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BLENDING METHODS FOR COUPLING ATOMISTIC AND
CONTINUUM MODELS

P. Bochev, R. Lehoucq, M. Parks, S. Badia, and M. Gunzburger

6.1 Introduction

In this paper we review recent developments in blending methods for atomistic-
to-continuum (AtC) coupling in material statics problems. Such methods tie
together atomistic and continuum models by using a bridge domain that con-
nects the two models. There are several reasons why AtC coupling methods
(of which blending methods are a subset) are important and have been sub-
ject to an increased interest in the recent years. Despite tremendous increases
in computational power, fully atomistic simulations on an entire model domain
remain computationally infeasible for many applications of interest. As a result,
attention has focused on hybrid schemes where in all regions with well-behaved
solutions, the atomistic (microscopic) model is replaced by a (macroscopic) con-
tinuum model enabling a more efficient computational scheme (see [14, 29, 9]
for general information). The main challenge is the synthesis of the two dis-
tinct models in a manner that minimizes, or altogether eliminates, undesirable
artifacts such as ghost forces, unphysical solutions let alone supporting math-
ematical analysis. Notable AtC coupling methods include the quasicontinuum
method [39], the bridging scale decomposition [41], and [24] where atomistic and
continuum models are overlapped (see the latter two references, and those men-
tioned above for numerous citations to the literature). The numerical analysis of
AtC methods has lagged in comparison to the number of methods proposed; see
the recent papers [2, 3, 17, 31, 26, 27] for analyses of the quasicontinuum method.

Blending methods couple atomistic/continuum modes via a dedicated blend-
ing, or bridge, region inserted between the atomistic and continuum subdomains.
The atomistic and continuum models are tied together by using a suitable “con-
tinuity” condition (or balance law) for the atomistic and continuum positions
or displacements in this region. A complicating factor is that the atomistic and
(classical) continuum elastic models rely on nonlocal and local models of force
interaction, respectively. In the (classical) elastic context, the “local force” is
that exerted on a body by contact forces occurring on the surface (of the body).
In contrast, in the atomistic model, forces are summed from atoms separated by
a finite distance. The incompatibility arising from coupling local and nonlocal
force models is intrinsic. The goal of our paper is threefold. First, we review how
blending approaches attempt to ameliorate the various negative effects by relying
on an interface between the two models. Second, we discuss the beginnings of a
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numerical analysis by discussing consistency of the resulting numerical schemes.
Third, we suggest how the intrinsic limitation associated with coupling nonlocal
and local mechanical theories may be avoided by replacing the classical elastic
theory with a nonlocal elastic theory.

The use of a bridge domain in blending methods bears a resemblance to
conventional overlapping domain decomposition schemes (see [33, 40] for dis-
cussions and references to the literature). However, blending methods are more
complicated because they combine two mathematically distinct descriptions of
the material response, and their main goal is to reconcile these descriptions over
a transitional region. To fix the main ideas below we briefly summarize the basic
concepts of AtC blending methods.

6.1.1 An overview of AtC blending methods

Suppose that we want to find the deformed configuration at zero temperature
of a material that occupies a bounded region Ω in a two- or three-dimensional
Euclidean space. Assume that we have two different mathematical models of this
material: an atomistic and continuum described by atomistic and continuum
operators La Lc, respectively. Finally, assume that the problem configuration is
such that

• the atomistic model is valid throughout Ω
• solving the atomistic problem on all of Ω is prohibitively expensive
• the continuum model is valid in a subregion Ω′ ⊂ Ω
• the continuum operator Lc approximates well (in a suitable sense) the

atomistic operator in Ω′, but is not valid1 in Ωa = Ω \ Ω′.

The last two assumptions define the scope of hybrid methods: they are unnec-
essary if the continuum model remains valid throughout Ω, and they are not
appropriate unless atomistic and continuum models are “close” on some part of
the domain.

In particular, an AtC blending method partitions Ω′ into nonoverlapping
continuum region Ωc and a blending region Ωb so that Ω = Ωa ∪ Ωb ∪ Ωc; see
Figure 6.1. The basic idea is to avoid the computational expense associated with
solving the atomistic equations on all of Ω by using instead

• the continuum model in Ωc (where it is assumed valid)
• the atomistic model in Ωa (where the continuum model is assumed invalid)
• a blending of the two models over the bridge region Ωb.

The cost of an ensuing computational method is minimized when Ωa and Ωb are
small relative to Ωc.

