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Abstract. Several issues connected with bridging methods for atomistic-to-continuum
(AtC) coupling are examined. Different coupling approaches using various energy
blending models are studied as well as the influence that model parameters, blend-
ing functions, and grids have on simulation results. We use the Lagrange multiplier
method for enforcing constraints on the atomistic and continuum displacements in
the bridge region. We also show that continuum models are not appropriate for deal-
ing with problems with singular loads, whereas AtC bridging methods yield correct
results, thus justifying the need for a multiscale method. We investigate models that
involve multiple-neighbor interactions in the atomistic region, particularly focusing on
a comparison of several approaches for dealing with Dirichlet boundary conditions.
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1 Introduction15

Atomistic models such as molecular dynamics are an accepted approach for accurately16

describing material processes that occur at the microscopic level. Unfortunately, systems17

of interest involve too many particles to be feasibly treated using such methods. As a18

result, approximations to atomistic models that are more efficient yet have sufficient ac-19

curacy are of interest. Several approaches have been proposed in that sense; a particular20

ambitious approach, called MAAD (“macroatomistic ab initio dynamics”), that attempts21

to couple continuum to statistical to quantum mechanics is described in [11]. In gen-22

eral, the methods described in the literature attempt to couple between two scales (e.g.,23

micron- and nano-scales). Some of the methods apply domain decomposition using the24

∗Corresponding author. Email addresses: ps06c@fsu.edu (P. Seleson), gunzburg@fsu.edu (M. Gunzburger)

http://www.global-sci.com/ 1 c©200x Global-Science Press



 G
al

le
y 

Pr
oo

f2 P. Seleson and M. Gunzburger / Commun. Comput. Phys., x (200x), pp. 1-46

same physical description, i.e., the same type of equations, on the whole domain; this is25

the case of the quasi-continuum method [10, 13, 14]. Other methods implement domain26

decomposition using different models in different domains, applying some sort of cou-27

pling mechanism between them; some examples of this type of approach are found in,28

e.g., [1–4, 8, 15–17]. For a review of multiscale material methods, the reader is referred29

to [18–20].30

In atomistic-to-continuum (AtC) coupling techniques, an atomistic model is used in31

regions where microscale resolution is necessary but elsewhere, a (discretized) contin-32

uum model is applied. Several methods were proposed in the manner; for a compari-33

son of different multiscale methods for the coupling of atomistic and continuum models34

see [9]. The central question in AtC coupling methods is how to couple the models,35

taking into account their different natures. In [1, 2, 4], a force-based blending model is36

applied to couple atomistic and continuum models. Blending is effected in a bridge region37

(also called interface or blending or overlap region) over which the atomistic displacement38

is constrained by the interpolation of the continuum displacement. Seemingly, such an39

approach over-constrains the system and causes the computational solution to deviate40

from what is expected.41

Instead, we follow a similar approach to that in [3] and use a Lagrange multiplier42

method to enforce constraints, thus reducing the number of constraints. The focus in [3]43

is on a comparison between overlapping and non-overlapping domain decomposition44

methods, whereas we examine several components of overlapping domain decompo-45

sition methods (also called “handshake” models [12]) featuring two different blending46

schemes; we also study issues related to the implementation of those methods. In con-47

trast to [1], where coupling is implemented at the force level, we blend the models at the48

energy level and use the minimization of the blended potential energy to determine the49

equilibrium configuration of the system; an approach, called the Arlequin method, for50

which the energy of the system is assumed to be shared between co-existent models was51

studied in [5–7]. This paper focuses on implementation details and difficulties of AtC52

coupling methods. In particular, we study several issues related to the application of an53

augmented Lagrange multiplier method, including the effects of nonuniformity of the54

Lagrange multiplier grid and the value chosen for the penalty parameter.55

Another issue of interest is the application of boundary conditions. In physical sys-56

tems, long–range interactions are the general case; therefore, multiple-neighbor interac-57

tions have to be implemented. Thus, an appropriate treatment is needed to correctly58

describe system interactions near the boundary where only a few atoms are available59

for interaction. In this paper, several different approaches for the case of Dirichlet, i.e.,60

displacement, boundary conditions, in the context of multiple-neighbor interactions, are61

discussed and compared in Section 7.62

The outline of this paper is as follows. In Section 2, we present the general framework63

of the AtC coupling method, as well as its implementation in one dimension. We describe64

the different components of the model as well as a physical interpretation for the energy65

blending technique. In Section 3, we introduce the quantitative tools implemented in the66
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model analysis, as well as the different choices for some of the model components whose67

effects we investigate; in addition, we present an alternative energy blending model. In68

Section 4, we present a comparison between the energy blending models, and explain69

the correct application of the models to avoid the lack of partial interactions around the70

bridge boundaries. In Section 5, we study the convergence behavior of AtC blended mod-71

els with respect to the different choices of the model components, including the blending72

functions, Lagrange multiplier basis, Lagrange multiplier grid, finite element grid, and73

penalty parameter value. In Section 6, we present singular load simulations showing that74

the finite element method is not appropriate for the treatment of regions with singular75

phenomena, whereas the AtC blended model produces correct results. In Section 7, we76

provide means for deriving model parameters for atomistic and AtC blended models for77

which one has multiple-neighbor atomistic interactions, and also compare the effective-78

ness of different ways to impose Dirichlet boundary conditions in such settings. We also79

show that for problems with singular loads, some anomalies can arise in computational80

solutions. Finally, in Section 8, we summarize the main conclusions of this research.81

2 The model82

2.1 The general framework83

The general approach to find the equilibrium configuration of a system in the presence84

of external and internal forces involves the minimization of the total potential energy.85

Because we describe different parts of our domain Ω using different models, we need to86

find a way to combine both the continuum and the atomistic descriptions into a single87

potential energy expression. We define (in the reference configuration) three subregions:†88

ΩC
0 : the continuum region,89

ΩM
0 : the atomistic region,90

Ωbri
0 =ΩM

0 ∩ΩC
0 : the bridge region.91

Using blending functions, we determine the contribution to the global potential energy92

of each representation (continuum and atomistic) in each subregion.93

We can express the total potential energy of the system‡ as94

W =Wint−Wext, (2.1)

where we have the internal potential energy of the system95

Wint =
∫

ΩC
0

ξ(X)wcdΩC
0 +

1

2 ∑
α∈M0

∑
β∈Nα

θα,βwα,β, (2.2)

†The atomistic model is assumed to be valid on the whole domain Ω, but to make simulations tractable, is
only used in the atomistic region ΩM

0 ; the continuum model is assumed to be valid only on ΩC
0 .

‡We assume there are no time–dependent effects and our system is at zero temperature.
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and the external potential energy of the system96

Wext =
∫

ΩC
0

ξ(X)B·udΩC
0 +

∫

ΓC
0

ξ(X)T·udΓC
0 + ∑

α∈M0

θ(Xα)fext
α ·dα. (2.3)

M0 = {α|Xα ∈ ΩM
0 } is the set of indexes of the atom positions in the atomistic region,97

and, for some given ℓ (which represents the length of the interatomic interaction), Nα =98

{β|Xβ ∈ Ω : |Xβ−Xα| < ℓ} is the set of indexes of the position of the atoms interacting99

with atom α; wα,β is the potential energy of the atomistic bond α−β; wc = wc(F) is the100

potential energy per unit volume of the continuum (as a function of the deformation101

gradient F); dα = xα−Xα is the displacement of the particle α∈ΩM
0 , with xα its position102

in the current configuration, and Xα its position in the reference configuration; u≡u(X)103

the continuum displacement of a point at X∈ΩC
0 ; fext

α is the external force applied on the104

particle α; ΓC
0 the boundary of ΩC

0 ; B the external body force (force per unit volume); T105

the boundary traction (the dependency of B, T, and u on X is omitted for simplicity); θα,β106

an interatomic interaction blending function depending on θ(X), Xα, and Xβ. The energy107

blending functions ξ(X) and θ(X) have the form108

ξ(X)=





0 X∈ΩM
0 \Ωbri

0

α(X) X∈Ωbri
0

1 X∈ΩC
0 \Ωbri

0

and θ(X)=





1 X∈ΩM
0 \Ωbri

0

1−α(X) X∈Ωbri
0

0 X∈ΩC
0 \Ωbri

0

,

so that ξ(X)+θ(X)=1, with α(X) a chosen function. The energy blending functions are109

used to divide the energy in the bridge region Ωbri
0 between the co-existent models, so110

that each model contributes partially to the total energy in the bridge region.111

To apply displacement constraints between the continuum and atomistic descriptions112

in the bridge region, we use the augmented Lagrangian method; in addition to Lagrange113

multipliers for constraint enforcement, this method adds a penalty term to the potential114

energy. The total potential energy is replaced by the expression115

WAL =Wint−Wext+λ
T ·g+

1

2
pgT ·g, (2.4)

with λ={λγ} a vector of Lagrange multipliers for the constraints and g={gγ} the con-116

straint equation vector. Note that the penalty term is a positive quadratic form; thus,117

minimization renders this term small; p is referred to as the penalty parameter.118

2.2 A linear one-dimensional case119

To better focus on the effects produced by the new approaches, we consider a simple one-
dimensional model with linear constraints. The expressions for the internal and external
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energies, i.e., (2.2) and (2.3) respectively, reduce to§

Wint =
∫ X f

Xi

ξ(X)wcdX+
1

2

Nd

∑
α=1

∑
β∈Nα

θα,βwα,β,

Wext =
∫ X f

Xi

ξ(X)Bu dX+ξ(X)Tu
∣∣∣

X f

Xi

+
Nd

∑
α=1

θ(Xα) f ext
α dα,

where Nd is the number of particles in ΩM
0 ; Xi,X f are the boundaries of the domain. The120

linear constraints over the bridge region are given by121

gγ =u(Xγ)−dγ =0 ∀γ∈F ≡{α |Xα ∈Ωbri
0 }, (2.5)

i.e., the constraints are applied to atomistic particles in the bridge region. To obtain the122

discrete equations, we implement a finite element (FE) method in ΩC
0 and a molecular123

mechanics description in ΩM
0 ; thus, we can express the approximate displacement field124

uh(X) in ΩC
0 in terms of the FE basis functions {ωh

i (X)}, i=1,··· ,Nu, as follows:125

u(X)≈uh(X)=
Nu

∑
i=1

ωh
i (X)uh

i , (2.6)

where the uh
i s denote the FE displacements at the FE nodes, and Nu is the number of

FE nodes in ΩC
0 . The Lagrange multiplier (LM) field is also expressed in term of basis

functions {ΛK(X)}, K = 1,··· ,Nλ, (ultimately resulting in a reduction in the number of
constraint equations)

λ(X)=
Nλ

∑
K=1

ΛK(X)λ̄K,

with λ̄K the LM coefficients and Nλ the number of LM grid nodes in Ωbri
0 . A general126

picture of our domain (assuming ΩM
0 =[Xi,c], ΩC

0 =[a,X f ], and Ωbri
0 =[a,c]) is presented127

in Fig. 1, with the thin red vertical bars representing the FE nodes, the thick green vertical128

bars the LM grid nodes, and the blue circles the atomistic particles.129

Stable configurations of the AtC blended system are found by minimizing the energy130

(2.1), subject to the constraint (2.5), i.e., by solving the following set of equations:131

∂WAL

∂uh
j

=0; j=1,··· ,Nu,
∂WAL

∂dζ
=0; ζ =1,··· ,Nd,

∂WAL

∂λL
=0; L=1,··· ,Nλ. (2.7)

§The integrals in the continuum region ΩC
0 are extended to the entire domain, i.e., Ω = [Xi,X f ], since the

energy blending function ξ(X) vanishes outside ΩC
0 .
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ddddddddddddddddddddddddddddd

a cXi X f

ContinuumAtomistic Bridge

Figure 1: Atomistic-to-continuum coupling multiscale grid showing the atoms (blue circles), finite element nodes
(thin red vertical bars) and Lagrange multiplier grid nodes (thick green vertical bars). Three regions are defined

in the entire domain Ω = [Xi,X f ]: the atomistic region ΩM
0 = [Xi,c], the continuum region ΩC

0 = [a,X f ], and

the bridge region Ωbri
0 =[a,c] where both the atomistic and the continuum models co-exist.

