n

i=1. However, it can be shown that
K (·) is minimized only if {̃xi, Ṽi}n

i=1 is a CVT/CCVT
(Du et al. 1999, 2003a). Thus, CVTs/CCVTs are
Voronoi tessellations for which the generators are, in
some sense, optimally distributed.

Let us set d̃ = d if Ω is an open domain and d̃ = d − 1
if Ω is a hyper-surface in R

d. Specially, for SCVTs, we
have d̃ = 2. As a consequence, CVT/CCVT meshes in
R

d have many good geometric properties, including the
following (Du et al. 1999, 2003a; Du and Wang 2003):

– For a constant density function, the generators
{xi}m

i=1 are uniformly distributed across Ω .

– Most Voronoi regions are (nearly) congruent
(Gersho and Gray 1992; Du et al. 1999). Spe-
cially, for SCVTs, they are primarily convex
spherical hexagons.

– The mesh size h (as defined below in Eq. 5) is
approximately proportional to n−1/d̃

– For a nonconstant density function, the generators
{xi}m

i=1 are still locally uniformly distributed, and it
is conjectured (and computationally verified) that,
asymptotically,

hVi

hV j

≈
(

ρ(x j)

ρ(xi)

) 1
d̃+2

. (4)

– The relationship between the relative sizes of
Voronoi regions (i.e., grid cells) is controlled
entirely by the specified density function.

– CVT/CCVT generators tend to accumulate in
regions having relatively high values of ρ while
remaining locally very regular.

– Thus, in principle, one could control the dis-
tribution of generators to minimize the error
(either locally or globally) in the solution of a
partial differential equation by, e.g., connecting
the density function ρ(x) to some a priori or a
posteriori error estimates.

It is important to note that we are restricting
our analysis and discussion to meshes generated with
respect to an isotropic metric. We make this choice
because we are currently interested in the methods
ability to construct highly uniform, variable-resolution
meshes. Extensions to anisotropic meshes have already
been developed and are available for use in climate
modeling if the need arises (Du and Wang 2005; Du
et al. 2005).

2.3 Algorithms

Construction of CVT/CCVT is usually done by either
probabilistic methods typified by MacQueen’s random
algorithm (MacQueen 1967) (which is a simple iter-
ation between sampling and averaging points) or de-
terministic methods typified by Lloyd iteration (Lloyd
1982) (which is a simple iteration between constructing
Voronoi diagrams and mass centroids). Due to the low
convergence rate of MacQueen’s method (MacQueen
1967), much attention has been focused on Lloyd
method described below:

Algorithm 1 (Lloyd method) Given a domain Ω , a
density function ρ(x) defined on Ω , and a positive
integer n.
0. Select an initial set of n points {xi}n

i=1 on Ω ;
1. Construct the Voronoi regions {Vi}n

i=1 of Ω associ-
ated with {xi}n

i=1;
2. Determine the (constrained) mass centroids of the

Voronoi regions {Vi}n
i=1; these centroids form the

new set of points {xi}n
i=1;

3. If the new points meet some convergence criterion,
return {(xi, Vi)}n

i=1 and terminate; otherwise, go to
step 1.

Referring to Fig. 1, the process is as follows: The ini-
tial point set, shown as dots in the left panel, represents
step 0. Step 1 is shown by the solid cell boundary lines
in Fig. 1 (left panel). Step 2, the location of the cell
centroids, is shown by the open circles in Fig. 1 (left
panel) and forms the new point set from which we com-
pute the new Voronoi diagram. The final result, after
satisfying the convergence criterion in step 3, is shown
in Fig. 1 (right panel). It should be noted that the mesh
generation procedure utilizes, at most, the Voronoi
diagram. While no reference to the Delaunay trian-
gulation is required, the properties of smoothness and
uniformity convey from the (S)CVT to the Delaunay
triangulation.
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2.4 Quality measure of Voronoi cells and Delaunay
triangles

For the Voronoi cell Vi associated with the generator
xi, we define its size to be

hVi = 2 max
y∈Vi

‖xi − y‖. (5)

Then, hmax/hmin can be used to measure the global
nonuniformity of the given Voronoi mesh where hmax =
maxi hVi and hmin = mini hVi . In order to measure the lo-
cal uniformity or quality of Voronoi cells of the SCVT,
we use the following σ measure (Du et al. 2003b). For
the Voronoi cell Vi associated with the generator xi,