A typical AtC blending method has four main ingredients:

• blending functions θa and θc that form a partition of unity on Ω
• an operator La

θ acting on Ωa ∪ Ωb, and such that La
θ |Ωa = La

1By this we mean that the physical phenomena in Ω′ cannot be modeled well by Lc.
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Figure 6.1: Typical domain configurations for AtC blending methods. The left
plot depicts the original problem domain Ω and its partition into an atomistic
domain Ωa, continuum domain Ωc, and a bridge domain Ωb. The right plots
depict the atomic lattice in Ωa ∪ Ωb and a finite element mesh in Ωb ∪ Ωc for the
continuum model.

• an operator Lc
θ acting on Ωb ∪ Ωc, and such that Lc

θ|Ωc = Lc

• an operator C acting on Ωb.

Operators La
θ and Lc

θ are blended versions of the original atomistic and continuum
operators La and Lc, defined using the blending functions. Their purpose is to
avoid “duplication” of the material response in the bridge region that results
from simply superimposing the two models in Ωb. C is a constraint operator
that enforces the “continuity” between atomistic and continuum solutions in the
bridge region.

AtC blending methods are a relatively recent development that is driven
by simulation needs in nanotechnology and material sciences. These simulation
needs have resulted in the creation of many ad hoc AtC blending methods that are
often loosely defined and focused on specific problems. This makes the numerical
analysis of blending methods difficult. Depending on the atomistic and contin-
uum models used in the AtC method La and Lc may correspond to a force
equilibrium or an energy minimization principle. In the first case these operators
are related to Newton’s second law and we talk about force-based AtC blending.
Examples of force-based blending methods derived from mechanical arguments
are given in [4, 5, 20]. In the second case AtC blending is energy-based. A represen-
tative example of an energy-based method, defined by blending of atomistic and
continuum energy functionals, can be found in [8]. One-dimensional results and
analysis for blending harmonic potentials and linear elasticity via the Arlequin
method [16] is the subject of [6, 34]. The overlapping AtC method presented
in [24] can also be considered a blending method, and demonstrates how ghost
forces can be eliminated by considering a patch test. We also remark that blend-
ing methods have been introduced within the context of meshfree methods [22]
where the atomistic region is replaced by a region discretized with a meshfree
method.
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Our paper reviews an abstract framework for force- or energy-based AtC
blending methods that includes precise notions of patch and consistency tests.
Our discussion on energy-based blending methods is new work. The framework
allows us to identify four general classes of AtC methods, explains the origin of
so-called ghost forces, and the satisfaction of Newton’s third law.

We have organized the paper as follows. The model atomistic and contin-
uum problems are introduced in Section 6.2. Section 6.3 discusses force-based
AtC blending methods and their taxonomy, and states formal definitions of
consistency and patch test. Energy-based AtC blending methods and their tax-
onomy are briefly discussed in Section 6.4. Our conclusions are summarized in
Section 6.6.

6.1.2 Notation

The following notation is used throughout the paper. Double fonts (A)
denote sets of atoms, except for R

d and R that stand for d-dimensional and
1-dimensional Euclidean spaces, respectively. Standard upper-case fonts (A) are
used for atomistic and continuum spaces, calligraphic fonts (L) for operators
and functionals, lower-case bold letters (a) for vector-valued continuum func-
tions, lower-case bold Greek letters (α) for vector-valued atomistic (discrete)
functions and Lagrange multipliers.

A superscript in the space designation indicates the support of the functions
in this space and a subscript shows the type of boundary constraint imposed on
its elements. For example, the elements of Xab are supported on Ωa ∪ Ωb, the
elements of X0 vanish on the boundary, and XD is an affine space whose elements
are subject to an inhomogeneous boundary condition. A lack of superscript, e.g.,
X, indicates that the elements of the space are supported on all of Ω. Likewise,
absence of a subscript means that the space is not constrained by boundary
conditions.

Dual spaces are denoted by (·)′. In general, discrete and continuous L2 inner
products, L2 norms, and duality pairings are denoted by (·, ·), ‖·‖, and 〈·, ·〉,
respectively. Additional notation will be introduced as needed.

6.2 Atomistic and continuum models

This section provides a brief summary of the basic atomistic and continuum
material statics models that will be used in the paper. Because our main focus
is on mathematical aspects of AtC blending, rater than material modeling, we
intentionally choose the simplest possible material models.