The resulting system of equations is¶

∫ X f

Xi

ξ(X)
∂wc

∂uh
j

dX+ ∑
γ∈F

(
Nλ

∑
K=1

ΛK(Xγ)λ̄K

)
ωh

j (Xγ)+p ∑
γ∈F

(
Nu

∑
i=1

ωh
i (Xγ)uh

i −dγ

)
ωh

j (Xγ)

=
∫ X f

Xi

ξ(X)B(X)ωh
j (X)dX+ξ(X)T(X)ωh

j (X)
∣∣∣

X f

Xi

, j=1,.. . ,Nu,

1

2

Nd

∑
α=1

∑
β∈Nα

θα,β

∂wα,β

∂dζ
−

Nλ

∑
K=1

ΛK(Xζ)λ̄KIF (ζ)−p

(
Nu

∑
i=1

ωh
i (Xζ)uh

i −dζ

)
IF (ζ) (2.8)

= θ(Xζ) f ext
ζ , ζ =1,.. . ,Nd,

∑
γ∈F

ΛL(Xγ)

(
Nu

∑
i=1

ωh
i (Xγ)uh

i −dγ

)
=0, L=1,.. .,Nλ,

where the indicator function132

IF (ζ)=

{
1 if ζ∈F ,
0 if ζ /∈F ,

(2.9)

and F is defined in (2.5). Above and in the remainder of the paper we adopt the con-133

vention of using Greek subscripts, i.e., α,β,γ,ζ, to refer to atom numbers, Latin lowercase134

subscripts, i.e., i, j, to refer to FE node numbers, and Latin uppercase subscripts, i.e., L,K,135

to refer to LM node numbers.136

There are several choices we have to make in order to implement our model; in the137

following, we present the main choices and relations for our model components.138

FE basis functions. We approximate the displacements of our system in the continuum139

region through a FE method. The standard “hat” functions are chosen as a basis for140

¶For the unknowns corresponding to the displacements of the first atom and the last FE node, we replace
the equations by Dirichlet boundary conditions, i.e., d1=u(X1) and uh

Nu
=u(Xh

Nu
) respectively, with u(X) the

exact solution of our problem. In addition, in the case of nearest-neighbor interactions, the last atom of the
atomistic region of the AtC blended system, i.e., α=Nd, is supposed to interact with a particle at the position
XNd+1≡XNd

+s, where s is the atomistic spacing; the position XNd+1 is in the continuum region beyond the

atomistic region of the AtC blended system, i.e., ΩC
0 \Ωbri

0 , thus, an appropriate treatment in this case would
be to assume the displacement dNd+1 of a particle at XNd+1 is obtained by the interpolation of the continuum
approximation at that point (see Section 7.2.1).
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continuous piecewise linear functions with respect to a grid {Xh
j }, j=1,··· ,Nu:141

ωh
j (X)=





X−Xh
j−1

Xh
j −Xh

j−1

for Xh
j−1≤X≤Xh

j

Xh
j+1−X

Xh
j+1−Xh

j

for Xh
j ≤X≤Xh

j+1

ωh
j (X)=0 otherwise.

Potential energy. We choose a linear elasticity model for the potential energy density wc,142

and, accordingly, a linear spring model for the atomistic potential wα,β:143

wc =
1

2
Kc

(
du

dX

)2

, wα,β =
1

2

Ka

s

(
dβ−dα

)2
, (2.10)

with Kc the elastic modulus, Ka/s the spring constant, and s the atomistic spacing; we144

assume a nearest-neighbor interaction, i.e., wα,β=0 for |β−α| 6=1. Furthermore, symmetry145

of the interatomic interaction blending function is assumed, i.e., θα,β = θβ,α.146

The atomistic and (discretized) continuum models result in the same elastic energy, if147

we choose Kc =Ka for a nearest-neighbor atomistic interaction, a uniform FE grid with a148

resolution identical to that of the atomistic system, i.e., ∆X = s, and a basis of continuous149

piecewise linear functions for the FE method.150

Discretized system. A more specific discretized system of equations is obtained by ap-
plying our continuum and atomistic interaction models (2.10) into the system of equa-
tions (2.8); then, we obtain, for the case of a nearest-neighbor interaction and piecewise
linear FE basis functions, the discretized system of equations (2.11)-(2.13).

{
−Kc

(∫ Xh
j

Xh
j−1

ξ(X)dX

)
1

(Xh
j −Xh

j−1)
2
+p ∑

γ∈F
ωh

j−1(Xγ)ωh
j (Xγ)

}
uh

j−1

+

{
Kc

[(∫ Xh
j

Xh
j−1

ξ(X)dX

)
1

(Xh
j −Xh

j−1)
2
+

(∫ Xh
j+1

Xh
j

ξ(X)dX

)
1

(Xh
j+1−Xh

j )
2

]

+p ∑
γ∈F

(
ωh

j (Xγ)
)2
}

uh
j

+

{
−Kc

(∫ Xh
j+1

Xh
j

ξ(X)dX

)
1

(Xh
j+1−Xh

j )
2
+p ∑

γ∈F
ωh

j+1(Xγ)ωh
j (Xγ)

}
uh

j+1

−p ∑
γ∈F

ωh
j (Xγ)dγ+

Nλ

∑
K=1

(

∑
γ∈F

ΛK(Xγ)ωh
j (Xγ)

)
λ̄K

=
∫ X f

Xi

ξ(X)B(X)ωh
j (X)dX+ξ(X)T(X)ωh

j (X)
∣∣∣
X f

Xi

; j=1,2,··· ,Nu, (2.11)
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−θα,α−1

(
Ka

s

)
dα−1+

[
(θα,α−1+θα,α+1)

(
Ka

s

)
+pIF (α)

]
dα−θα,α+1

(
Ka

s

)
dα+1

−p
Nu

∑
i=1

ωh
i (Xα)uh

i IF (α)−
Nλ

∑
K=1

ΛK(Xα)λ̄KIF (α)= θα f ext
α ; α=1,2,··· ,Nd, (2.12)

Nu

∑
i=1

(

∑
γ∈F

ΛL(Xγ)ωh
i (Xγ)

)
uh

i − ∑
γ∈F

ΛL(Xγ)dγ =0 ; L=1,2,··· ,Nλ, (2.13)

with θα ≡ θ(Xα).151

2.3 A physical interpretation for energy blending152

So far we have presented a model based on energy blending. Once an energy blend-153

ing form is imposed, the minimization of the potential energy provides the equilibrium154

configuration in the presence of external forces, given an internal potential energy func-155

tion. In order to give a possible physical interpretation to our blending scheme, we start156

from a modified version of the continuum equilibrium equation, introducing the energy157

blending function ξ(X) in a particular way as follows:158

d

dX
(ξ(X)P(X))+ξ(X)B(X)=0. (2.14)

In the case of hyperelastic materials, the Piola stress is given by P = ∂Ψ
∂F , with Ψ = Ψ(F)159

the strain-energy function and F = I+Gradu the deformation gradient. In our one-160

dimensional case,161

Ψ≡wc =
1

2
Kc

(
du

dX

)2

=
1

2
Kc(F−1)2 ; P=

∂Ψ

∂F
=Kc(F−1)=Kc

du

dX
. (2.15)

Let us develop a numerical scheme using a FE method, starting from the equilibrium
equation

d

dX

(
ξ(X)Kc

du

dX

)
+ξ(X)B(X)=0.

Multiplying by the test function wh
j (X), integrating and then using integration by parts,162

we obtain163

∫ X f

Xi

ξ(X)Kc
du

dX
(wh

j )
′
(X)dX =

∫ X f

Xi

ξ(X)B(X)wh
j (X)dX+ξ(X)T(X)wh

j (X)
∣∣∣
X f

Xi

, (2.16)

with T=Kc
du
dX the boundary traction (in the 1-D case, T=P). Assuming the displacement

is approximated by a FE interpolation, i.e., u(X)≈uh(X) as in (2.6), we can rewrite (2.16)
as ∫ X f

Xi

ξ(X)
∂wc

∂uh
j

dX =
∫ X f

Xi

ξ(X)B(X)wh
j (X)dX+ξ(X)T(X)wh

j (X)
∣∣∣

X f

Xi

;
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this is the contribution of the continuum model to the system (2.8). In (2.14), a blending164

was introduced in the physical quantities of the system; thus, it can be interpreted as165

a change in the elastic modulus, i.e., Kc → ξ(X)Kc, and in the body force, i.e., B(X)→166

ξ(X)B(X); therefore, those components change from a full contribution in the continuum167

region ΩC
0 \Ωbri

0 to a null contribution in the atomistic region ΩM
0 \Ωbri

0 .168

3 Model analysis components169

Below, we analyze our model performance in terms of the errors of the AtC blended170

model when compared to the pure-atomistic one. We investigate the sensitivity of the171

results with respect to several components of our model, i.e.,172

1. energy blending functions form in the bridge region: linear vs. cubic,173

2. form of the interatomic interaction blending function,174

3. Lagrange multiplier grid properties: uniformity and resolution,175

4. Lagrange multiplier basis functions choice: piecewise linear vs. constant,176

5. finite element grid resolution,177

6. penalty parameter value.178

For these purposes, we introduce, in Section 3.1, some quantitative tools. In Sections 3.2-179

3.5, we provide different implementation choices for some of the model components, i.e.,180

points 1-4 of the list above. Then, in Section 3.6, we discuss an alternative AtC blended181

model.182

3.1 Quantitative measurements183

Total error. We are interested in measuring the global error of our numerical simulations.184

Assuming the pure-atomistic model gives the correct solution for our system, we would185

like to calculate the error of the simulations produced by our AtC coupling methods in186

comparison to the pure-atomistic one. In the region [Xi,c], we compare the displacements187

between the atoms in the pure-atomistic and the AtC blended models, whereas in (c,X f ],188

the comparison is between the displacements of the atoms in the pure-atomistic model189

and the interpolation of the FE solution of the AtC blended models at the same positions.190

The calculation of the error ǫ is done using the L2-like norm191

ǫ=

(
1

N

Nd

∑
α=1

(dα−uα)
2+

1

N

N

∑
α=Nd+1

(
uh(Xα)−uα

)2
)1/2

, (3.1)

with N the total number of atoms in [Xi,X f ] in the pure-atomistic model, Nd the number192

of atoms in [Xi,c], i.e., the number of atoms in the atomistic region of the AtC blended193

model, dα the displacement in the AtC blended model of the atom which was originally194

at the position Xα, uα the displacement in the pure-atomistic model of the atom originally195

at the position Xα, and uh(Xα) the FE approximation of the continuum displacement at196

the position Xα.197
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Cauchy strain. Deviations of the displacements for the case of smooth external forces198

can be relatively small in the sense that it is difficult for the eye to perceive them. An199

alternative way to visualize those deviations is through the slope of the displacements,200

i.e., the Cauchy strain. We measure the strain at Xi as e(Xi)=(u(Xi+1)−u(Xi))/(Xi+1−201

Xi). This is applied to the atomistic displacements of both the pure-atomistic and AtC202

blended models as well as to the FE approximation of the continuum displacement in the203

continuum domain of the AtC blended model.204

3.2 Energy blending functions205

One choice for the energy blending functions ξ(X) and θ(X) is piecewise linear functions:206

ξ(X)=





0 X < a,
X−a

c−a
a≤X≤ c,

1 X > c,

(3.2)

with θ(X)=1−ξ(X). This choice is not C1-continuous because the derivatives are discon-207

tinuous at the boundaries of the bridge region, i.e., at X=a and X=c. To see if a smoother208

transition improves the accuracy of AtC simulations, we also use piecewise cubic functions209

with the requirement of C1-continuity on [Xi,X f ], i.e., ξ(a) = 0, ξ(c) = 1, ξ′(a) = 0, and210

ξ′(c)=0. Using these conditions, we obtain the cubic energy blending function211

ξ(X)=





0 X < a,
αx3+βx2+γx+δ a≤X≤ c,

1 X > c,
(3.3)

with

α=− 2

(c−a)3
, β=−3

2
α(a+c) , γ=3αac , δ=

1

2
αa2(a−3c).