σ(Vi) = min j ‖xi − x j‖
max j ‖xi − x j‖ , (6)

where x j values denote Voronoi neighbors of xi.
Clearly, 0 < σ ≤ 1 and σ = 1 correspond to the equi-
lateral polygons. We then set

σmin = min
i

σ(Vi) and σavg = 1

n

∑

i

σ(Vi).

where n denotes the number of Voronoi cells. σmin

measures the quality of the worst Voronoi cell and σavg

measures the average quality of the Voronoi mesh.
In the Delaunay triangulation, the size of a triangle,

T, is defined to be its longest side length, hT . We apply
the commonly used q-measure (Field 2000) to evalu-
ate the quality of the dual triangular mesh (Delaunay
triangles), where, for any triangle T, q is defined to be
twice the ratio of the radius RT of the largest inscribed
circle and the radius rT of the smallest circumscribed
circle, i.e.,

q(T) = 2
RT

rT
= (b + c − a)(c + a − b)(a + b − c)

abc
, (7)

where a, b , and c are side lengths of T. Clearly, 0 < q ≤
1 and q = 1 correspond to the equilateral triangle. For
a given triangulation, T , composed of m triangles, we
define

qmin = min
T∈T

q(T) and qavg = 1

m

∑

T∈T

q(T).

where qmin measures the quality of the worst triangle
and qavg measures the average quality of the triangular
mesh T .

It is worth noting that the energy K associated
with the Voronoi tessellation {(xi, Vi)}n

i=1 decreases
monotonically during the Lloyd iteration if {(xi, Vi)}n

i=1
has not reached a CVT/CCVT yet. In certain systems,
or with certain methods, we may require nodes to be
located on the boundary of the problem domain Ω .

CVTs/CCVTs and the above construction algorithm
can be easily generalized so that some of the generators
are constrained to lie on the boundary ∂Ω (Du and
Wang 2003; Ju et al. 2006).

3 Example meshes

3.1 Land ice: Greenland

3.1.1 Motivation

The Greenland and Antarctic ice sheets are character-
ized by a wide range of spatial and temporal scales. In
terms of spatial scales, each of these ice sheets spans
several thousand kilometers. Interior regions of these
ice sheets are characterized by relatively broad spatial
scales on the order of 100 km or more. These inte-
rior regions are generally areas of net accumulation
of mass due to atmospheric precipitation of water. As
this net source of water is exported toward the ocean
in the form of ice, relatively fast-moving ice streams
form within each catchment zone. Not unlike their
liquid water counterparts on land, these ice streams
are long and thin with along-stream scales of several
hundred kilometers and cross-stream scales often less
than 10 km (Joughin et al. 1999). In addition, the
shear zone separating the fast-moving ice streams from
the adjacent nearly stationary ice is characterized by
scales of 1 km or less. These ice streams transport the
majority of ice volume from Greenland and Antarctica
into the surrounding ocean (Rignot et al. 2008). As a
result, robust predictions of sea-level rise will require
an accurate simulation of ice stream dynamics. In fact,
the recent IPCC WG1 AR4 document declined to draw
substantive conclusions on the likelihood of rapid sea
level rise during the twenty-first century because, in
part, ice stream dynamics are not included in current ice
sheet models (International Panel on Climate Change
2007).

In addition to the kinematically driven need for
locally enhanced resolution, there is also a desire for
increased resolution at the ice margin due to signifi-
cant seasonal ablation. This is particularly relevant for
Greenland, where intense melting occurs annually be-
low 1,200 m. The subsequent transport of this meltwa-
ter to the bottom of the ice sheet may have a strong
impact on basal sliding processes (Bell 2008). In the
context of ice sheet modeling, we see both kinematics
and physics as driving the need for locally enhanced
resolution. Spatial resolutions below 1 km might be
required for the accurate representation of these pro-
cesses. When considering an entire ice sheet, a uniform
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mesh of 1 km combined with the emerging three-
dimensional Stokes solvers is not computationally
tractable. So, instead, we turn to variable-resolution
SCVTs to discretize this system.

3.1.2 Proxy for SCVT density

In this example, we will generate a mesh of Greenland
that places enhanced resolution in the vicinity of ice
streams. Our target resolutions for this grid are hmin =
2 km in the vicinity of the ice margin and hmax = 100 km
in the interior; let R = hmax/hmin represent the ratio
of these target resolutions. Our estimates suggest that
the resulting mesh will be computationally tractable for
climate change simulations, even when used in combi-
nation with a full three-dimensional Stokes solver.