6.2.1 Force-based models

Force-based atomistic and continuum models are derived by equilibrating inter-
nal and applied forces at each atom or material point. Material properties in this
case are encoded in terms of internal force operators. For continuum materials
internal forces are usually described by partial differential operators, although
other (non-local, integral) choices are also possible, as discussed in Section 6.5.
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6.2.1.1 The atomistic model
Let P denote an undeformed (or reference) lattice of |P| identical particles located
in a bounded, Euclidean region Ω ⊂ R

d. The spatial position vectors of the
particle α ∈ P in the undeformed and deformed configurations are xα and qα,
and ψα = qα − xα is the displacement vector of α. The set of all possible
atomistic displacements is a finite dimensional space X whose elements φ ∈ X
are sets of properly ordered |P| × d scalar values φi

α for α ∈ P and i = 1, . . . , d.
Let D ⊂ P denote the subset of particles whose positions in the deformed

configuration are fixed. We define the affine space

XD := {φ ∈ X | φα = ψD

α ∀α ∈ D},

where ψD

α is the given, fixed displacement vector, and the subspace

X0 := {φ ∈ X | φα = 0 ∀α ∈ D}

of X in which all particles from D have zero displacements. These spaces are
atomistic counterparts of Sobolev spaces constrained by inhomogeneous and
homogeneous Dirichlet boundary conditions for a continuum problem.

The strong form of the lattice statics problem consists of finding an equi-
librium (deformed) configuration {ψα}α∈P\D which satisfies the force-balance
problem (La(ψ)

)
α

+ χα = 0 ∀α ∈ P \ D (6.1a)

ψα = ψD

α ∀α ∈ D (6.1b)

In (6.1a) (La(·))α and χα are the internal and external forces acting on the
particle α, respectively. Therefore, the atomistic problem (6.1) is simply Newton’s
second law for a system of particles interacting via the force operator La and
the applied forces χ, and constrained to satisfy the “boundary condition” (6.1b).
Note that La : X → X is generally a non-linear operator.

A weak formulation of (6.1) is as follows: find ψ ∈ XD such that

Ba(ψ,φ) = Ga(φ) ∀φ ∈ X0, (6.2)

where

Ba(ψ,φ) = (La (ψ),φ) and Ga(φ) = − (χ,φ) for ψ ∈ X,φ ∈ X0. (6.3)

Equation (6.2) is the principle of virtual work. While it is similar in form to
variational equations arising from continuum models, it is important to keep in
mind that force balance equations (6.1a) are inherently non-local in nature, i.e.,
in general, the force acting on a particle α ∈ P \ D depends on the displacements
of many other particles separated by a finite distance.
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6.2.1.2 The continuum model
Let x, q, and u = q − x be the spatial position vectors in the undeformed
and deformed continuum configurations, and the continuum displacement vector,
respectively. The strong form of the continuum model is

Lc(u) = f in Ω, (6.4a)

u = u∂Ω on ∂Ω, (6.4b)

where Lc denotes a (possibly nonlinear) differential operator, f the external
force, ∂Ω the boundary of Ω, and u∂Ω the prescribed boundary data.2 In what
follows we assume that (6.4) is a local model in the sense that the stress at a
point x ∈ Ω depends only on the values of u and ∇u at that point. We also
assume that there exist differential operators Lc

S(·) and Lc
E(·) such that

〈Lc(u),v〉 =
∫

Ω
Lc

S(u) : Lc
E(v)dx

for all smooth functions u and v with v = 0 on ∂Ω; (·) : (·) denotes the scalar
tensor product operation. To state the weak form of (6.4) let Y denote a Hilbert
space, defined with respect to Ω, and such that for any v ∈ Y , Lc

S(v) and Lc
E(v)

are meaningful in L2 sense. We define the affine subspace and subspace

YD :=
{
v ∈ Y | v = u∂Ω on ∂Ω

}
and Y0 := {v ∈ Y | v = 0 on ∂Ω} ,

respectively, and the functionals

Bc(u,v) :=
∫

Ω
Lc

S(u) : Lc
E(v)dx and Gc(v) = 〈f ,v〉 for u ∈ Y , v ∈ Y0.

(6.5)

Then, a weak formulation of (6.4) is: given f ∈ (Y0)′, find u ∈ YD such that

Bc(u,v) = Gc(v) ∀v ∈ Y0. (6.6)

Note that, as a rule, the operator Lc
E(·) is linear but, in general, Lc

S(·) is
nonlinear.

6.2.2 Energy-based models

Energy-based models in material statics postulate that the equilibrium
(deformed) configuration of an atomistic or a continuum system minimizes the
potential energy of the system. For these models material properties are encoded
in terms of potential energy functionals.