The reason we consider cubic as well as linear blending functions θ and ξ is that the212

C1 continuity of the cubic functions forces θ (respectively, ξ) to be small, relative to the213

linear case, in the bridge region near the continuum (respectively, atomistic) boundary214

X = c (respectively, X = a). This results in a weakened effect of the atomistic (respec-215

tively, continuum) model in the bridge region near the continuum (respectively, atom-216

istic) boundary which is perhaps desirable because presumably we want the continuum217

model to dominate in the bridge region near the continuum boundary and we certainly218

want the atomistic model to dominate in the bridge region near the atomistic boundary.219

3.3 Interatomic interaction blending function220

We use two different options for the interatomic interaction blending function θα,β in the
atomistic region; each one is consistent with a different integration rule for the integral,
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which contains the energy blending function ξ(X), in the continuum portion of Wint. To
show these relations, we start from the discretized continuum equation (2.11), set p =
0, and avoid the terms corresponding to the constraints, in order to focus only on the
contributions from the internal and external energy expressions; the term containing the
traction is neglected because we look at the internal nodes. The expression obtained is as
follows:

−Kc

(∫ Xh
j

Xh
j−1

ξ(X)dX

)
uh

j−1−uh
j

(Xh
j −Xh

j−1)
2
−Kc

(∫ Xh
j+1

Xh
j

ξ(X)dX

)
uh

j+1−uh
j

(Xh
j+1−Xh

j )
2

=
∫ X f

Xi

ξ(X)B(X)wh
j (X)dX. (3.4)

Trapezoidal rule. Using the trapezoidal quadrature rule for the integrations, we get

−Kc

(
ξ j−1+ξ j

2

) uh
j−1−uh

j

h
−Kc

(
ξ j +ξ j+1

2

) uh
j+1−uh

j

h
= ξ jB(Xh

j )h,

with ξ j≡ξ(Xh
j ), where we have used a uniform FE grid with resolution h. Assuming h=s

and j=α, we can write the equivalent expression for the atomistic interaction:

−Ka

(
θα−1+θα

2

)(
dα−1−dα

s

)
−Ka

(
θα+θα+1

2

)(
dα+1−dα

s

)
= θα f ext

α .

This gives some insight for the choice of θα,β = 1
2(θα+θβ); we refer to this interatomic221

interaction blending function approach as the “average” rule. Furthermore, we obtain222

the relations Ka =Kc and f ext
α =B(Xα)s that are implemented through our model.223

Midpoint rule. We now consider (3.4) with a midpoint quadrature rule to approximate

the integrals‖ to obtain

−Kcξ

(
Xh

j−1+Xh
j

2

)
uh

j−1−uh
j

h
−Kcξ

(
Xh

j +Xh
j+1

2

)
uh

j+1−uh
j

h
= ξ(Xj)B(Xh

j )h.

Similarly to the “average” rule derivation, we obtain the “midpoint” rule for the inter-224

atomic interaction blending function, i.e., θα,β = θ
(Xα+Xβ

2

)
.225

3.4 Lagrange multiplier grid: uniformity and resolution226

We investigate the sensitivity of the AtC blended model on the number of LM grid nodes227

and the difference between the results obtained when using uniform and nonuniform228

‖We use the midpoint rule for the integrals on the left-hand side of (3.4), but still use the trapezoidal rule for
the integral on the right-hand side.
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(a) Uniform LM grid (b) Nonuniform LM grid

Figure 2: Comparison between a uniform (a) and a nonuniform (b) Lagrange multiplier (LM) grid. The LM grid
nodes are represented by the thick green vertical bars; the thin red vertical bars correspond to finite element
grid nodes, and the blue circles to atoms. The region [a,c] represents the bridge Ωbri

0 .

LM grids. The idea behind the implementation of a nonuniform LM grid is to strongly229

constrain the atomistic displacements by the continuum approximation near the con-230

tinuum region ΩC
0 \Ωbri

0 , whereas leaving the atoms less constrained close to the atom-231

istic region ΩM
0 \Ωbri

0 . To achieve that, we choose the number Nλ of LM grid nodes; let232

∆X =(c−a)/(Nλ−1), with [a,c] the bridge region, and, for a uniform grid, simply choose233

the grid points234

Xλ(i)= a+∆X(i−1), i=1,··· ,Nλ. (3.5)

For the nonuniform grid, we apply a mapping to (3.5) so that

X̃λ(i)= a+(c−a)sin

(
π

2

Xλ(i)−a

c−a

)
, i=1,··· ,Nλ

determines the LM grid points. In Fig. 2, we present, for illustration, a comparison be-235

tween a uniform and a nonuniform LM grids, implemented on an AtC coupling multi-236

scale grid with Nd =100, Nu =10, and Nλ =7; the bridge domain is [a,c]=[0.4,0.6]. In this237

example, equivalent pure-atomistic and pure-continuum FE grids would have 167 atoms238

and 16 nodes respectively, in the entire domain, i.e., [0,1], resulting in 11 atoms per finite239

element.240

3.5 Lagrange multiplier basis functions choice: piecewise linear vs. constant241

We use two different approaches for the LM basis functions: piecewise constant and242

piecewise linear, and see how the results compare. Note that the number of LM basis243

functions is one less for the piecewise constant choice than for the piecewise linear choice,244

i.e., we have one less equation in our system.245
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3.6 Blending models246

Model I. The approach we started from is a blending of the energy in the form of (2.2)-247

(2.3) with the total potential energy given by (2.1). We have shown, in the one-dimensional248

case, that, in the continuum, this is consistent with introducing the energy blending func-249

tion ξ(X) in the equilibrium equation as a change in the elastic modulus and in the body250

force as in (2.14). In [1], it was shown that a blending similar to the one presented in251

Model I leads to the satisfaction of Newton’s third law.252

To make the system of equations we are dealing with more clear, we write down the
contributions of the internal and external potential energies to the discretized equations
(2.11) and (2.12), i.e., we neglect the LM and penalty expressions. Using a trapezoidal
rule for the integrals on the left-hand side (assuming a piecewise linear energy blending
function ξ(X)) and correspondingly the “average” rule for the interatomic interaction
blending function we obtain

−
(

ξ j +ξ j−1

2

)
Kc

(Xh
j −Xh

j−1)
uh

j−1+

[(
ξ j+ξ j−1

2

)
Kc

(Xh
j −Xh

j−1)
+

(
ξ j+ξ j+1

2

)
Kc

(Xh
j+1−Xh

j )

]
uh

j

−
(

ξ j +ξ j+1

2

)
Kc

(Xh
j+1−Xh

j )
uh

j+1 =
∫ X f

Xi

ξ(X)B(X)ωh
j (X)dX+T(X f )ωh

j (X f ),

j=1,2,··· ,Nu, (3.6)

−
(

θα+θα−1

2

)(
Ka

s

)
dα−1+

[(
θα+θα−1

2

)
+

(
θα+θα+1

2

)](
Ka

s

)
dα

−
(

θα+θα+1

2

)(
Ka

s

)
dα+1 = θα f ext

α ; α=1,2,··· ,Nd. (3.7)

In addition, the discretized continuum equation (3.6), in the limit of the atomistic resolu-253

tion, assuming Kc =Ka and B(Xα)s= f ext
α (implementing the trapezoidal rule for integrat-254

ing the right-hand side and neglecting the traction term), adds to the atomistic equation255

(3.7) to give the pure-atomistic force balance equation, i.e.,256

−Ka

s
dα−1+2

Ka

s
dα−

Ka

s
dα+1 = f ext

α . (3.8)

Model II. A different approach for the blending of the continuum and atomistic mod-257

els is obtained by letting the energy blending functions multiply the whole equilibrium258

equations. The continuum expression is259

ξ(X)

{
d

dX
(P(X))+B(X)=0

}
. (3.9)

We multiply (3.9) by the test function wh
j (X) and integrate; using integration by parts and

applying the explicit form of the nominal stress appearing in (2.15), i.e., P(X)=Kc
du
dX , we
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get
∫ X f

Xi

ξ(X)Kc
du

dX
(wh

j )
′
(X)dX+

∫ X f

Xi

Kc
du

dX
ξ
′
(X)wh

j (X)dX

=
∫ X f

Xi

ξ(X)B(X)wh
j (X)dX+ξ(X)T(X)wh

j (X)
∣∣∣

X f

Xi

, (3.10)

that is similar to (2.16) but with an extra term, i.e., the second term on the left-hand side
of (3.10). A discretization of (3.10) is

−ξ j
Kc

(Xh
j −Xh

j−1)
uh

j−1+ξ j

[
Kc

(Xh
j −Xh

j−1)
+

Kc

(Xh
j+1−Xh

j )

]
uh

j −ξ j
Kc

(Xh
j+1−Xh

j )
uh

j+1

=
∫ X f

Xi

ξ(X)B(X)ωh
j (X)dX+T(X f )ωh

j (X f ) ; j=1,2,··· ,Nu, (3.11)

assuming a piecewise linear energy blending function ξ(X), and taking its derivative as260

ξ′(X)=(ξ j−ξ j−1)/(Xh
j −Xh

j−1) for X∈(Xh
j ,Xh

j−1). In the atomistic region, the correspond-261

ing expression is obtained by multiplying the pure-atomistic force balance equation (3.8)262

by θα. The resulting equation is263

−θα
Ka

s
dα−1+2θα

Ka

s
dα−θα

Ka

s
dα+1 = θα f ext

α ; α=1,2,··· ,Nd. (3.12)

Notice that we have implemented the continuum and atomistic interaction models ap-264

pearing in (2.10). In the case of a nearest-neighbor interaction, and assuming a FE grid265

resolution identical to the atomistic one, it is possible to show that Newton’s third law266

is satisfied when taking into account both the atomistic and continuum force contribu-267

tions to each atom/node. In particular, under those assumptions, adding the atomistic268

and discretized continuum expressions, i.e., (3.11) and (3.12), results in the pure-atomistic269

force balance equation (3.8).270

The atomistic and continuum contributions to the equilibrium/force balance equa-271

tions, both in Model I and Model II, add, under appropriate assumptions, to the pure-272

atomistic force balance equation (3.8). This motivates the following statement. The273

AtC blended model can be reduced to a pure-continuum FE approximation with a non-274

uniform mesh. This can be obtained if we choose, in our AtC blended model, the same275

FE grid resolution in the bridge region, as in the atomistic model, i.e., Xh
j −Xh

j−1 = s for276

Xh
j ,Xh

j−1∈Ωbri
0 , and a particular quadrature rule for the right-hand side, so that the exter-277

nal forces in the continuum and atomistic models are the same (see, e.g., the trapezoidal278

rule in Section 6.2); in addition, we choose Ka = Kc. In this case, the resulting model279

can also be obtained by using a FE method with a non-uniform mesh, with a resolution280

identical to the atomistic one in the atomistic region, i.e., in ΩM
0 , while a different reso-281

lution is used in ΩC
0 \Ωbri

0 (equal to the one chosen for the FE approximation of the AtC282

blended model in that region). Whether a similar connection can be made in the case283

of a multiple-neighbor atomistic system and higher-order FE approximation, is an open284

question.285
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Figure 3: Multiscale grid composed of atoms (blue circles) and finite element (FE) nodes (red vertical bars).
The FE grid resolution is identical to the atomistic one; there is no atom on the right boundary of the bridge
region. The domain of the problem is Ω=[0,1], and the bridge region is chosen as Ωbri

0 =[a,c]= [0.5,0.7].

4 Comparing Model I and Model II in the bridge region286

In this section, we focus on the bridge boundaries, in order to point out some differences287

between Model I and Model II. For that purpose, we run a particular case for which the288

FE nodes overlap the atoms in the bridge region, but there is a missing atom at the last289

FE node of the bridge region, i.e., no atom is present on the right boundary of that region.290

The grid looks as in Fig. 3, with 21 FE nodes in ΩC
0 =[0.5,1], and 28 atoms in ΩM

0 =[0,0.7].291

The atoms inside the bridge region correspond to atoms having the reference positions292

{Xα}, α = 21,··· ,28, and the FE nodes that overlap them correspond to the FE nodes at293

{Xh
j }, j = 1,··· ,8. We take a closer look at the assembled matrix for our discretized sys-294

tem of equations; in the assembled matrix A, the rows are ordered such that the first Nu295

rows correspond to the FE equations, the following Nd rows correspond to the atomistic296

equations, and the next Nλ rows correspond to the constraints. We examine the resulting297

matrix after adding A(42:49,42:49)+A(1:8,1 :8), i.e., the sum of the contributions to the298

atoms/nodes in the bridge region; this contributions arise from the rows 1 to 8, corre-299

sponding to the FE nodes in the bridge region (i.e., the first 8 FE nodes in ΩC
0 ) and from300

the rows 42 to 49, corresponding to the atoms in the bridge region (i.e., the last 8 atoms in301

ΩM
0 ). In this numerical example, we used the following model choices: Nu =21, Nd =28,302

Nλ =2, a=0.5, c=0.7, p=0, piecewise linear ξ(X), and piecewise linear ΛL(X). Models I303

and II both produce the matrix entries304




80 −40 0 0 0 0 0 0
−40 80 −40 0 0 0 0 0

0 −40 80 −40 0 0 0 0
0 0 −40 80 −40 0 0 0
0 0 0 −40 80 −40 0 0
0 0 0 0 −40 80 −40 0
0 0 0 0 0 −40 80 −40
0 0 0 0 0 0 −40 80




.