Figure 2 shows an observational estimate of surface
ice velocity at a spatial resolution of 2.5 km (Bamber
et al. 2000). The magnitude of velocity, ‖V‖, is pre-
sented on a log10 scale and ranges from a minimum
of approximately 0.1 km/year along ridgelines to over
10.0 km/year at the outlet of some ice streams. We use
this observational data set in two ways. First, this data
set allows us to define the location of the ice boundary
of Greenland as a set of piece-wise linear loops (not
shown) within which we develop the SCVT. Second,
within each loop, we define the SCVT density function
with the following sequence:

x = log10(‖V‖), xmin = −0.5, xmax = 3.5 (8)

x = max(x, xmin) (9)

x = min(x, xmax) (10)

ρ =
(

(x − xmin)

(xmax − xmin)
∗ R

)4

+ 1 (11)

We limit the lower bound on the SCVT density
function such that all regions with surface velocities
less than xmin = −0.5 or 0.3 km/year receive the same
resolution. We limit the upper bound on the SCVT
density function such that all regions with surface ve-
locities more than xmax = 3.5 or 3 km/year receive the
same resolution. Finally, density is normalized such that
it ranges from 1 to R4 to generate nominal grid cells
spacings that vary by a factor of R; see Eq. 4.

Figure 3 depicts the resulting Voronoi diagram using
25,936 nodes, resulting in a minimum resolution of
approximately 4 km. Figure 4 shows the log10 of the
Voronoi cell area. We find broad regions of low reso-
lution along the quiescent ice ridgelines with the vast
majority of nodes placed in the vicinity of ice streams.

The color scale is saturated for all cell areas greater
than 150 km2 and for all cell areas less than 10 km2.
While 90% of the cells are spaced less than 10 km
from their neighbors, 10% of the cells with grid spacing
greater than 10 km cover approximately 40% of the ice
domain.

We progressively add nodes into the domain until
our target minimum grid resolution of 2 km is reached.
Figure 5 shows the log10 of Voronoi cell area using
101,115 nodes. In this figure, the color scale is saturated
for all cell areas greater than 75 km2 and for all cell
areas less than 5 km2. Figure 5 looks identical to Fig. 4;
the only noticeable difference between the figures is the
scale on the colorbar.

Table 1 presents the global quality metrics for
the Greenland SCVTs. The quality histograms of the
SCVTs are shown in Fig. 6. The bulk measures of uni-
formity shown in Table 1 show improvement in every
category as resolution is increased. The histograms
shown in Fig. 6 indicate a systematic shift toward higher
mesh quality with increasing degrees of freedom. It
is equally important that, as the number of nodes is
increased, the histograms exhibit a noticeable reduction
in the proportion of cells residing in the “low-quality”
end of the histograms.

3.2 Ocean: North Atlantic

3.2.1 Motivation

Incorporating eddies into IPCC-class global ocean sim-
ulations remains a computational challenge. Eddy-
resolving simulations typically require grid resolutions
of approximately 10 km, implying approximately 5e6
degrees of freedom to span the global ocean surface.
This is in stark contrast to typical IPCC simulations that
currently use approximately 5e4 degrees of freedom to
cover the same extent. The factor of 100 separating the
two simulations is compounded by another factor of 10
since eddy-resolving simulations require a significantly
shorter time step. The 1,000-fold increase in computa-
tional burden to move from resolutions presently used
in IPCC-class simulations to global, eddy-resolving
resolutions is currently beyond reach and will likely
remain so for a decade or more.

An alternative and computationally tractable ap-
proach is to employ variable-resolution grids, such as
SCVTs, to permit eddy-resolving resolutions at tar-
geted locations. These variable-resolution grids could
be employed in limited area domains or as part of a
global ocean simulation. The ability to readily generate
variable-resolution meshes for the global ocean system
allows us to consider the notion of an optimal spatial
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Fig. 2 Log base 10
distribution of ice velocity at
the surface of the Greenland
ice sheet (Bamber et al.
2000). The scale is saturated
for all velocities above
10 km/year and for all
velocities below 0.1 km/year
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Fig. 3 A SCVT of the
Greenland ice sheet using
25,936 nodes based on the
density function given in
Eq. 11. Note that grid cells
within the ice streams are
often too small to be visible
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Fig. 4 Log base 10
distribution of Voronoi cell
area of the Greenland ice
sheet using 25,936 nodes. The
scale is saturated for all cell
areas above 250 km and for
all cell area below 10 km
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Fig. 5 Log base 10
distribution of Voronoi cell
area of the Greenland ice
sheet using 101,115 nodes.
The scale is saturated for all
cell areas above 65 km and
for all cell area below 2.5 km
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Table 1 Mesh information of SCVTs for the Greenland