2For simplicity, we consider only Dirichlet boundary conditions.
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6.2.2.1 The atomistic model
We retain the notation from the force-based atomistic model. In particular, P is
an undeformed lattice of identical particles in Ω and ψα is the displacement of
the particle α. The (atomistic) potential energy of the particle system is given
by the expression

Ea(ψ) =
∑
α∈P

(
W a

α(ψ) + χα ·ψα

)
, (6.7)

where W a
α(·) and χα denote the potential energy associated with the particle α,

and the external force applied to that particle. Note that W a
α may depend on

the displacements of all the particles ψβ , β ∈ P, although in many cases it will
depend only on the displacement of the particles within some ball Bα = {x ∈
Ω : |x − xα| ≤ r} for some given r > 0. As an example, we could set W a

α to the
Leonard-Jones potential.

The equilibrium deformed atomistic configuration ψ is characterized by

ψ = arg min
φ∈XD

Ea(φ) (6.8)

As a result, u is subject to the first-order necessary optimality condition

δψEa(ψ) ≡ lim
ε→0

d

dε
Ea(ψ + εφ) = 0 ∀φ ∈ X0 . (6.9)

This problem can be further replaced by a weak variational formulation that has
the same form as (6.2).

6.2.2.2 The continuum model
Suppose that Ω is occupied by a continuum material with a prescribed boundary
displacement u∂Ω, and whose potential energy at a point x in the deformed
configuration is given by W c(u). Then, the total potential energy associated
with this material is

Ec(u) =
∫

Ω

(
W c(u) + f · u

)
dΩ , (6.10)

where f is the external volumetric force applied at each point in Ω. The equi-
librium deformed configuration is characterized by an energy principle similar
to (6.8),

u = arg min
v∈XD

Ec(v) , (6.11)

and is subject to an analogous first-order optimality condition:

δuEc(u) ≡ lim
ε→0

d

dε
Ec(u+ εv) = 0 ∀v ∈ Y0 . (6.12)
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This problem also can be replaced by a weak variational equation that assumes
the same form as (6.6). As an example, we could set W c(u) = σ(u) : ε(u) where
σ and ε denote the work conjugate stress and strain tensors, respectively. Then,
minimizers of (6.11) solve the weak equation: seek u ∈ YD such that∫

Ω
σ(u) : ε(v)dΩ =

∫
Ω

f · vdΩ ∀v ∈ Y0 . (6.13)

With Lc
S(·) = σ(·) and Lc

E(·) = ε(·), the abstract weak problem (6.6) reduces
to (6.13).

6.3 Force-based blending

This section reviews an AtC blending method to merge force-based atomistic
and continuum material models. The blending process is effected by using the
weak forms (6.2) and (6.6) of the models. General definitions of consistency and
patch tests for AtC methods are also reviewed.

6.3.1 An abstract AtC blending method

Let A, B, and C denote the particles associated with Ωa, Ωb, and Ωc, respectively;
particles on the interfaces between Ωb and the other two subdomains are assigned
to B. We introduce the atomistic spaces

Xab
0 := {(φα)|α∈A∪B | φ ∈ X0} and Xb

D := {(φα)|α∈B | φα ∈ XD},

the continuum subspace

Y bc
0 := {v|Ωb∪Ωc

| v ∈ Y0}
and the continuum affine subspaces

Y bc
D := {v|Ωb∪Ωc | v ∈ YD} and Y b

D := {v|Ωb
| v ∈ YD}.

A force-based AtC blending method has the following key ingredients:

1. atomistic and continuum blending functions θa and θc, respectively, such
that θa ≥ 0, θc ≥ 0, θa = 1 in Ωa, θc = 1 in Ωc and θa + θc = 1 in Ω;

2. a constraint operator C(·, ·) : Xb
D × Y b

D → Q, where Q is a function space
whose definition depends on the particular nature of the constraints.

3. blended atomistic functionals Ba
θ (·, ·; θa) : XD × Xab

0 → R and Ga
θ (·; θa) :

Xab
0 → R such that

Ba
θ (ψ,φ; 1) = Ba(ψ,φ) and Ga

θ (φ; 1) = Ga(φ) for all {ψ,φ} ∈ XD × Xab
0 ;

4. blended continuous functionals Bc
θ(·, ·; θc) : Y bc

D × Y bc
0 → R and Gc

θ(·; θc) :
Y bc

0 → R such that

Bc
θ(u,v; 1) = Bc(u,v) and Gc

θ(v; 1) = Gc(v) for all {u,v} ∈ Y bc
D × Y bc

0 ;
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Using these definitions, an abstract, force-based AtC blending method can be
expressed in the following form: find {ψ,u} ∈ XD × Y bc

D such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ba

θ (ψ,φ; θa) + Bc
θ(u,v; θc) = Ga

θ (φ; θa) + Gc
θ(v; θc) ∀{φ,v} ∈ Xab

0 × Y bc
0

subject to

ψα = u(xα) ∀α ∈ C\(C ∩ D) and C(ψ,u) = 0 ∀{ψ,u} ∈ Xb
D × Y b

D

(6.14)

The first equation in (6.14) is a weak blended force-balance equation. The second
equation is a constraint which states that atomistic displacements in Ωc are
slaved to the continuum displacements, and the last equation is a constraint that
ties the two models together over the blend region. A particular AtC blending
method results from choosing the four key ingredients above, i.e., the blending
functions and definitions of the functionals Ba

θ , Bc
θ, Gc

θ , Ga
θ , and C.