In both models, the sum of the contributions of the continuum equilibrium equation and
the atomistic force balance equation are consistent with the pure-atomistic interaction



 G
al

le
y 

Pr
oo

f16 P. Seleson and M. Gunzburger / Commun. Comput. Phys., x (200x), pp. 1-46

expression

−Ka

s
dα−1+2

Ka

s
dα−

Ka

s
dα+1,

with Ka = 1.0 and s = 1/40; the total number of atoms in a pure-atomistic model having305

the same resolution is 41.306

Right boundary. We look at the assembled matrix A of the system, but this time only at307

the continuum contributions. We focus on the elements corresponding to the first 10 FE308

nodes of the continuum region, including eight overlapping FE nodes, a FE node at the309

right bridge boundary, and a FE node inside the continuum region outside the bridge310

region, i.e., ΩC
0 \Ωbri

0 ; this corresponds to the matrix block A(1 :10,1 :10).311

For Model I, we have the matrix block312




2.5 −2.5 0 0 0 0 0 0 0 0
−2.5 10 −7.5 0 0 0 0 0 0 0

0 −7.5 20 −12.5 0 0 0 0 0 0
0 0 −12.5 30 −17.5 0 0 0 0 0
0 0 0 −17.5 40 −22.5 0 0 0 0
0 0 0 0 −22.5 50 −27.5 0 0 0
0 0 0 0 0 −27.5 60 −32.5 0 0
0 0 0 0 0 0 −32.5 70 −37.5 0
0 0 0 0 0 0 0 −37.5 77.5 −40
0 0 0 0 0 0 0 0 −40 80




.

The first 8 rows correspond to FE nodes that overlap atoms in the bridge region, thus we313

know that they have a complementary contribution from the atomistic expression (and314

we have verified that the continuum and atomistic contributions add together to the same315

pure-atomistic system interaction values). Row 9 is a FE node in the bridge domain (on316

the right boundary), but without an overlapping atom. Because of the energy blending317

function ξ(X), the elements A(9,8) =−37.5 and A(9,9) = 77.5 have values with smaller318

absolute value than those corresponding to the pure-atomistic model (which should be319

the same as the elements A(10,9)=−40 and A(10,10)=80, respectively), whereas there320

is no complimentary atomistic contribution.321

For Model II, we have the matrix block322




0 0 0 0 0 0 0 0 0 0
−5 10 −5 0 0 0 0 0 0 0

0 −10 20 −10 0 0 0 0 0 0
0 0 −15 30 −15 0 0 0 0 0
0 0 0 −19 40 −19 0 0 0 0
0 0 0 0 −25 50 −25 0 0 0
0 0 0 0 0 −30 60 −30 0 0
0 0 0 0 0 0 −35 70 −35 0
0 0 0 0 0 0 0 −40 80 −40
0 0 0 0 0 0 0 0 −40 80




.
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In this case, the FE node 9 has the correct interaction values.323

In contrast to Model II, Model I suffers from an imbalance of the interaction values324

on the right boundary of the bridge region, because the blending is performed using an325

average of energy blending functions evaluated at different points; the lack of presence326

of an atom at the right boundary of the bridge region produces, as a result, only a partial327

contribution from the continuum model. Forcing the presence of an atom at the right328

boundary of the bridge region resolves this imbalance problem.329

Left boundary. The problem appearing on the right boundary of the bridge region, cor-330

responding to the system illustrated in Fig. 3, motivates a similar study in relation to the331

left boundary, but this time, for a general AtC configuration. An analogous problem to332

the one occurring at the right boundary of the bridge region, where the interaction arises333

only from a partial contribution of the continuum model, can occur on the left boundary334

of the bridge region; in particular, beyond it, but close to the bridge region, the atomistic335

contribution is only partial (because of the interatomic interaction blending function θα,β)336

and there is no additional contribution from the continuum model. Atoms inside the337

bridge region have partial contributions from each of the atomistic and continuum mod-338

els; that is not the case for atoms outside the bridge region, which have only an atomistic339

contribution. In Model I, the interatomic interaction blending function θα,β has an aver-340

aged form; thus, atoms outside the bridge region, but still interacting with atoms inside341

the bridge region, have an interaction weighted by θα,β <1, giving a smaller contribution342

in comparison to the pure-atomistic model.343

In order to illustrate this, we examine the atomistic equation (3.7), for a given particle
α, where the “average” rule is used for θα,β. Assuming Xα ∈ [Xi,a] and Xα+1 ∈ (a,c], then
θα = θα−1 =1, whereas θα+1 <1. We then obtain

−
(

Ka

s

)
dα−1+2

(
Ka

s

)
dα−

(
Ka

s

)
dα+1 = f ext

α − 1

2
(1−θα+1)

(
Ka

s

)
(dα+1−dα);

thus, an extra “artificial force” term appears on the right-hand side. A way to avoid this344

problem is to set the interatomic interaction blending function θα,β ≡ 1 in the atomistic345

force balance equation in (2.8) corresponding to atoms in the atomistic region outside the346

bridge region, i.e., atoms with an index ζ /∈F .347

5 Convergence studies348

In this section, we analyze, through computational experiments, the performance of mod-349

els and their dependence on parameters, using two basic settings:350

I. Zero-load case: B(X)= 0; d1≡u(Xi)=0; uh
Nu

≡u(X f )=1,351

II. Constant-load case: B(X)=10; d1≡u(Xi)=0; uh
Nu

≡u(X f )=0,352

where u(X) represents, in this case, the exact solution of our problem. In order to avoid353

boundary issues, we place an atom on the right boundary of the bridge region and use an354

interatomic interaction blending function θα,β≡1 for atoms in the atomistic region outside355
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(a) Zero load (b) Constant load

Figure 4: Comparison of the displacement profiles between the different models: atomistic-to-continuum (AtC)
blended (with an atomistic solution in [Xi,c]= [0,0.64], and a continuum finite element (FE) approximation in

[a,X f ]= [0.4,1.0]), pure-atomistic, pure-continuum FE, and the PDE −Kc
d2u
dX2 = B(X), for a zero-load case (a)

and a constant-load case (b). The parameters used for the simulations are given in Table 1 along with Nλ =7,
Nu=21, and p=1, using a uniform Lagrange multiplier (LM) grid for Model II; a piecewise cubic energy blending
function ξ(X) choice with the “average” rule (cf. Section 3.3) is implemented together with a piecewise linear
LM basis functions ΛL(X). In addition to the displacement profiles, the multiscale grid is shown in the plots,
with the blue circles representing atoms, the thin red vertical bars FE nodes, and the thick green vertical bars
LM grid nodes. The plots show a qualitative agreement between the models.

the bridge region, i.e., ΩM
0 \Ωbri

0 . The parameters used in common for the simulations in356

Sections 5.1-5.3 are given in Table 1.∗∗357

Table 1: Model parameters for convergence studies.

Nd Xi a c X f Kc Ka

129 0.0 0.4 0.64 1.0 1.0 1.0

Qualitative results comparing the displacement profiles of the pure-atomistic model,358

the AtC blended model (with an atomistic solution in [Xi,c], and a continuum FE ap-359

proximation in [a,X f ]), the pure-continuum FE model, and the exact solution of the PDE360

−Kc
d2u
dX2 =B(X) are presented in Fig. 4; a qualitative agreement is found between the dif-361

ferent models. In the following sections, we investigate the error convergence as a func-362

tion of different parameters, treating all possible combinations of the choices for the LM363

basis functions (ΛL(X) piecewise linear or constant) and the energy blending function364

(ξ(X) piecewise linear or cubic).365

∗∗The value of c=0.64 is chosen so that we obtain a FE node at the right boundary of the interface.
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(a) ΛL(X):p.linear - ξ(X): p.linear (b) ΛL(X):p.linear - ξ(X): p.cubic

(c) ΛL(X):p.const - ξ(X): p.linear (d) ΛL(X):p.const - ξ(X): p.cubic

Figure 5: Total error of the atomistic-to-continuum blended model as a function of the number of Lagrange
multiplier (LM) grid nodes Nλ, for different cases, for the zero-load case. The plots (a, b, c, d) present different
combinations for the choice of LM basis functions ΛL(X): piecewise constant (p.const) or piecewise linear
(p.linear), and the choice of the energy blending function ξ(X): piecewise linear (p.linear) or piecewise cubic
(p.cubic). On each plot, the results of 6 simulations are shown, as it is described in the label of the figure;
“uniform/nonuniform” refer to the LM grid (cf. Section 3.4), “midpoint/average” refer to the choice of the
interatomic interaction blending function θα,β (cf. Section 3.3), and “Model I/Model II” refer to the energy

blending model (cf. Section 3.6). Figures (b,c,d) use subplots because of the large differences in magnitude
of the errors (y-axes) between the results of Model I and Model II (the results of Model I appear in the top
plot of each subplot, whereas the results of Model II appear in the corresponding bottom plot). Notice that in
(a,c) there is an overlapping between the results of the “average” and “midpoint” rules, both in the case of a
uniform and nonuniform LM grid, for Model I; as a consequence (a,c) seem to present only 4 curves, instead of
6. In (b,d) a similar behavior, though not identical, results from the “midpoint” and “average” rules in Model
I.

5.1 Lagrange multiplier grid resolution366

We investigate the error behavior of the AtC blended model as a function of the num-367

ber of LM grid nodes; we use in this case the values Nu =21†† and p=1. For the zero-load368

case, the results are shown in Fig. 5; in Fig. 6, we present the results for the constant-load369

††The values of Nd =129 (see Table 1) and Nu =21, correspond to resolutions equivalent to 201 atoms and 34
FE nodes in [0,1]; this choice gives a proportion of 6 atoms per finite element.
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(a) ΛL(X):p.linear - ξ(X): p.linear (b) ΛL(X):p.linear - ξ(X): p.cubic

(c) ΛL(X):p.const - ξ(X): p.linear (d) ΛL(X):p.const - ξ(X): p.cubic

Figure 6: Total error of the atomistic-to-continuum blended model as a function of the number of Lagrange
multiplier (LM) grid nodes Nλ, for different cases, for the constant-load case. The model choices and label
interpretation are the same as in Fig. 5. As in the zero-load case (Fig. 5), in (a,c) there is an overlapping between
the results of the “average” and “midpoint” rules, both in the case of a uniform and nonuniform LM grids, for
Model I; in (b,d) a similar behavior, though not identical, results from the “midpoint” and “average” rules in
Model I. Furthermore, in (b,d) similar results are obtained, for Model II, between a uniform and nonuniform LM
grid choices; in particular, in (b) the curves overlap each other. As a consequence, the plots seem to present
less than 6 curves.

case. The uniform and nonuniform LM grids follow the construction presented in Section370

3.4; the maximum number of LM grid nodes taken in the simulations, both for the uni-371

form (Nλ =48) and nonuniform (Nλ =8) LM grids, corresponds to the maximum number372

of nodes we can choose so that the LM grid resolution does not exceed the atomistic one.373

The main conclusions are as follows.374

– For the piecewise linear ξ(X) choice (Figs. 5(a,c) and 6(a,c)), Model I produces the same375

results for the “average” and “midpoint” rules. The reason for that is that both rules are376

equivalent for linear functions.377

– In the zero-load case, in contrast to Model I, (Fig. 5), Model II seems to produce the378

exact solution for all combinations (see the y-axes scales), similar to what happens in a379

pure-continuum FE case when the exact solution belongs to the FE space; however, in380
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the constant-load case (Fig. 6), the errors for both models are of the same order. In order381

to understand the differences in behavior, we note that the displacement profile in the382

constant-load case has a quadratic form (see Fig. 4(b)), so that the choice of piecewise-383

linear interpolation for the FE method introduces an error of a similar magnitude in both384

models; in contrast, for the linear profile of the zero-load case, a piecewise-linear interpo-385

lation produces no errors.386

– In the zero-load case (Fig. 5), for the piecewise linear ξ(X) – piecewise linear ΛL(X)387

choice (a), Model I converges to the exact solution for a large number of LM grid nodes.388

– In the zero-load case (Fig. 5), for Model I, the nonuniform LM grid gives better con-389

vergence results (a,c,d), though in the case of a piecewise cubic ξ(X) – piecewise linear390

ΛL(X) choice (b), the difference between uniform and nonuniform LM grids is less no-391

ticeable. In the constant-load case (Fig. 6), for Model I, the use of a nonuniform LM grid392

does not improve the results in all the cases; on the other hand, in Model II, the uniform393