Number of generators σmin σavg hmax/hmin Number of triangles qmin qavg

25,936 0.094 0.706 40.94 49,244 0.219 0.935
101,115 0.091 0.751 47.81 197,346 0.235 0.948

allocation of computation resources. In addition, the
scientific study of many processes would surely benefit
from the ability to support eddy activity in certain
regions while maintaining a global ocean domain. Two
supporting examples include the role of eddies on
the meridionial overturning circulation (Gnanadesikan
1999) and the role of eddies in mediating the ocean’s
response to changes in wind stress forcing (Hallberg
and Gnanadesikan 2006).

3.2.2 Proxy for SCVT density

In this example, we will derive a variable-resolution
mesh of the North Atlantic Ocean with sufficient res-
olution to resolve eddies within the major current
systems. The domain is identical to the nominal 1/10
degree eddy-resolving simulation discussed in Smith
et al. (2000). Using data from these simulations, we
compute the time-mean kinetic energy of the surface

currents, as shown in Fig. 7. As can be seen in Fig. 7, the
regions of intense eddy activity are extremely localized.
Based on the kinetic energy, KE, we defined the density
function as

x = KE/KEmax, xmin = 0.1, xmax = 1.0 (12)

x = max(x, xmin) (13)

ρ = x4 (14)

where KEmax is the maximum kinetic energy in the
domain. The lower bound of 0.1 insures that a minimum
resolution is maintained in the quiescent regions. The
ratio xmax/xmin = 10 leads to a grid spacing that varies
by approximately a factor of 10. In addition, we en-
hance the density function near the land–sea interface
to insure that the boundary is adequately resolved.
While we want the mesh to capture these regions of
high activity via enhanced resolution, we also recognize
the need to expand this region to allow eddies to travel

Fig. 6 Quality histograms of
SCVTs of the Greenland ice
sheet with 25,936 nodes (top)
and 101,115 nodes (bottom).
Left: Distribution of quality
measurement of Voronoi
cells σ ; right: distribution of
quality measurement of
Delaunay triangles q. Note
the uniform shift toward
higher-quality as the number
of nodes is increased
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Fig. 7 Time mean kinetic
energy from a global 0.1
degree simulation of the
North Atlantic Ocean (Smith
et al. 2000)

uninhibited by grid resolution. As such, we applied
a substantial amount of Laplacian smoothing to our
density function (approximately 20 passes) to expand
and smooth the regions of enhanced resolution. (Note
that the RMS of sea-surface height is also an accu-
rate reflection of mesoscale ocean variability and we
have developed global ocean SCVTs based on TOPEX
remote sensing of sea-surface height.)

As with the Greenland example, we produced a con-
tinuous, piece-wise linear representation of the land–
ocean boundary based on the land–sea mask used in
the 0.1 degree simulation. This approach also identi-
fies all islands. Islands with a circumference less than
10 km were discarded; the resulting domain contains 58
islands.

The Voronoi diagram shown in Fig. 8 uses 47,305
nodes. This results in a minimum grid resolution of
approximately 20 km. We continue to add nodes into
the domain until we reach a minimum resolution of
10 km. Closeups of this high-resolution mesh using
183,807 nodes and its low-resolution counterpart are
shown in Fig. 9.

Table 2 presents the results of our North Atlantic
SCVTs. The corresponding quality histograms are
shown in Fig. 10. As with the Greenland example, the

quality measures show a systematic improvement as we
increase the degrees of freedom.

3.3 Ocean–ice shelf interaction

3.3.1 Motivation

Our final example couples ocean and ice domains in
the context of ocean–ice shelf interaction. Ice shelves
are ice flows that become ungrounded and buoyant and
rest on top of ocean water. The location at which ice
transitions from resting on bedrock to resting on ocean
water is referred to as the grounding line. As the ice
shelves are pushed outward into the ocean, the ice is
either melted along the ice–ocean interface or calves
from the main shelf into icebergs. These ice shelves
provide a significant buttressing force that resists the
flow of upstream, grounded ice. As evidenced by the
Larsen B ice-shelf collapse, when the ice-shelf buttress-
ing force is removed, the upstream ice flow can increase
by several hundred percent (Rignot et al. 2004). The
accurate simulation of ocean–ice shelf interaction is
necessary in order to quantify the risk of rapid sea level
rise (International Panel on Climate Change 2007).
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Fig. 8 SCVT of North
Atlantic ocean domain using
47,305 nodes. Coloring
indicates the mesh
decomposition for
implementation on
distributed memory systems:
each color represents a
separate computational unit