Note that in (6.14) the atomistic test functions from Xab
0 are supported only

on A∪B and the continuum test functions from Y bc
0 are supported only on Ωb∪Ωc.

As a result, away from the bridge region the equations in the AtC blending
method default to their atomistic and continuum definitions, respectively.

Due to the non-local nature of the atomistic model, the particles included in
the force balance equations in Ωa ∪ Ωb will interact with at least some of the
particles in Ωc. This fact is reflected in the choice of XD as a trial space for the
atomistic part of the solution in the AtC blending method. Of course, in (6.14) we
never solve for the displacements of the particles in Ωc, instead, whenever their
displacements are needed we approximate them by the continuum displacement
at the location of the particle according to the first constraint in (6.14). This
requires us to assume that certain types of materials and behaviors, such as
multilattice materials or phase transitions, are not present in Ωc.

Remark 6.1 Restricting the atomistic trial space in (6.14) to particles in Ωa∪Ωb

only, will result in neglecting the forces acting on the particles in Ωa ∪ Ωb due
to the particles in Ωc. This gives rise to what is known as the ghost force effect
[25, 28]. The AtC blending method (6.14) mitigates the ghost force effect in two
ways. First, owing to the choice of the atomistic trial space, interactions between
the particles in Ωa ∪Ωb and Ωc are included in the problem. Second, because the
atomistic blending function θa has small values near Ωc, the errors caused by the
use of approximate slaved atomistic displacements will be greatly reduced.

An equally important, but much less discussed issue, is the inconsistency
that occurs in the continuum model at the interface between Ωa and Ωb. Simply
restricting the weak continuum equation (6.6) to Ωb ∪ Ωc forces the unphysical
natural boundary condition Lc

S(u) · n = 0 along that interface. In the blended
method (6.14) the adverse effects from this artificial boundary condition are
greatly reduced or altogether removed thanks to the fact that θc = 0 on the
interface between Ωa and Ωb.
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6.3.2 Blending functions

With this section we begin to examine the four key ingredients of (6.14). The
atomistic and continuum blending functions θa and θc are the first ingredient of a
blending method. Their main purpose is to ensure that atomistic and continuum
forces are blended rather than superimposed in the bridge region. In addition,
judicious choice of θa can help reduce the ghost forces and errors due to slaving
of the atomistic displacements in (6.14); see Remark 6.1. Likewise, with a suit-
able choice of θc one can avoid the imposition of an artificial natural boundary
condition on the interface between Ωa and Ωb.

It is clear that in practice, to define θa and θc, it suffices to pick a single
blending function θ such that 0 ≤ θ ≤ 1 in Ω, θ = 1 in Ωa, and θ = 0 on Ωc.
Then, one can set θa = θ and θc = 1 − θ. A key requirement is that θ is small
near the interface between Ωb and Ωc (so that θa is small there) and that it be
close to one near the interface between Ωa and Ωb (so that θc is small there.)
Methods for constructing the blending function θ are discussed in [4].

To achieve these desirable properties the blending functions have to be at
least of class C0. The continuum blending function θc will also be required to
satisfy the following property.

6.3.3 Assumption

For every v ∈ Y , we have that θcv ∈ Y .

6.3.4 Enforcing the constraints

Recall that the blended weak problem (6.14) is subject to two constraints. The
first one is simply a slaving condition which postulates that atomic displacements
in the continuum region are slaved to the continuum displacements. It can be
trivially imposed by simply substituting the appropriate atomistic displacements
in the weak equations by the associated continuum values. Thus, in what follows
we shall assume that this constraint had already been enforced in the blended
problem.

The second constraint is non-trivial in the sense that in the bridge region
the atomistic and continuum models coexist and their displacements must be
reconciled in a physically meaningful sense. As a result, the operator C in (6.14)
can have a rather general form which may make direct imposition of this con-
straint more difficult. We shall discuss some specific examples of this operator
after examining two possible strategies for its enforcement.