LM grid gives better results for the piecewise linear ξ(X) choice (a,c), whereas for the394

piecewise cubic ξ(X) choice (b,d), both LM grid choices produce similar results.395

– In the zero-load case (Fig. 5), for the piecewise constant ΛL(X) choice (c,d), we see con-396

vergence, for the uniform LM grid case in Model I, including an approximate step-wise397

behavior of the solution.398

– In the constant-load case (Fig. 6), in most of the cases, there seems to exist an optimal399

choice for Nλ for which the error is minimized. That does not seem to be the case for400

Model II, for the piecewise cubic ξ(X) choice, in particular, when using a piecewise con-401

stant LM basis functions ΛL(X) (d), where an approximate monotonic behavior for the402

error increase appears.403

5.2 Finite element grid resolution404

We next investigate the error behavior of the AtC blended model as a function of the405

number of FE nodes; for that purpose, we choose Nλ = 7, i.e, log10(Nλ)≈ 0.85, which406

we observed in Section 5.1 gave a result close to optimal, in most of the cases, for the407

constant-load case (see Fig. 6), and p=1. The maximum number of FE nodes taken for the408

simulations is Nu = 121 which gives a FE grid with the same resolution as the atomistic409

one. For the zero-load case, the results are shown in Fig. 7; in Fig. 8, we present the results410

for the constant-load case.411

The main conclusions are as follows.412

– For the piecewise linear ξ(X) choice (Figs. 7(a,c) and 8(a,c)), Model I produces the same413

results for the “average” and “midpoint” rules, as in Section 5.1.414

– For the zero-load case (Fig. 7), Model II seems to produce the exact solution for all com-415

binations (see the y-axes scales), in contrast to Model I, whereas in the constant-load case416

(Fig. 8), the errors for both models are of the same order, as in Section 5.1. On the con-417

trary, in Fig. 7 (zero-load case) the errors in Model I seem to be independent of the FE grid418

resolution, and in Fig. 8 (constant-load case) the errors reach a plateau, whereas the errors419

in Model II continue decreasing when increasing the number of FE nodes. As in Sec-420
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(a) ΛL(X):p.linear - ξ(X): p.linear (b) ΛL(X):p.linear - ξ(X): p.cubic

(c) ΛL(X):p.const - ξ(X): p.linear (d) ΛL(X):p.const - ξ(X): p.cubic

Figure 7: Total error of the atomistic-to-continuum blended model as a function of the number of finite element
grid nodes Nu, for different cases, for the zero-load case. The model choices and label interpretation are the
same as in Fig. 5. Figures (a,b,c,d) use subplots because of the large differences in magnitude of the errors (y-
axes) between the results of Model I and Model II (the results of Model I appear in the top plot of each subplot,
whereas the results of Model II appear in the corresponding bottom plot). In (a,c), there is an overlapping
between the results of the “average” and “midpoint” rules, both in the case of a uniform and nonuniform
Lagrange multiplier grids, for Model I; as a consequence (a,c) seem to present only 4 curves, instead of 6. In
(b,d) a similar behavior, though not identical, results from the “midpoint” and “average” rules in Model I.

tion 5.1, we can argue that the piecewise linear FE approximation introduces additional421

errors in the constant-load case, so that both models have errors of the same magnitude;422

on the other hand, it is clear that an additional source of error is present in Model I and423

becomes dominant for a large number of FE nodes. A possible interpretation is that there424

is some error arising from noise in the bridge region that prevents convergence. To show425

the noise created in the bridge region, we present, in Fig. 9, a plot comparing the strain426

profiles for Model I (a) and Model II (b).427

– In Model I, the nonuniform LM grid gives lower errors than the uniform one (see Figs. 7428

and 8).429

– In the constant-load case (Fig. 8), for piecewise cubic ξ(X) choice (b,d), Model II produces430

smaller errors than Model I; that is not exactly the case for the piecewise linear ξ(X)431
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(a) ΛL(X):p.linear - ξ(X): p.linear (b) ΛL(X):p.linear - ξ(X): p.cubic

(c) ΛL(X):p.const - ξ(X): p.linear (d) ΛL(X):p.const - ξ(X): p.cubic

Figure 8: Total error of the atomistic-to-continuum blended model as a function of the number of finite element
grid nodes Nu, for different cases, for the constant-load case. The model choices and label interpretation are
the same as in Fig. 5. As in the zero-load case (Fig. 7), there is an overlapping between some of the curves
presented in the results; in (a,c), there is an overlapping between the results of the “average” and “midpoint”
rules, both in the case of a uniform and nonuniform Lagrange multiplier (LM) grids, for Model I; in (b,d) a
similar behavior, though not identical, results from the “midpoint” and “average” rules in Model I. Furthermore,
in (b,d), for Model II, there is an overlapping between the results of a uniform and nonuniform LM grid choices.
As a consequence, the plots seem to present less than 6 curves.

choice (a,c).432

– In Model II, in the constant-load case (Fig. 8), we get the same results for a uniform433

and nonuniform LM grids in the case of a piecewise cubic ξ(X) choice (b,d), whereas434

a uniform LM grid performs better than the nonuniform one in the case of a piecewise435

linear ξ(X) choice (a,c).436

5.3 Penalty parameter437

We investigate the error, of the AtC blended model, as a function of the penalty param-438

eter. We choose Nλ = 7, as in Section 5.2, and Nu = 21. For the zero-load case, results are439

shown in Fig. 10, whereas in Fig. 11 the results in a semi-log scale show the asymptotic440
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(a) Model I (b) Model II

Figure 9: Comparison of the strain profiles between the atomistic-to-continuum (AtC) blended model (with an
atomistic solution in [0,0.64], and a continuum finite element approximation in [0.4,1.0]), and the pure-atomistic
model, for the zero-load case, in Model I (a) and Model II (b) (cf. Section 3.6). The simulation parameters are
presented in Table 1; Nλ = 7, Nu = 61, p = 1; we use a piecewise cubic energy blending function ξ(X) choice,
the “average” rule (cf. Section 3.3) for Model I, a piecewise linear Lagrange multiplier (LM) basis functions
ΛL(X) choice, and a uniform LM grid.

behavior for large values of p; in Fig. 12, we present the results for the constant-load case,441

whereas in Fig. 13 the results in a semi-log scale show the asymptotic behavior for large442

values of p.443

The main conclusions are as follows.444

– In the piecewise linear ξ(X) choice (Figs. 10(a,c), 11(a,c), 12(a,c), and 13(a,c)), Model I445

produces the same results for the “average” and “midpoint” rules, as in Sections 5.1 and446

5.2.447

– In the zero-load case (Figs. 10 and 11), Model II seems to produce the exact solution for448

all combinations (see the y-axes scales), in contrast to Model I, whereas in the constant-449

load case (Figs. 12 and 13), the errors for both models are of the same order, as in Sections450

5.1 and 5.2.451

– In the zero-load case (Figs. 10 and 11), for Model I, the error seems to decrease mono-452

tonically with increasing p; furthermore, the nonuniform LM grid, in most of the cases,453

results in a smaller error than the uniform one.454

– In the constant-load case (Figs. 12 and 13), there exists an optimal value of p≈40 for the455

error convergence in the case of a piecewise linear ξ(X) choice (a,c) in Model II, whereas456

in the piecewise cubic ξ(X) choice (b,d) the error basically increases with increasing p; in457

Model I, the optimal value for p in the piecewise linear ξ(X) case is around 10.458

– In the constant-load case (Figs. 12 and 13), for the piecewise cubic ξ(X) choice (b,d),459

after some value of p, the behavior is similar for both models. On the contrary, for the460

piecewise linear ξ(X) choice (a,c), after some value of p, Model II outperforms Model I.461

– In the constant-load case (Figs. 12 and 13), the minimum value for the error obtained in462

the piecewise linear ξ(X) choice (a,c) is smaller than that obtained in the piecewise cubic463

ξ(X) choice (b,d).464
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(a) ΛL(X):p.linear - ξ(X): p.linear (b) ΛL(X):p.linear - ξ(X): p.cubic

(c) ΛL(X):p.const - ξ(X): p.linear (d) ΛL(X):p.const - ξ(X): p.cubic

Figure 10: Total error of the atomistic-to-continuum blended model as a function of the penalty parameter p,
for different cases, for the zero-load case. The model choices and label interpretation are the same as in Fig. 5.
Figures (a,b,c,d) use subplots because of the large differences in magnitude of the errors (y-axes) between the
different cases. In (a,c), there is an overlapping between the results of the “average” and “midpoint” rules,
both in the case of a uniform and nonuniform Lagrange multiplier grids, for Model I; as a consequence (a,c)
seem to present only 4 curves, instead of 6. In (b,d) a similar behavior, though not identical, results from the
“midpoint” and “average” rules in Model I.

5.4 Main conclusions regarding the error convergence465

Following the above results we can arrive at the following general conclusions.466

– Model II outperforms Model I (or is at least as good) for most cases. In particular, for467

the zero-load case, Model II seems to reproduce the exact solution.468

– Linear energy blending (piecewise linear ξ(X) choice), applied to Model I, does not469

distinguish between the “average” and “midpoint” rules.470

– For Model I, nonuniform LM grids result, in most of the cases, in smaller errors com-471

pared to uniform LM grids; on the contrary, for Model II, better results are obtained, in472

most of the cases, when applying a uniform LM grid.473

– In several cases (in particular for the constant-load simulations), optimal values for Nλ474

and p are found.475
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(a) ΛL(X):p.linear - ξ(X): p.linear (b) ΛL(X):p.linear - ξ(X): p.cubic

(c) ΛL(X):p.const - ξ(X): p.linear (d) ΛL(X):p.const - ξ(X): p.cubic

Figure 11: Total error of the atomistic-to-continuum blended model as a function of the penalty parameter p,
for different cases, for the zero-load case in a semi-log scale. The model choices and label interpretation are
the same as in Fig. 5. As in Fig. 10, we use subplots, and, in addition, some curves overlap each other (see the
caption of Fig. 10 for further details).

6 Singular load476

So far we have shown that the AtC blended models reproduce pretty well results ob-477

tained using the pure-atomistic model; see, e.g., Fig. 4. The results obtained so far were478

for smooth exact solutions that can be solved much more cheaply using a pure-continuum479

FE model; in fact, in Fig. 4, we see that the pure-continuum FE model also yields good480

solutions. Recall that the motivation for developing the AtC coupling methods is to treat481

problems that cannot be accurately approximated with just a FE model. In this section,482

we apply the different models (AtC blended, pure-atomistic, pure-continuum FE, and the483

PDE −Kc
d2u
dX2 = B(X)) to a problem with a singular load, i.e., a force that is applied only484

on a few atoms, for which we expect that the FE method does not yield accurate results.485

To compare the performance of the pure-continuum FE model with the AtC blended486

model, in the case of a singular load, we need to relate a discrete force, acting at the487

microscopic level, with a continuous body force, acting at the macroscopic level, in such488
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(a) ΛL(X):p.linear - ξ(X): p.linear (b) ΛL(X):p.linear - ξ(X): p.cubic

(c) ΛL(X):p.const - ξ(X): p.linear (d) ΛL(X):p.const - ξ(X): p.cubic

Figure 12: Total error of the atomistic-to-continuum blended model as a function of the penalty parameter
p, for different cases, for the constant-load case. The model choices and label interpretation are the same
as in Fig. 5. As in the zero-load case (Figs. 10 and 11), some curves overlap each other; in (a,c), there is
an overlapping between the results of the “average” and “midpoint” rules, both in the case of a uniform and
nonuniform Lagrange multiplier (LM) grids, for Model I; in (b,d) a similar behavior, though not identical, results
from the “midpoint” and “average” rules in Model I. Furthermore, in (b,d) a similar behavior results for the
uniform and nonuniform LM grid choices, in Model II. As a consequence, some plots seem to present less that
6 curves. Notice that the y-scale was stretched out in comparison to Figs. 10 and 11.

a way that a consistent application of the same force source is effected in both cases.489

Otherwise, we would be comparing systems with different external forces. The next two490

sections present a discussion about this issue.491

6.1 From a continuous to a discrete force492

Assume we are given a continuous body force function. We would like to zoom in to493

a particular region of our system, and ask what is the corresponding force acting on494

individual particles. In particular, when the force is very sharp, i.e., nonzero only on495

a few particles, we would like to determine the right contribution for each one. The496

situation is sketched in Fig. 14; on the left, the contribution of the continuous force profile497
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(a) ΛL(X):p.linear - ξ(X): p.linear (b) ΛL(X):p.linear - ξ(X): p.cubic

(c) ΛL(X):p.const - ξ(X): p.linear (d) ΛL(X):p.const - ξ(X): p.cubic

Figure 13: Total error of the atomistic-to-continuum blended model as a function of the penalty parameter p,
for different cases, for the constant-load case in a semi-log scale. The model choices and label interpretation
are the same as in Fig. 5. As in Fig. 12, some curves overlap each other (see the caption of Fig. 12 for further
details).