The West Antarctic Ice Sheet (WAIS) is particularly
relevant to the study of ocean–ice shelf interaction. Not
only are ice shelves the primary outlet of grounded ice,
but the grounded ice frequently rests on bedrock that
is increasingly below sea level as one moves toward the
ice interior region (Schoof 2007). The physical geom-
etry is such that a rapid erosion of the WAIS due to
ocean–ice shelf interaction is a plausible scenario for
the twenty-first century.

Ice shelves connected to WAIS have spatial extents
of more than 1,000 km (e.g., the Ross Ice Shelf) down
to less than 50 km (e.g., the Thwaites Ice Shelf). The
embayments where this ice flows into the ocean have
similar ranges in spatial scale. While the ice shelves are
not as dynamically active as the ice streams that feed
them, the structure and shape of the ice–ocean interface
is a primary factor that drives mixing at this interface
(Holland et al. 2008). Grid resolutions of less than
5 km are often used when simulating ocean–ice shelf

coupled dynamics. Furthermore, analysis of the global
1/10 degree ocean simulations in the vicinity of WAIS
indicates that the transport of heat into these em-
bayments may be eddy-driven and episodic (Maltrud,
personal communication, 2007). Thus, resolving ocean
eddies in and around these embayments will likely be
required for robust simulations.

The horizontal discretization of this system is diffi-
cult because part of the domain will be ice (ice domain),
part will be ocean (ocean domain), and part will be
both ocean and ice (shelf domain). Furthermore, the
characterization of a region as ice, ocean, or shelf will
evolve over the time scales of decades to millennia.
Due to this complexity and the fact that only limited
work has been completed on modeling the coupled
ocean–ice shelf system, we will explore techniques to
discretize this system in an idealized setting. Figure 11
shows our idealized domain with a spatial extent of
1,100 by 550 km. The domain is characterized by a
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Fig. 9 Close-up of Gulf
Stream region using 47,305
nodes (top) and 183,907
nodes (bottom)
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Table 2 Mesh information of
SCVTs for the North Atlantic

Number of generators σmin σavg hmax/hmin Number of triangles qmin qavg

47,305 0.089 0.712 16.60 89,272 0.104 0.933
183,907 0.105 0.754 15.05 358,577 0.127 0.947

region of grounded ice (to the left), a region of ocean
(to the right), and an ice-shelf region (center). The
ice domain includes an ice stream that feeds the shelf
region. As indicated in the figure, a robust simulation
of this system will require enhanced resolution in the
vicinity of the ice shelf, ice stream, and region of the
ocean in proximity to the ice.

3.3.2 Proxy for SCVT density

In this idealized example, our intent is to produce a
tessellation with a minimum grid spacing of 2 km and
a maximum grid spacing of 20 km. As opposed to
our other examples, we are not building our density
function from a physical characteristic of the system.
The generated density function has local maxima in the
vicinity of the ice stream, in the region of the ice shelf,
and along the entire ocean–ice boundary. The resulting
Voronoi diagram of this system using 9,359 nodes is
shown in Fig. 12 with a close-up of the shelf region at
both high and low resolution shown in Fig. 13.

Table 3 presents the results on our SCVTs for the
idealized ocean–ice sheet, and corresponding quality
histograms are shown in Fig. 14. Yet again, the quality
measure show increasing mesh quality with increasing
degrees of freedom.

4 Example numerical method

The large majority of numerical methods utilized in
IPCC-class climate models were developed in the con-
text of uniform meshes. Successfully implementing
these same numerical methods on nonuniform meshes,
such as those developed above, will likely prove to
be a difficult task, as discussed in St-Cyr et al. (2007).
While emerging numerical methods based on spectral
elements, discontinuous Galerkin, finite-element, or
similar approaches are a more natural choice when
considering the multiresolution meshes developed
here, these alternative approaches are still relatively
new to climate system modeling in comparison to low-
order finite-volume methods. The sole purpose of this