The first strategy is to use Lagrange multipliers, which leads to the mixed
problem [11]: find {ψ,u} ∈ XD × Y bc

D , and λ ∈ Q′ such that

⎧⎪⎪⎨⎪⎪⎩
Ba

θ (ψ,φ; θa) + Bc
θ(u,v; θc)+

〈(
δψC(ψ,u)

)
φ,λ

〉
+

〈(
δuC(ψ,u)

)
v,λ

〉
= Ga

θ (φ; θa) + Gc
θ(v; θc) ∀{φ,v} ∈ Xab

0 × Y bc
0

〈C(ψ,u),µ〉 = 0 ∀µ ∈ Q′

(6.15)
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where δψC(·, ·) and δuC(·, ·) are the Gâteaux derivatives of C(·, ·) with respect
to ψ and u, respectively and Q′ is a suitable Lagrange multiplier space. Since
φ ∈ Xab

0 and v ∈ Y bc
0 are independent of each other, (6.15) assumes the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ba
θ (ψ,φ; θa) +

〈(
δψC(ψ,u)

)
φ,λ

〉
= Ga

θ (φ; θa) ∀φ ∈ Xab
0

Bc
θ(u,v; θc) +

〈(
δuC(ψ,u)

)
v,λ

〉
= Gc

θ(v; θc) ∀v ∈ Y bc
0

〈C(ψ,u),µ〉 = 0 ∀µ ∈ Q′.

(6.16)

The coupling of the atomistic and continuum models in (6.16) is effected
solely through the Lagrange multiplier terms in the first two equations and the
constraint equation.

The second approach is to impose the constraint operator directly on the
approximating spaces. Let

Zb
D =

{
ψ ∈ Xb

D,u ∈ Y b
D | C(ψ,u) = 0

}
Zb

0 =
{
ψ ∈ Xb

0,u ∈ Y b
0 | C(ψ,u) = 0

} (6.17)

where Xb
0 and Y b

0 have the obvious definitions. Then, (6.14) assumes the following
form: find {ψ,u} ∈ (Xa

D × Y c
D) ⊕ (Xb

D × Y b
D) ∩ Zb

D such that{Ba
θ (ψ,φ; θa) + Bc

θ(u,v; θc)

= Ga
θ (φ; θa) + Gc

θ(v; θc) ∀ {φ,v}∈(Xa
0 × Y c

0 )⊕(Xb
0 × Y b

0 )∩Zb
0 .

(6.18)

The coupling between the atomistic and continuum models is now accomplished
implicitly, owing to the fact that the test functions φ and v are forced to satisfy
the constraint. Among other things this implies that the split of (6.15) into (6.16)
no longer possible.

Remark 6.2 The two approaches to enforce the constraints are mathematically
equivalent in the sense that the solutions obtained using either one are identi-
cal. When a basis for Z0 can be easily constructed, the advantage of (6.18) is
that discretization of this problem has much fewer degrees of freedom than dis-
cretization of (6.16). This method is also more convenient from an analysis point
of view because it does not require an inf-sup stability condition. �

6.3.4.1 Blending constraint operators
Because the purpose of C is to tie together the atomistic and continuum parts
of the solution in the bridge region, definition of this operator is very important
for the quality of the AtC blending method. In particular, simply slaving the
displacements to each other, which was appropriate in Ωc, may not be enough
to obtain good coupling of the atomistic and continuum models. As a result, C
can have a rather general form. In this section we focus primarily on constraint



JFISH: “CHAP06” — 2009/6/4 — 17:33 — PAGE 176 — #12

176 Blending methods for coupling atomistic and continuum models

operators of the form

Ca(ψ) − Cc(u) = 0 for {ψ,u} ∈ Xb
D × Y b

D,

where Ca(·) : Xb
D → Q and Cc(·) : Y b

D → Q are linear operators. Two useful
classes of constraint operators result from setting Ca or Cc to identity. In the first
case, the constraint assumes the form

ψ = ΠB(u), (6.19)

where ΠB : Y b
D �→ Xb

D is an expansion operator and Q = Xb
D. This operator

slaves particle displacements to the continuous displacement field. As a result,
atomistic degrees of freedom can be eliminated from Ωb. The simplest example3

ψα = u(xα) ∀α ∈ B \ (B ∩ D) (6.20)

embodies the physical assumption that continuous and atomistic deformation
fields agree. This is precisely the case for a Cauchy-Born deformation [18, 10].

Setting Cc to identity gives a complementary class of constraint operators

u = πb(ψ), (6.21)

where πb : Xb
D �→ Y b

D is a compression operator and Q = Y b
D. In this case the

continuous displacement field is slaved to particle displacements. This enables
elimination of continuum degrees of freedom from Ωb in a discretized AtC model.