Figure 14: Left: relation between a continuous body force at the macroscale level and a microscopic atomistic
external force; the atomistic force f ext

α , acting on an atom at Xα, is taken as the integral of the body force
over the Voronoi cell corresponding to the specific atom position, i.e., [Xα−s/2,Xα+s/2], with s the lattice
spacing. Right: external singular force profile of a narrow Gaussian concentrated around a single atom.
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Table 2: Model parameters for the singular force simulations.

Nd Nu Nλ Xi a c X f d1 uh
Nu

Kc Ka ξ(X) ΛL(X) Model p

129 21 7 0.0 0.4 0.64 1.0 0.0 0.0 1.0 1.0 cubic linear II 1

to the external force exerted on a particle at Xα is illustrated, and, on the right, the narrow498

general profile of a body force with a Gaussian form is shown, in the range [0,0.1]. Given499

a continuous force profile B(X), we determine the corresponding force f ext
α , acting on500

the particle located at Xα, as the integral of the continuous body force over the Voronoi501

cell corresponding to Xα, i.e., [Xα−s/2,Xα+s/2], where s denotes the lattice spacing; the502

expression for the force is as follows:503

f ext
α =

∫ Xα+s/2

Xα−s/2
B(X)dX≈∑

k

B(Xk)wk, (6.1)

where the integral is approximated by some quadrature rule with appropriate accuracy.504

To introduce a numerical example, we approximate a singular load by a very narrow
Gaussian, having the form

f (x)=
1√
2πσ

(
− (x−µ)2

2σ2

)
,

where µ determines the position of the center of the Gaussian and σ its width. A quadra-
ture rule is used to approximate the integrals of the external body force of the contin-
uum contribution of the AtC blended model (cf. right-hand side of (2.11)) and the pure-
continuum FE one, i.e., ∫ X f

Xi

ξ(X)B(X)ωh
j (X)dX,

where ξ(X) ≡ 1 in the pure-continuum FE model. In order to avoid significant errors505

introduced in the conversion from the continuous force B(X) to its discrete version f ext
α ,506

we use a high-order quadrature (64 points) to compute the atomistic force in (6.1). We507

would like to concentrate on the model performance around the center of the Gaussian,508

assumed to be in the atomistic domain outside the bridge region, i.e., ΩM
0 \Ωbri

0 , and not509

on the model performance in the bridge region. Thus, taking into account the conver-510

gence studies in Section 5, we use appropriate AtC blended model choices that closely511

reproduce the pure-atomistic results; the choices are presented in Table 2, and a uniform512

LM grid is implemented. We apply a force concentrated around 1 particle as it is shown513

in Fig. 14 (right), where the blue circles represent the atomistic particles; the parameters514

of the Gaussian profile are σ = 0.0008 and µ = 0.035. In Fig. 15, we compare the results,515

between the different models, for different choices for the order of the quadrature rule516

applied to the integrals containing the body force B(X), both in the pure-continuum FE517

and AtC blended (cf. right-hand side of (2.11)) models; a comparison between the AtC518
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(a) Quadrature order = 5
AtC error = 1.03e-15; FE error = 1.82e-2

(b) Quadrature order = 10
AtC error = 1.03e-15; FE error = 1.22e-2

(c) Quadrature order = 32
AtC error = 1.03e-15; FE error = 4.18e-4

(d) Quadrature order = 64;
AtC error = 1.03e-15; FE error = 4.19e-4

Figure 15: Comparison of the displacement profiles between the different models: atomistic-to-continuum (AtC)
blended (with an atomistic solution in [0,0.64], and a continuum finite element (FE) approximation in [0.4,1.0]),

pure-atomistic, pure-continuum FE, and the PDE −Kc
d2u
dX2 = B(X), for different choices for the order of the

quadrature rule applied to the integrals containing the body force B(X) both in the pure-continuum FE and
AtC blended models. The AtC blended model and pure-continuum FE model errors are shown on each case.
In addition to the displacements, the multiscale grid is shown in the plots, with the blue circles representing
atoms, the thin red vertical bars FE nodes, and the thick green vertical bars Lagrange multiplier nodes.

blended model and pure-continuum FE model errors‡‡ is included on each plot. The519

AtC blended model produces the same results as in the pure-atomistic model, and these520

results seem to reproduce the solution of the corresponding PDE; in contrast, the pure-521

continuum FE model does not reproduce the same results for a low quadrature order.522

The pure-continuum FE results become closer to the pure-atomistic results when we in-523

crease the order of the quadrature, although, even for a high-order quadrature, e.g., 64524

points, the error is still large, i.e., 4.19e−4 (see Fig. 15(d)); the pure-continuum FE results525

‡‡The error in the AtC blended model is computed using (3.1); the corresponding error in the pure-
continuum FE model is computed, similarly, by the L2-like norm for the difference between the pure-
atomistic model solution and the interpolation of the pure-continuum FE model solution.
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(a) Full resolution FE (b) Full resolution FE (zoom-in)

Figure 16: Comparison of the displacement profiles between different models (see caption of Fig. 15 for details),
using a quadrature of 64 points (for the integrals containing the body force B(X) both in the pure-continuum
FE and AtC blended models) and an atomistic resolution for the FE simulation, i.e., Nu =121 (this corresponds
to 201 FE nodes in [0,1]). As in Fig. 15, the multiscale grid is shown in (a) in addition to the displacement
profiles. The entire plot is shown in (a), whereas in (b) a zoom-in to the area of interest is presented.

error can be improved by increasing the number of FE nodes.526

Using the same resolution for the FE grid as in the pure-atomistic model, i.e., Nu=121527

(this corresponds to 201 FE nodes in [0,1]), we get the results presented in Fig. 16. In (a),528

we see that all models seem to agree, although, when we zoom in (b), we see that the529

FE solution agrees with the PDE solution, but differs from the pure-atomistic and AtC530

blended model solutions (which agree each other). It seems that the quadrature used for531

the calculation of the atomistic force f ext
α in (6.1), does not capture the exact profile of532

the continuum body force B(X); the error between the pure-continuum FE and the pure-533

atomistic solutions is, in this case, 2.22e−5. If the interatomic spacing is such that we534

have 801 atoms in the entire domain, i.e., [0,1], and still use the same resolution for the535

FE method as in the atomistic model (this resolution corresponds to a choice of Nd =513536

and Nu =481), the error is reduced to 1.32e−6.537

In general, we do not have the exact solution of the PDE, and the pure-atomistic so-538

lution is taken as the exact solution. Therefore, a more appropriate approach would be539

to start from a discrete force (i.e., the force profile in the atomistic region) and find a540

corresponding continuum expression; this approach is discussed in the next section.541

6.2 From a discrete to a continuous force542

In classical continuum mechanics, we refer to material objects as continuous, whereas this543

is considered an approximation, at the macroscopic level, of the underlying microscopic544

discrete view of matter. Under the accepted discrete approach, matter is described as545

composed of particles to which an external force is applied, and the continuum body546
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Figure 17: Piecewise constant continuous body force B(X) at the macroscale level, having values related to a
given microscopic atomistic force; f ext

α is the atomistic external force acting on a particle at Xα; s is a uniform
atomistic resolution, i.e., s= Xα+1−Xα.

force is an averaged force per unit volume; when the force is smooth at the microscopic547

level, then, the chosen averaging scale, at the macroscopic level, does not make too much548

difference, but when the force changes at the microscopic level, the averaging scale takes549

on an important role.550

We are interested in applying a continuous model at a microscopic scale; thus, we551

need to know the correspondence between the atomistic force and the continuous body552

force applied on the system. We would like to discuss the case of a singular load (or more553

precisely, an external force applied to a few particles) and see how we can implement554

it on the continuous model. We approximate a singular load by a very narrow discrete555

Gaussian profile, assuming that the force acts only at the atomistic positions. In order556

to preserve the sharp force behavior, we want to compute the force average over as few557

atoms as possible. Therefore, we assume that the atom at Xα is a representative particle558

of the region [Xα−s/2,Xα+s/2], with s the lattice spacing, i.e., we divide our chain of559

atoms into Voronoi cells in the reference configuration, and assume each atom is the560

representative particle of its corresponding cell. We now calculate the body force acting561

in that cell as the force acting on the particle divided by the cell length, i.e., B(X)= f ext
α /s562

for X ∈ [Xα−s/2,Xα+s/2] The body force is then a piecewise constant function as it is563

shown in Fig. 17.564

To obtain the smallest error, we use the atomistic resolution on the FE approximation,
defining a FE node at each atomistic site; in this case, and assuming B(X) is piecewise
constant, we can calculate the body force contribution to the FE equation as follows:

∫ X f

Xi

B(X)ωh
j (X)dX =

∫ Xα+1

Xα−1

B(X)ωh
α(X)dX

=
f ext
α−1

s

∫ Xα−s/2

Xα−1

ωh
α(X)dX+

f ext
α

s

∫ Xα+s/2

Xα−s/2
ωh

α(X)dX+
f ext
α+1

s

∫ Xα+1

Xα+s/2
ωh

α(X)dX

=
1

8

(
f ext
α−1+6 f ext

α + f ext
α+1

)
6= f ext

α ,
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assuming j ≡ α (i.e., the FE grid node j is at the same position as the atom α), and the565

FE and atomistic grids resolutions are identical, i.e., h= s. Therefore, we get a weighted566

average of f ext
α−1, f ext

α , and f ext
α+1. This treatment does not reproduce the pure-atomistic567

external force, i.e., f ext
α , and gives some smoothing of the force. In particular, if the force568

is a delta function or close to that, we get a smoothing of it that produces wrong results.569

In Table 3, we compare the errors of the AtC blended and pure-continuum FE models570

with respect to the pure-atomistic case. The simulations use the parameters in Table 2, but571

implement a FE resolution identical to the atomistic one, i.e., Nu =121 (this corresponds572

to 201 FE nodes in [0,1]), and a uniform LM grid. The external force is assumed to have a573

Gaussian profile with the parameters σ=0.0008 and µ=0.035, and the atomistic force f ext
α574

is calculated integrating the Gaussian profile, using a high-order quadrature (64 points),575

as in (6.1); then, the continuum body force is computed based on the values obtained for576

the atomistic force. In this case, i.e., piecewise constant B(X), the AtC blended model gives577

better results than the pure-continuum FE model (cf. left columns in Table 3); in other578

words, because of the averaging property of the pure-continuum model, the FE method579

cannot recover the atomistic behavior, even if the FE grid resolution is the same as the580

atomistic one.581

Table 3: Comparison of the error for the atomistic-to-continuum (AtC) blended and the pure-continuum finite
element (FE) methods for the different integration approximations for the body force.