Fig. 10 Quality histograms of
SCVTs of the North Atlantic
with 47,305 nodes (top) and
183,907 nodes (bottom). Left:
Distribution of quality
measurement of Voronoi
cells σ ; right: distribution of
quality measurement of
Delaunay triangles q
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Fig. 11 An idealized
ocean–ice shelf system. The
ice domain (left) flows into
the shelf region (semicircle)
via an ice stream. Enhanced
resolution in the vicinity of
the ice stream, ice shelf, and
ice margin will be required

Fig. 12 SCVT of ocean–ice shelf system using 9,359 nodes. Note enhanced resolution in the vicinity of the ice stream, ice shelf, and
ocean–ice interface
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Fig. 13 Close-up of ocean–ice shelf SCVT in the vicinity where the ice stream enters the shelf region. Left: SCVT using 9,359 nodes.
Right: SCVT using 37,157 nodes

section is to exhibit a low-order, finite-volume method
capable of producing robust simulations when imple-
mented on nonuniform SCVTs. The implication is that
these meshes are immediately applicable to current-
generation CSM components. With this purpose in
mind, the discussion below is not intended to be exhaus-
tive. In many respects, developing numerical methods
that effectively utilize these nonuniform SCVTs is a
much richer and more difficult problem than generating
the mesh itself. While some efforts to exploit the local
uniformity of SCVTs have already been completed
(e.g., see Du and Ju 2005), much work remains. We
have made significant progress regarding the formula-
tion of finite-volume schemes suitable for implementa-
tion in these variable resolution meshes. These results
will be detailed at a later time.

4.1 Continuous equations

For this demonstration, we choose the nonlinear,
shallow-water equations spanning the entire surface of
the sphere:

∂h
∂t

+ ∇ · (hu
∼

) = 0 (15)

∂u
∂t

∼ + (ω + f ) k
∼

× u
∼

= −g∇(h + hs) − 1

2
∇∥∥u

∼

∥∥2 (16)

ω = k
∼

· (∇ × u
∼

)
(17)

where h is the fluid thickness, hs is the height of the
lower boundary, u

∼

is the vector velocity orthogonal

Table 3 Mesh information of SCVTs for ocean–ice shelf system

Number of generators σmin σavg hmax/hmin Number of triangles qmin qavg

9,359 0.275 0.735 8.91 18,440 0.568 0.942
37,157 0.313 0.769 10.15 73,765 0.626 0.951
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Fig. 14 Quality histograms of
SCVTs of the idealized
ocean–ice sheet with 9,359
nodes (top) and 37,157 nodes
(bottom). Left: distribution of
quality measurement of
Voronoi cells σ ; right:
distribution of quality
measurement of Delaunay
triangles q
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to the local normal vector k

∼

, and f is the Coriolis
parameter. The component of relative vorticity in the
plane normal to the surface of the sphere, ω, is defined
in Eq. 17.

4.2 Discrete equations

We utilize the discrete method developed by
Bonaventura and Ringler (2005). While the method
developed in Bonaventura and Ringler (2005) is
intended for use on multiresolution meshes, to our
knowledge, this is the first demonstration. This method
uses the Delaunay triangulation as the finite-volume
cell for the thickness equation. The vorticity field is
defined on the Voronoi diagram. Velocity components
normal to the triangle edges are retained as prognostic
equations. A schematic of this discretization is shown in
Fig. 15. All quantities with overhats are derived fields,
with T̂ representing the reconstructed tangent velocity
required for the Coriolis force and η̂ representing
the absolute vorticity (see Bonaventura and Ringler
2005 for a full discussion). The discrete system is
expressed as:

∂hi

∂t
= −1

Ai

nedges∑

j=1

ĥ j N j dl j (18)

∂ N j

∂t
= η̂ jT̂ j −

{[
gh + ghs + K̂

]

iForward

−
[
gh + ghs + K̂

]

iBackward

}
/dc j, (19)

where the summation in Eq. 18 is over the edges of each
triangle. In terms of solution error, the scheme is nom-
inally second-order accurate in space using centered-
in-space reconstructions and fourth-order accurate in
time using fourth-order Runge–Kutta time-stepping
(see, e.g., Bonaventura and Ringler 2005). The simula-
tions utilize no limiters, filters, or explicit dissipation of
any sort. The center-in-space numerics, along with the
fourth order Runge–Kutta scheme, is used to minimize
any implicit diffusion.

