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ABSTRACT

We consider an optimization-based atomistic-to-continuum coupling strategy where the atomistic
and continuum displacements and stresses are constrained to agree over some overlap region where
both models hold. A simple 1D example illustrates the optimization scheme.

1. Introduction

Multiscale simulations leverage the accuracy of microscale simulations in regions where the physics
are rapidly changing while taking advantage of the efficiency of macroscale simulations in the re-
mainder of the domain. We are interested in the case where the computational domain Ω is divided
into three disjoint regions: Ωa, where the physics of the problem are governed only by first princi-
ples at the microscale; Ωc where a macroscale model holds; and Ωb which is some bridge region
acting as an interface between the two models.

In the literature, agreement between the two models is achieved mainly through constraining the
microscale dynamics based on macroscale information [1] or using Schwarz iteration to guarantee
consistency between the models [2]. However, this paper describes an optimization-based coupling
strategy which in [3, 4] was applied to two macroscale regions, each governed by a different partial
differential equation (PDE). The difference in this paper is that optimization over the bridge region
is used to couple a microscale atomistic model over Ω̄a∪ Ω̄b with a macrocale continuum model
over Ω̄b∪ Ω̄c.

2. Models

2.1 Atomistic

The division of Ω into the three subdomains is effected in the reference configuration, X. We let
Na be the set of indices of particles located in Ω̄a/

(
Ω̄a∩ Ω̄b

)
, and Nb be the set of particle indices

located in Ω̄b. The reference position of particle α is denoted by Xα, while its deformed position
is given by xα. Thus uα = xα−Xα is the displacement of the α particle.

The force on particle α is assumed local and due only to particles within the ball Bα = {x ∈ Ω :
|x− xα| ≤ η} for some given η ≥ 0. Let Nα = {β|xβ ∈ Bα,β �= α}, i.e. Nα is the set of indices
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corresponding to the particles in Bα, other than the α particle itself. Then, the force on the atomistic
particle α due to all the other particles is given by

∑
β∈Nα

fα,β = 0 for α ∈Na∪Nb, (1)

where fα,β denotes the force acting on particle α due to particle β.

We do not apply the atomistic model to particles in Ωc; however, some particles in Ω̄a∪Ω̄b depend
upon force contributions from particles in Ωc. When the atomistic displacement of a particle in Ωc
is required, we assume it is equivalent to the continuum displacement, u(X).

2.2 Continuum Model

The Cauchy stress tensor, σ(X), is used to determine the force over the continuum region. At any
point X in the continuum region, we have the force balance

∇ ·σ+bc = 0 for X ∈ Ω̄c∪ Ω̄b (2)

where bc is an externally applied volumetric force. In §4., we assume bc = 0.

3. Optimization Scheme

Over Ωb both models hold, so the atomistic and continuum displacements and stresses should
agree in the bridge region. The displacement constraint is expressed as

uα = u(Xα) for all α ∈Nb. (3)

The stress constraint,
σα

a = σ(Xα) for all α ∈Nb (4)

requires an averaged “atomistic stress”, σα
a , based on the computed atomistic displacements. This

expression is given by

σι
a =

1
2|Δι|

∑
j �=i

di j
(
xi−x j

)
⊗ fi, j (5)

where the summation runs over all pairs of particles in the domain Ω, and the averaging is per-
formed over the representative volume element, Δι [5]. The weighting function, di j, is determined
by the fraction of |xi−x j| that overlaps Δι.

We separately solve the atomistic model in Ωa and the continuum model in Ωc by specifying the
displacements for the two models along Ωb in such a way that

u(X) = U(X) for X ∈Ωb and uα = U(Xα) for Xα ∈Ωb (6)
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for some guess displacement U(·). Arbitrary choices for U(·) will not satisfy (4), so the optimal
U(·) is found by solving the optimization problem

min
U
‖σα

a −σ(Xα)‖, (7)

where σα
a and σ(X) are determined from solving Eqns. (1) and (2) separately using the boundary

conditions in Eqn. (6).

4. Numerical Example

Region Ω = (0,1) is divided into Ωa, Ωb, and Ωc. Fig. 1 shows the scenario of interested in this
section: Ωa = (0,0.6), Ωb = (0.3,0.6), and Ωc = (0.3,1). The atomistic grid spacing is s= 0.005
while the continuum grid spacing is h= 0.1. The Δι used here is 0.05.

To test the algorithm described in §3., we consider the nearest-neighbor atomistic force model

fα,β = 100 ∑
β=α±1

(uα−uβ

s

)
, (8)

and a continuum stress model given by

σ(u) = 100
du
dx

. (9)

The exact displacement solution is linear from u(0) = 0 to u(1) = 0.01, which leads to a constant
exact stress solution of one over the whole domain. The initial guess for the displacement is exactly
zero, and Matlab’s fmincon function is used to find the optimal solution with objective function
and constraint tolerances of 10−6.

The optimal linear displacement and stress are shown in Fig. 1. One can see that the displacement
is well-approximated, and the atomistic and continuum stresses agree with the exact solution up
to the 4th decimal place. The optimizer reached this solution after six iterations and 868 function
calls. The objective function was reduced to 6.6441× 10−11, and the maximum constraint value
was 7.903×10−8.

5. Summary

We have illustrated a method for coupling atomistic and continuum simulations using optimization.
While the numerical example showed only a simple one-dimension problem with nearest-neighbor
atomistic interactions, this procedure can be extended to more complicated coupling problems.
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Figure 1: Nearest neighbor interactions, overlap at [0.3,0.6]: displacement (left) and stress (right)
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