Piecewise constant B(X) Trapezoidal rule
AtC Pure-continuum FE AtC Pure-continuum FE

2.14e-15 4.40e-5 2.14e-15 1.35e-15

Taking into account that the force is applied only at the atomistic positions, we can
instead approximate the integrals on the right-hand side of the continuum model using
a trapezoidal rule over the atomistic sites, i.e.,

∫ X f

Xi

B(X)ωh
j (X)dX =

∫ X f

Xi

B(X)ωh
α(X)dX

≈
Nd−1

∑
β=1

s

2

(
B(Xβ)ωh

α(Xβ)+B(Xβ+1)ωh
α(Xβ+1)

)

=
Nd−1

∑
β=1

1

2

(
f ext
β ωh

α(Xβ)+ f ext
β+1ωh

α(Xβ+1)
)

=
f ext
α

2
+

f ext
α

2
= f ext

α , (6.2)

where we have used again a FE resolution equal to the atomistic one, reproducing the582

correct force expression. In Table 3, we compare the AtC blended and pure-continuum583

FE models errors with respect to the pure-atomistic case, with the FE resolution equal to584

the atomistic one. In this case, i.e., trapezoidal rule, the pure-continuum FE reproduces the585

atomistic external force (cf. right columns in Table 3).586

A very important note is that although it seems that computing the right-hand side587

of the FE equations using the trapezoidal rule over the atomistic sites, on a grid with588
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a resolution equal to the atomistic one, can reproduce the correct results, this implies a589

knowledge at each time of the singularity position. In other words, the FE method cannot590

assure that correct results would be obtained by just refining the grid to the atomistic591

resolution alone; only if the computation is done for the force calculated at the positions592

where the singularity occurs, then a correct result achievement is possible. Therefore,593

even if we refine the grid to the microscopic resolution, but the FE nodes do not coincide594

with the atomistic sites (or we miss the exact location of the singularity), then the FE595

model will not produce results as accurate as those of the AtC model.596

7 Multiple-neighbor interaction597

In this section, we deal with systems presenting multiple-neighbor atomistic interactions,598

whereas keeping the linearity of the interaction type, i.e., we still use the linear elastic-599

ity/linear spring model. As part of the generalization of the number of neighbor interac-600

tions, we introduce new implementation challenges; we have to determine how to mod-601

ify the force constants to make the atomistic and continuum models consistent between602

each other; this will be presented in Section 7.1. In addition, multiple-neighbor atom-603

istic interactions require a special boundary treatment because atoms located close to the604

boundary have to interact, in principle, with atoms beyond the boundary; in Section 7.2,605

we propose different approaches to deal with Dirichlet boundary conditions.606

7.1 Adapting the force constant607

The implementation of a multiple-neighbor interaction introduces modifications in the608

atomistic expressions. The atomistic force balance equations are, for α=1,2,··· ,Nd:609

−
α+Nneig

∑
β=α−Nneig

β 6=α

K̃a

|Xα−Xβ|
(dβ−dα)= f ext

α , (7.1)

with Nneig the number of one-sided near neighbor atomistic interactions, and K̃a a gener-610

alized atomistic force constant†.611

In the following, we present two different approaches (a uniform and a nonuniform612

force constant) for the relation between the generalized atomistic force constant K̃a and613

the nearest-neighbor force constant Ka; this is in order to keep the consistency between614

the multiple-neighbor atomistic interaction and the linear elasticity continuum model615

†For the AtC blended model implementation, we include the interatomic interaction blending function θα,β

on the left-hand side, and the energy atomistic blending function θ(Xα) on the right-hand side. Furthermore,
Nd represents the number of atoms in the atomistic region of the AtC blended model, i.e., ΩM

0 ; for the pure-
atomistic model, this is replaced by the total number of atoms in the entire domain, i.e., Ω.
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implemented in previous sections‡.616

Uniform force constant. We compute the factor K̃a for a case of a general number of
interactions. Using the Taylor expansion for a general function f (X±nh), under the as-
sumption that f is smooth enough, one easily deduces

f
′′
(X)=

2

hNneig(Nneig+1)

Nneig

∑
n=1

1

nh

[
( f (X−nh)− f (X))+( f (X+nh)− f (X))

]
+O(h2).

We would like to approximate consistently the equation

−Kcu
′′
(X)=B(X) → −Kad

′′
(Xα)=

f ext
α

s
.

Therefore, taking X≡Xα, f (Xα)≡u(Xα)=dα, Ka =Kc, B(Xα)h= f ext
α , and h= s so that the

corresponding equation is

− 2Ka

Nneig(Nneig+1)

α+Nneig

∑
β=α−Nneig

β 6=α

1

|Xα−Xβ|
(
dβ−dα

)
=B(Xα)h= f ext

α ,

we conclude (cf. (7.1)) that K̃a =
2Ka

Nneig(Nneig+1)
, the same constant for each pair interaction§.617

Nonuniform force constant. We now choose to include a different constant for each
neighbor interaction so that we again use a Taylor expansion to deduce

Nneig

∑
n=1

(Knnh) f
′′
(X)=

Nneig

∑
n=1

Kn

nh

[
( f (X−nh)− f (X))+( f (X+nh)− f (X))

]
+O(h3).

Assuming Kn ≡ K̃a,n, ∑
Nneig

n=1 nK̃a,n = Ka, and the same assumptions as in the uniform force
constant derivation, we can write

−
Nneig

∑
n=1

K̃a,n

nh

[
(u(Xα−nh)−u(Xα))+(u(Xα+nh)−u(Xα))

]
=B(Xα)h= f ext

α ;

‡We look for an appropriate functional form for the atomistic force constant K̃a, in the case of a multiple-
neighbor atomistic interaction, in order to match the continuum and atomistic models implemented in the
system. We assume the pure-atomistic model is the underlying “correct” solution of our system, although
for practical purposes, we decided to use in the multiple-neighbor atomistic interaction case, the same con-
tinuum model for the continuum region used in the case of a nearest-neighbor atomistic interaction; thus,
we found the relation between the assumed continuum model constant Kc = Ka and the one corresponding

to the underlying multiple-neighbor atomistic model K̃a.
§This relation appears in [21] in the context of upscaling a nonlocal linear springs molecular dynamics model
to the nonlocal continuum model peridynamics.
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we can assume that the force constants corresponding to different neighbor interactions
satisfy the relation¶

nK̃a,n = K̃a,1 =2K̃a,2 =3K̃a,3 =
Ka

Nneig
or K̃a,n =

Ka

nNneig
,

resulting in the model equation

−
α+Nneig

∑
β=α−Nneig

β 6=α

K̃a,|β−α|
|Xα−Xβ|

(
dβ−dα

)
= f ext

α .

Notice that the atomistic force constant K̃a in (7.1), was replaced by K̃a,|β−α| to emphasize618

the explicit dependence of the force constant on the specific neighbor interaction (i.e.,619

nearest-neighbor, second nearest-neighbor, etc.).620

7.2 Boundary treatments621

Different approaches have been proposed in the literature for the implementation of622

boundary conditions in atomistic systems; some approaches include periodic, constant-623

stress, constant-displacement and free boundary conditions [1, 2, 19, 23–25]. Boundary624

conditions intend to reduce surface artifacts appearing in simulations; for example, peri-625

odic boundary conditions emulate an infinite system, i.e., we assume we simulate a small626

fraction of a larger system, and we expect to mimic a bulk phase.627

In our case, we are interested in comparing the AtC blended model, not just to the628

pure-atomistic, but also to the pure-continuum model; in our pure-continuum model we629

implement Dirichlet boundary conditions, i.e., we assume a displacement for the first630

and last FE nodes; we would like to use a similar assumption for our pure-atomistic and631

AtC blended models, i.e., assume a fixed displacement for the first and last atoms, and632

for the first atom and last FE node respectively. Taking into account that for multiple-633

neighbor interactions our nonlocal atomistic model requires an assumption regarding634

the displacements of all atoms within a layer of the boundary, we need to find a way635

to overcome the lack of information when we only have the information regarding the636

first and last atoms (or the first atom and last FE node in the AtC blended model). Con-637

sider Fig. 18, that illustrates the situation on the left boundary of the atomistic domain of638

the AtC blended system (this is the case in the multiscale approach, whereas in a pure-639

atomistic model we have to deal with both boundaries). We see that, for example, in640

the case of a second-neighbor interaction, atom number “2” is supposed to interact with641

the “ghost atom” number “0;” the “ghost atoms” are represented by magenta circles in642

the figure, i.e., atoms with a position Xα < Xi; thus, we need to find a way to treat this643

problem.644

¶A similar relation between force constants in a mass-spring system appears in [1, 2] for a particular case of
a two-neighbor interaction system; the nearest-neighbor constitutive constant K1 is chosen to have twice the
value of the second nearest-neighbor one K2, i.e., K1 =2K2.
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ddddddddddddddddddddddddddddd

Xi a c X f

dddddddd
210

Figure 18: Atomistic-to-continuum coupling multiscale grid showing “ghost atoms”. The domain of the system
is [Xi,X f ], and the bridge region is [a,c]. The red vertical bars in [a,X f ] represent the finite element grid nodes.

The blue circles in the region [Xi,c] are the atoms in the atomistic region of our system. The magenta circles
to the left of Xi represent the “ghost atoms”.

The general atomistic interaction expression is as follows:

−
α+Nneig

∑
β=α−Nneig

β 6=α

C(α,β)

|Xα−Xβ|
(
dβ−dα

)
= f ext

α ,

where C(α,β) represents the atomistic force constant, which depends on the model (see,645

e.g., below: truncation, asymmetry, adaptive, extended-BC, and ghost-atoms) and on the value646

of α and β. In the following, we introduce several approaches to deal with continuum647

Dirichlet-type boundary conditions, i.e., a displacement for the first and last particles648

of the system is assumed, in the presence of nonlocal atomistic interactions; in all cases649

we assume the atomistic model involves a one-sided Nneig neighbor interactions, i.e., an650

atom inside the domain, and far from the boundaries, interacts with Nneig neighbors on651

each side.652

Truncation. We use an interaction with Nneig neighbors on both sides (left and right), but
avoid the interactions with atoms beyond the boundary, i.e., atoms with the index β such
that β<1 or β> Nd. Therefore,

C(α,β)=

{
0 β<1 or β> Nd

K̃a 1≤β≤Nd
; K̃a =

2Ka

Nneig(Nneig+1)
or

Ka

|β−α|Nneig
.

Asymmetry. We allow for a different number of neighbor interactions to the left and
right, depending on how close we are to the boundary. If we are far enough from both
boundaries, we use an interaction with Nneig neighbors on both sides; otherwise, we use
an interaction with the number of neighbors available near the boundary, and with Nneig

neighbors towards the opposite side, changing the force constant accordingly. Thus,

C(α,β)=





K̃a(α−1) β<α and (α−1)< Nneig

K̃a(Nd−α) β>α and (Nd−α)< Nneig

K̃a(Nneig) otherwise

; K̃a(N)=
2Ka

N(N+1)
or

Ka

|β−α|N .

Adaptive. We use the same number of neighbor interactions to the left and right, using
the minimum number of neighbors available between the left and right sides for the
interaction. Therefore,

C(α,β)= K̃a(N) ; K̃a(N)=
2Ka

N(N+1)
or

Ka

|β−α|N ,
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(a) Truncation (b) Asymmetry

(c) Adaptive (d) Extended–BC (e) Ghost–atoms

Figure 19: Comparison between the different boundary treatments. The pairwise interaction force constant K̃a
is computed for a specific choice of the number of one-sided atomistic neighbor interactions Nneig. The red
dashed lines represent interactions using a value of Nneig=2, whereas the black solid lines represent interactions
using a value of Nneig =3.

with N =min(α−1,Nd−α,Nneig) the number of neighbor interactions.653

Extended boundary conditions (extended-BC). We extend the boundary conditions in-
side the domain to the first Nneig atoms closest to the boundary. Therefore, the interaction
is implemented for atoms further than Nneig atoms from the boundary. Thus,

C(α,β)=

{
K̃a Nneig+1≤α≤Nd−Nneig

0 otherwise
; K̃a =

2Ka

Nneig(Nneig+1)
or

Ka

|β−α|Nneig
.

Ghost-atoms. We use the general number of neighbor interactions Nneig for every atom
in the atomistic region. To solve the problem of the atoms near the boundaries, we add
“ghost atoms” beyond the boundary and interact with them. The same boundary condi-
tions are imposed on the “ghost atoms” as for the atoms on the boundaries. Therefore,

C(α,β)= K̃a; K̃a =
2Ka

Nneig(Nneig+1)
or

Ka

|β−α|Nneig
.

In Fig. 19, we present an illustration of the different boundary treatments for an atom-654

istic interaction model with the choice of Nneig =3. The black solid lines represent inter-655

actions where the force constant is computed using the choice of Nneig = 3, whereas the656

red dashed lines represent interactions where the force constant is computed using the657

choice of Nneig =2. The truncation method always uses the same force constant, but trun-658

cates the interactions beyond the boundary; the asymmetry method uses different con-659

stants for interactions to the left and to the right, depending on how close the particle660
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is to the boundary; the adaptive method uses the same constant for interactions to the661

left and to the right, but the constant changes for different particles; the extended-BC and662

ghost-atoms methods use the choice Nneig = 3 for every pairwise interaction, but give a663

special treatment to certain particles or interactions in the system.664

7.2.1 Finite element interpolation for β> Nd665

In the AtC blended model, we need to deal with cases where a particle in the atomistic
domain (including the bridge region) is supposed to interact with particles in the con-
tinuum domain beyond the bridge region; assume a particle α with a reference position
Xα ∈ [Xi,c] is supposed to interact with a particle at the reference position Xβ ∈ (c,X f ],
i.e., β > Nd, then, we replace the displacement dβ in (7.1) with an interpolation of the FE
displacements at Xβ (this is equivalent to the introduction of pad atoms [18, 22] or ghost

particles [1,2] in ΩC
0 \Ωbri

0 , with positions determined by the deformation of the continuum
region where the atoms reside) as follows:

K̃a

|Xα−Xβ|
(dβ−dα)=

K̃a

|Xα−Xβ|

{(
Xβ−Xh

j

Xh
j+1−Xh

j

)
uh

j+1−
(

Xβ−Xh
j+1

Xh
j+1−Xh

j

)
uh

j

}
− K̃a

|Xα−Xβ|
dα,

where Xh
j+1 and Xh

j are the positions of two FE nodes, such that Xβ ∈ [Xh
j ,Xh

j+1].666

7.3 Results667

In this section, we present results for the various issues related to multiple-neighbor668

atomistic interactions.669

Boundary treatment. We focus on the boundary treatment and see how the different670

approaches behave; for the simulations, the model choices are presented in Table 4. In671

Fig. 20, we present a comparison between the models for Nneig = 10, in the case of the672

zero-load case (1st and 2nd columns) and the constant-load case (3rd and 4th columns);673

in each case we show the displacement profile (1st and 3rd columns) together with the674

strain profile (2nd and 4th columns); the computations were done using a uniform LM675

grid, and the uniform force constant choice (the results are qualitatively similar for the676

nonuniform force constant choice).677

Table 4: Model parameters for the multiple-neighbor interactions simulations.