We demonstrate this method on the two SCVTs
shown in Fig. 16. Each mesh contains 40,962 nodes. The
solid black line indicates the boundary of an orographic
feature that is the sole forcing of the simulation (see
below). The first mesh (top) is generated with a uniform
density function leading to an average grid spacing
of 120 km. The second mesh (bottom) is generated
with higher densities in the vicinity of the orographic
feature. The density function is chosen such that the
average grid spacing is three times smaller (40 km)
in the vicinity of the mountain than compared to its
quasiuniform counterpart. The solid colors indicate our
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Fig. 15 A schematic of the finite-volume system. Thickness, h,
and kinetic energy, K̂, are defined at the center of the triangle. The
normal component of velocity, N j is defined at each cell edge.
Vorticity, η, is defined at the triangle vertices. All quantities with
overhats are derived fields, see Bonaventura and Ringler (2005)
for details

domain-decomposition strategy for efficient implemen-
tation on distributed memory systems: each block rep-
resents a different computational processor.

4.3 Simulation

We apply this numerical method to one of the standard
shallow-water test cases developed by Williamson et al.
(1992) referred to as test case 5. In this test case, a flow
in geostrophic balance is confronted with a large-scale
orographic feature at the start of the simulation, t = 0.
The transient forcing at t = 0 leads to the generation
of large-amplitude gravity waves and Rossby waves.
The sole forcing mechanism is the presence of the oro-
graphic forcing. While no analytical solution is known,
results from high-resolution global spectral models are
adequate reference solutions for the simulations con-
ducted here (e.g., see Lipscomb and Ringler 2005).

Both simulations are stable over the course of the
15-day integration. The kinetic energy field for each
simulation is shown in Fig. 17. Both simulations pro-
duce the same large-scale flow structure: an anticyclone
dominates in the region of orography with a strong,

Fig. 16 Top: a SCVT using 40,962 nodes with a uniform density
function. Bottom: a SCVT also using 40,962 nodes but using a
nonuniform density function with high values of density occur-
ring in the vicinity of the orography (shown by the solid black
line). The variable-resolution mesh results in a minimum grid
spacing of approximately 1/3 that found in the quasiuniform
mesh. The colored background denotes groups of cells (blocks)
that are distributed across multiple processors. The numerical
method employed here defines vorticity on the SCVT nodes and
mass on the dual Delaunay triangulation

stationary, low-pressure system residing immediately
downstream. Both simulations produce velocities in
excess of 40 m/s in the jet region.
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Fig. 17 Kinetic energy field at day 10 of simulation. Top: simula-
tion using quasiuniform mesh. Bottom: simulation using variable-
resolution mesh

Figure 18 shows how the error norms for each of
these simulations evolve over the course of the sim-
ulation. The error is based on the deviation of the
thickness field from high-resolution spectral results.
The panel on the top shows the normalized L2-error
following the procedure in Tomita et al. (2001), Eq. 17.
The L2 error norm is computed for two regions: a
global domain and a local domain defined by hs > 0
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Fig. 18 Top: L2 error norms for both the global domain and
the local domain in the vicinity of the orography. Bottom: L∞
norms for the same two domains. Each figure compares the errors
produced in the uniform-mesh simulation to the errors produced
in the variable-mesh simulation

that is coincident to the region of enhanced resolution.
The panel on the bottom depicts the L∞-norm with
the same layout. Since the L2 error is normalized by
the reference values, we only compare norms within the
same averaging domain. When comparing the global L2

error norms between the simulations, we find that the
variable-resolution mesh provides marginal improve-
ments only for times less than 24 h. At the early stages
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of the simulation, the benefit of the variable-resolution
mesh is due mostly to a better representation of the
initial condition. For the remainder of the integration,
the two simulations have nearly identical global L2

error values. When we compare the local L2 error
values, we find a slightly different result; averaged over
the duration of the simulation, the variable-resolution
mesh reduces the error by approximately 20%. The L∞
error values (bottom panel) exhibit a similar tendency.
The variable-resolution mesh provides limited benefit
in the context of global error reduction but does signifi-
cantly reduce the errors in the vicinity of the orography.
In this case, the variable-resolution mesh reduces the
local L∞ error norm by a factor of two as compared to
the uniform mesh simulation. The implications of these
findings on the merit of multiresolution CSMs will be
discussed in the next section.