Remark 6.3 It is important to note that using (6.20) to eliminate atomistic
degrees of freedom from Ωb does not delete any of the atomistic force balance
equations in Ωb from the AtC blending method (6.14), as is done in the quasi-
continuum method [39]. Instead, using (6.20) means that φ is constrained to
satisfy φα = v(xα) for all α ∈ B \ (B ∩ D), where v is the continuum test
function. �

More complex types of constraints, where Ca and/or Cc are not necessarily
the identity operators can also be defined. We mention two examples which
use subdivision {Ωb,j}J

j=1 of Ωb into J nonoverlaping, covering subdomains, i.e.,
Ωb,j ∩ Ωb,k = ∅ whenever j �= k and ∪J

j=1Ωb,j = Ωb. This subdivision induces
a partition of {Bj}J

j=1 of B, where α ∈ Bj whenever xα ∈ Ωb,j . Let |Ωb,j | and
|Bj | denote the volume of Ωb,j and the number of particles located in Ωb,j ,
respectively. Then,

1
|Ωb,j |

∫
Ωb,j

u dx =
1

|Bj |
∑

α∈Bj

ψα for j = 1, . . . , J .

3A non-linear version of (6.20); see [8], is |ψα −u(xα)| = 0 ∀ α ∈ B \ (B ∩ D), where | · | is
the Euclidean norm in Rd. The advantage of this operator is that it requires fewer Lagrange
multipliers (one instead of d per particle) than (6.20). On the other hand, (6.20) is much easier
to implement.
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defines a set of constraints that is less stringent than (6.20). The integral can be
approximated by a simple average to obtain another version of this operator:∑

α∈Bj

u(xα) =
∑

α∈Bj

ψα for j = 1, . . . , J . (6.22)

In either case, we have that Q = R
Jd.

Constraints such as (6.22) involve linear combinations of displacements and
are difficult to enforce on the trial spaces. In this case, the Lagrange multi-
plier approach is more useful. For the constraint equations (6.22), one defines
the Lagrange multipliers to be piecewise constant functions with respect to the
subdivision {Ωb,j}J

j=1 of Ωb.

6.3.5 Consistency and patch tests
We conclude with formal definitions of consistency and patch tests introduced
in [5].

6.3.6 Definition [Consistency test problem]
The set {χ,ψD;f ,u∂Ω} is called a consistency test problem if the solutions
ψ̃ and ũ of the global problems (6.2) and (6.6), respectively,4 are such that
C(ψ̃, ũ) = 0 holds on Ω.

6.3.7 Definition [Patch test problem]
A consistency test problem is called patch test problem if the continuous com-
ponent ũ of (ψ̃, ũ) is such that Lc

S(ũ) is constant, i.e., ũ is a constant stress
solution.

The following definitions formalize the notion of passing a patch test and a
definition of consistency for an AtC coupling method.

6.3.8 Definition [Passing a patch test problem]

Assume that {χ,ψD;f ,u∂Ω} is a patch test problem with solution (ψ̃, ũ). An
AtC coupling method passes a patch test if (ψ̃, ũ) satisfies the AtC coupled
problem (6.16) or (6.18).

6.3.9 Definition [AtC consistency]
An AtC coupling method is consistent if, for any consistency test problem, the
pair (ψ̃, ũ) satisfies the coupled AtC system.

Atomistic problems with Cauchy-Born solutions (see [18, 10]) are a physical
example of consistency test problems. From the previous definitions, one can
easily infer that consistency implies passage of the patch test problem. However,
the converse statement is not true.

6.3.10 Blended atomistic and continuum functionals
Assuming that blending functions, constraint operators and a method for their
enforcement have already been chosen, all that remains to be done to obtain an

4Recall that {χ,ψD;f ,u∂Ω} provides the data for these two problems.
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AtC method is to define the blended functionals Bc
θ, Ba

θ , Gc
θ , and Ga

θ appearing
in (6.14).

There are two possible ways to obtain these functionals from the original
atomistic and continuum functionals (6.3) and (6.5). The first one is to use
Ba(ψ,φ) and/or Bc(u,v) directly without changing their definitions. We call
this approach external blending because it preserves the internal definitions of
force balance from (6.3) and (6.5). The second possibility is to define Bc

θ and
Ba

θ by modifying Ba(ψ,φ) and Bc(u,v) over Ωb. We call this approach internal
blending because it modifies the internal definition of the force balance in (6.3)
and (6.5).