Nd Nu Nλ Xi a c X f Kc Ka ξ(X) ΛL(X) Model p

129 21 7 0.0 0.4 0.64 1.0 1.0 1.0 cubic linear II 1

In order to understand the results from Fig. 20, we should take into account certain678

differences between the continuum (local) and the atomistic (nonlocal) models. Both the679

AtC blended model (on the right boundary) and the PDE (on both boundaries), treat680

the boundary following a local approximation, implementing the differential operator681
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(a) Truncation (zero load) (b) Truncation (constant load)

(c) Asymmetry (zero load) (d) Asymmetry (constant load)

(e) Adaptive (zero load) (f) Adaptive (constant load)

(g) Extended-BC (zero load) (h) Extended-BC (constant load)

(i) Ghost-atoms (zero load) (j) Ghost-atoms (constant load)

Figure 20: Comparison of the displacements (1st and 3rd columns) and strains (2nd and 4th columns) for
the case of the multiple-neighbor interaction, between the different boundary treatment methods: truncation,
asymmetry, adaptive, extended-BC, and ghost-atoms. The simulations were run using the parameters presented
in Table 4 with Nneig =10 and using a uniform choice for K̃a. Left columns (1st and 2nd): zero-load case; right

columns (3rd and 4th): constant-load case. For the displacement plots we compare the results between all the
models: atomistic-to-continuum (AtC) blended (with an atomistic solution in [0,0.64], and a continuum finite

element (FE) approximation in [0.4,1.0]), pure-atomistic, pure-continuum FE and PDE −Kc
d2u
dX2 = B(X), and

in addition, we present the multiscale grid composed by atoms (blue circles), FE nodes (thin red vertical bars),
and Lagrange multiplier grid nodes (thick green vertical bars). For the strain plots, we just compare the AtC
blended and the pure-atomistic models.
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appearing in the PDE; the atomistic model (on both boundaries) and the AtC blended682

model (on the left boundary) treat the boundary following a nonlocal approximation. We683

have found particular expressions for the atomistic force constant in the nonlocal model,684

such that the behavior is consistent with the continuum model (see Section 7.1). We685

would expect to get similar profiles between atomistic and continuum expression, in the686

case both models treat the boundary in a consistent way.687

The conclusions are as follows.688

–It is expected that the AtC blended and the pure-atomistic models match on the left689

boundary, because they implement identical boundary treatments; similarly, the pure-690

continuum FE and the AtC blended models match on the right boundary.691

– The adaptive method gives the closest profile to the pure-continuum FE solution (which692

reproduces the PDE solution); the reason for this is that it recovers a correct approxima-693

tion for the second derivative for all the atoms. In contrast, the truncation and asymmetry694

methods do not provide a correct approximation to the differential operator in the contin-695

uum model, thus their solution deviates from the pure-continuum FE one; on the other696

hand, the asymmetry method gives a better approximation to the PDE than the truncation697

method, thus its solution is closer.698

– It is interesting to note that the truncation and asymmetry approaches produce opposite699

curvatures on the boundaries, i.e., when the truncation approach gives a concave profile,700

the asymmetry gives a convex one, and vice versa.701

– The ghost-atoms method reproduces pretty well the continuum results. Unfortunately,702

the lack of information regarding the correct boundary conditions for the “ghost atoms”703

introduces a deviation in the displacement profiles; introducing additional assumptions704

about their boundary conditions can improve the results.705

– The extended-BC method introduces the boundary conditions inside the domain, chang-706

ing the profile accordingly.707

Uniform vs. nonuniform K̃a. We now focus on the performance of the AtC coupling708

method in comparison to the pure-atomistic model, and compare between the uniform709

and nonuniform atomistic force constant choices. For that purpose, we want to get rid710

of the boundary effects and focus on the multiple-neighbor interactions inside the do-711

main; we assume our system is far away from the boundaries, i.e., a very large sys-712

tem. To achieve that, we implement a variation of the ghost-atoms method, where we713

assume atoms close to the boundaries interact with “ghost atoms” beyond the bound-714

aries, and impose the exact solution of the PDE −Kc
d2u
dX2 = B(X) to the “ghost atoms”715

displacements‖. In Fig. 21, we compare the error behavior of the AtC blended model716

in the case of multiple-neighbor atomistic interactions as a function of the number of717

one-sided atomistic neighbor interactions Nneig, between the uniform and nonuniform718

choices for K̃a, for the zero-load (a) and constant-load (b) cases. The simulation parameters719

are presented in Table 4. Both approaches for K̃a reproduce the pure-atomistic solution in720

‖This “cheating” method was suggested to us by Michael L. Parks; the reason why it is called “cheating” is
that, in general, the simulation results are not known a priori.
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(a) Zero load (b) Constant load

Figure 21: Comparison of the error behavior for different choices of number of one-sided atomistic neighbor

interactions Nneig, for uniform and nonuniform K̃a choices, for a zero-load (a) and constant-load (b) cases. The
simulations were run using the parameters presented in Table 4.

Uniform K̃a

(a) Nneig =1 (b) Nneig =20 (c) Nneig =200

Nonuniform K̃a

(d) Nneig =1 (e) Nneig =20 (f) Nneig =200

Figure 22: Comparison of the strain profiles between the atomistic-to-continuum (AtC) bended model (with an
atomistic solution in [0,0.64], and a continuum finite element approximation in [0.4,1.0]) and the pure-atomistic
model, for different choices of number of one-sided neighbor interactions Nneig, for a uniform (top plots) and

a nonuniform (bottom plots) K̃a choice. The simulations used the parameters in Table 4, for a constant-load
case.



 G
al

le
y 

Pr
oo

fP. Seleson and M. Gunzburger / Commun. Comput. Phys., x (200x), pp. 1-46 43

Uniform K̃a

(a) Nneig =1 (b) Nneig =5 (c) Nneig =10

Nonuniform K̃a

(d) Nneig =1 (e) Nneig =5 (f) Nneig =10

Figure 23: Comparison of the displacement profiles, for different choices of number of one-sided neighbor

interactions Nneig, for a uniform (top plots) and a nonuniform (bottom plots) K̃a choice. The simulations were
run using the parameters presented in Table 4. The plots compare the displacement profiles between different
models and, in addition, present the multiscale grid (see Fig. 20 for further details regarding the models and
the multiscale grid description).

the zero-load case (note the scale of the y-axis). In the constant-load case, the nonuniform721

K̃a approach yields smaller errors for a large number of neighbor interactions.722

In order to better understand the error behavior, we take a look at the strain profiles.723

In Fig. 22, we present a comparison between the uniform (top plots) and nonuniform724

(bottom plots) choices for K̃a, for the cases of Nneig = 1, 20, and 200, for the constant-load725

case, using the parameters in Table 4. The larger the number of neighbor interactions,726

the more step-wise the strain profile in the bridge region. On the other hand, this effect727

is stronger for the uniform choice for K̃a, giving a larger error; in addition, in that case, a728

spike develops at the left boundary of the bridge region.729

Singular load case. We examine the effect of the multiple-neighbor interaction in the730

presence of a sharp external force. We use a Gaussian load with σ=0.0008 and µ=0.035,731

presented in Fig. 14 (right plot). Fig. 23 presents a comparison between the uniform and732
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nonuniform K̃a choices, using different number of neighbor interactions; The simulations733

use the parameters presented in Table 4. We can see that the PDE solution∗∗ around734

the force location is different than the solution of the pure-atomistic and AtC blended735

models (which agree each other), for both choices of K̃a, for the multiple-neighbor case. In736

addition, the nonuniform K̃a choice seems to smooth the effect appearing in the solution737

of the pure-atomistic and AtC blended models, in comparison to the uniform K̃a choice.738

8 General conclusions739

We presented in this work a bridging technique application for coupling atomistic and740

continuum models. We explored a 1-D system and applied displacement constraints741

using an augmented Lagrange multiplier (LM) method. Several aspects of the model742

were analyzed using two different blending schemes (Model I and Model II).743

As discussed in this paper, an implementation of different model component choices744

can improve the results of the atomistic-to-continuum (AtC) blended model, in relation745

to the pure-atomistic one. In particular, we studied the model dependence on the use of746

different choices for the energy blending functions (i.e., ξ(X) for the continuum model747

and θ(X) = 1−ξ(X) for the atomistic model): piecewise linear or piecewise cubic, the748

Lagrange multiplier (LM) basis functions ΛL(X): piecewise linear or piecewise constant,749

the uniformity and resolution of the LM grid, the resolution of the finite element grid, the750

penalty parameter p, and the rule for the interatomic interaction blending function θα,β:751

“average” or “midpoint”.752

Following the convergence studies of Section 5, we conclude as follows. Model II753

outperforms Model I, in most of the cases. For Model II, a uniform LM grid seems to be754

preferable, and, in addition, the piecewise cubic ξ(X) choice appears as a good option in755

the case of small values of p, e.g., p = 1; if, instead, we choose to use a piecewise linear756

ξ(X) choice, a value for the penalty parameter of p≈40 appears to be optimal. For Model757

II, there seems to be little difference between the two choices for the LM basis functions758

ΛL(X). On the other hand, for Model I, a nonuniform LM grid with a piecewise linear759

LM basis functions ΛL(X) seems to be a good choice, in the case of small values of p, e.g.,760

p=1. It is not completely clear, in Model I, which option for the energy blending function761

ξ(X) is best; in the case of a piecewise linear ξ(X) choice, there seems to exist an optimal762

value of p≈10 for the penalty parameter, and, in addition, the choice of the rule for the763

interatomic interaction blending function θα,β does not affect the results; in the case of a764

piecewise cubic ξ(X), the two options θα,β yield similar results.765

We also studied potential problems arising on the boundaries of the bridging region766

as well as a way to avoid them.767

We gave some insight about the usefulness of using AtC coupling methods for sim-768

ulations that try to capture singular phenomena. We showed a case of a singular load769

∗∗We assume B(X)= 1√
2πσ

exp
(
− (X−µ)2

2σ2

)
, and solve analytically the PDE −Kc

d2u
dX2 =B(X); the exact solution

of the PDE is used for comparison with the pure-atomistic, pure-continuum FE, and AtC blended models.
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modeled as a very narrow Gaussian, where the finite element method does not seem to770

be an appropriate numerical method for the solution; in particular, a knowledge of the771

singularity location at all times is required for a correct approximation of the continuum772

model. Moreover, we explained some difficulties arising in the description of the con-773

tinuum concepts, such as the body force, when attempting to implement a continuum774

model at the atomistic scale.775

Finally, we presented an approach to long-range interactions through a multiple-776

neighbor atomistic force model. We have derived a functional form for the discrete model777

force constant that provides consistency between the atomistic and continuum models.778

Several approaches were proposed to treat Dirichlet-type boundary conditions, in the779

case of a multiple-neighbor interaction; some of the approaches implemented a variation780

of the specific functional form derived for the discrete model force constant. In addition,781

we showed some displacement deviations appearing in the multiple-neighbor interac-782

tion case in the presence of singular loads.783

This work has focused in the study of the different aspects of the computational im-784

plementation of a one-dimensional AtC model. While a linear interaction model was785

considered here, the mathematical analysis of the various aspects and approaches intro-786

duced in this paper serve as a guidance for the implementation of more realistic systems.787
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