5 Discussion and conclusions

We have argued that the traditional paradigm of con-
structing IPCC-class climate models based on quasiu-
niform meshes will be strained in the coming decade
by two mechanisms. First, each CSM component cur-
rently has one or more unresolved processes that may
play an important role in the dynamics of the global
climate system. These processes are either omitted al-
together, exemplified by the omission of ice streams
in ice sheet models, or highly parameterized, exem-
plified by the subgrid scale models of eddy activity
in the ocean. The current and foreseeable computa-
tional resources preclude the notion of resolving these
processes everywhere all of the time. Second, IPCC-
class climate models will be pressed into the role of
simulating regional climate change with the purpose of
developing adaptation and mitigation strategies. The
resolution and computational resources required for
the robust simulation of regional climate change will
force the climate modeling community to develop an
alternative approach to compliment the emerging suite
of quasiuniform global CSMs.

One promising approach to meet these new chal-
lenges is based on the use of SCVTs. These tessella-
tions (or meshes) offer many attractive qualities in the
context of climate system modeling. First, since these
meshes are a superset of the commonly used
“icosahedral–hexagonal grids,” we can conceptually
consider SCVTs to be an extension of meshes already
in use today. Second, SCVTs allow for the spatial allo-
cation of nodes in a straightforward, intuitive manner.
SCVTs are generated with respect to a user-defined
density function where nodes are “clustered” toward

regions of high density and away from regions of low
density. Since each SCVT is associated with a Deluanay
triangulation, this method is amenable to numerical
methods situated on either the Voronoi diagram or the
Delaunay triangulation. The proven SCVT properties
related to smoothness and uniformity are conveyed to
the Delaunay triangulation. If we understand a system
well enough to know how to redistribute our degrees
of freedom (and, hence, our computational resources),
SCVTs offer an easy way to implement this redis-
tribution. Finally, and most importantly, SCVTs are
amenable to rigorous analysis from which we can make
statements regarding the regularity of a given mesh and
how that regularity will improve as we increase the
nodes in a given domain.

We demonstrated the potential for this technique by
developing example meshes for several different com-
ponents of the Earth’s climate system: the Greenland
ice sheet, the North Atlantic Ocean, and a generic
Antarctica ice shelf–ocean interaction. Furthermore,
our example numerical method developed a multireso-
lution mesh that is characteristic of local resolution en-
hancement in regional atmospheric modeling. In each
of these examples, we exhibited the ability to precisely
manipulate the regions of enhanced resolution through
our choice of the SCVT density function. In two of the
examples (Greenland and North Atlantic), the SCVT
density function was developed directly from physical
characteristics of the system. In the Greenland exam-
ple, we used the observed ice velocity distribution to
develop a SCVT density function that places increased
resolution in and around ice streams. In the North
Atlantic example, we constructed the SCVT density
function in order to obtain meshes that are able to
resolve eddy activity associated with the Gulf Stream
and North Atlantic current. In each of these examples,
we computed metrics that measure the quality of the
mesh. In all cases, and in agreement with the theoretical
underpinnings of SCVT, we found that increasing the
degrees of freedom results in a uniform improvement
in mesh quality. We found this consistent improvement
in both the Voronoi diagrams, and in the Delaunay
triangulations.

While the primary purpose of this work is to demon-
strate the potential for SCVTs to produce high-quality,
multiresolution meshes for climate system applications,
we felt it important to also exhibit a traditional, finite-
volume technique that can successfully exploit the ben-
efits of a variable-resolution mesh. While our results
in this regard are far from sufficient, we have at least
produced one positive example in the context of the
global shallow-water equations. Even this simple ex-
ample has provided some guidance on what we should
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and should not expect from multiresolution techniques,
such as the one developed here. For instance, given
the hyperbolic nature of many of the Earth’s climate
system components, it will be extremely difficult to
reduce formal solution error over a wide range of con-
ditions. Eventually, the error will become dominated
by some phenomena (transient or otherwise) occurring
in regions of low resolution. While this problem occurs
regardless of the numerical method employed, it will
likely be particularly evident when using the low-order,
finite-volume methods that are ubiquitous in CSMs
today. In contrast to reducing formal solution error, our
emphasis will be on the formulation of robust numeri-
cal methods that produce stable, long-term simulations
over a wide class of phenomena without the need for
ad hoc filtering or dissipation. The driving purpose for
developing multiresolution climate system components
will be for the simulation of new phenomena requiring
enhanced resolution, not necessarily for the formal
reduction in solution error.

While this work has demonstrated the ability to gen-
erate high-quality meshes for a wide class of problems,
the daunting challenge going forward is to develop
numerical techniques that can effectively exploit these
high-quality, multiresolution meshes.
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