For the atomistic blended functional these choices are

Ba
θ (ψ,φ; θa) =

⎧⎪⎨⎪⎩
Ba(ψ,Θaφ) = (La (ψ),Θaφ) ⇐= external

or(La
θ(ψ; θa),φ

) ⇐= internal
(6.23)

for all ψ ∈ XD and φ ∈ Xab
0 , where Θa is a diagonal weighting matrix whose

diagonal values are equal to θa evaluated at the corresponding particle positions:

(Θa)
ij
αβ = δijδαβθa(xα), for i, j = 1, . . . , d, α, β ∈ P.

For examples of how La
θ(ψ; θa) may be defined we refer to [4].

For the continuum blended functional the choices are

Bc
θ(u,v; θc) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Bc(u, θcv) =

∫
Ωb∪Ωc

Lc
S(u) : Lc

E(θcv)dx ⇐= external

or∫
Ωb∪Ωc

θcLc
S(u) : Lc

E(v)dx ⇐= internal

(6.24)

for all u ∈ Y bc
D and v ∈ Y bc

0 .

Remark 6.4 The difference between internal and external blending can be fur-
ther appreciated by examining the strong forms of the differential operators in
(6.24). Suppose that Lc = −∆ is the Laplace operator. The blended versions of
Lc are

Bc
θ(u, v; θc) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ωb∪Ωc

∇(u) · ∇(θcv)dx ⇐= external

or∫
Ωb∪Ωc

θc∇(u) · ∇(v)dx ⇐= internal

(6.25)

The strong forms of the externally and internally blended operators are

Lc
E = −θc∆ and Lc

I = −∇ · θc∇ ,

respectively. We see that external blending only scales Lc without changing its
definition. In contrast, internal blending modifies Lc in the blend region which
effectively changes the response of the continuum material there.
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For either one of the choices in (6.23) and (6.24), the blended linear data
functionals appearing in (6.14) are defined5 as

Ga
θ (φ; θa) = Ga(Θaφ) = − (χ,Θaφ) = − (Θaχ,φ) ∀φ ∈ Xab

0 (6.26)

and

Gc
θ(v; θc) = Gc(θcv) = 〈f , θcv〉 = 〈θcf ,v〉 =

∫
Ωb∪Ωc

θcf · vdx ∀v ∈ Y bc
0 , (6.27)

respectively.

6.3.11 Taxonomy of AtC blending methods

Because external and internal blendings can be applied independently to the
continuum and atomistic problems there are four possible ways to define the
blended AtC functional Ba(ψ,φ; θa)+Bc

θ(u,v; θc). These choices are summarized
in Table 6.1.

Below we review each one of the four types ot AtC blending methods and
comment on their properties.

6.3.11.1 Methods of type I
For external atomistic and internal continuum blending the abstract AtC method
(6.14) assumes the form: find {ψ,u} ∈ XD × Y bc

D such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(La(ψ),Θaφ
)

+
∫

Ωb∪Ωc

θcLc
S(u) : Lc

E(v)dx

= − (χ,Θaφ) +
∫

Ωb∪Ωc

θcf · vdx ∀ {φ,v} ∈ Xab
0 × Y bc

0

C(ψ,u) = 0 ∀{ψ,u} ∈ Xb
D×Y b

D

(6.28)

For this method, we have the following result [5].

Table 6.1. Force-based AtC blending methods classified by blending types

Type of the blending

Type of the method Atomistic model Continuum model

I external internal
II internal internal
III external external
IV internal external

5We can restrict the integrals in (6.24) and (6.27) to Ωb ∪ Ωc because, by the definition of
the test space Y bc

0 , the continuum test function v is supported only within that subregion.
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6.3.12 Theorem

Methods of Type I are inconsistent and do not pass the patch test.
This conclusion also extends to discretizations of Type I methods where the

continuum part is approximated by, e.g., finite elements.

6.3.12.1 Methods of type II
For internal atomistic and continuum blending the abstract AtC method (6.14)
assumes the form: find {ψ,u} ∈ XD × Y bc

D such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(La
θ(ψ; θa),φ

)
+

∫
Ωb∪Ωc

θcLc
S(u) : Lc

E(v)dx

= − (χ,Θaφ) +
∫

Ωb∪Ωc

θcf · vdx ∀ {φ,v} ∈ Xab
0 × Y bc

0

C(ψ,u) = 0 ∀{ψ,u} ∈ Xb
D × Y b

D

(6.29)

Consistency of Type II methods depends on the definition of La
θ(·; θa). The

following theorem [5] gives an abstract consistency condition for this operator.

6.3.13 Theorem

Under Assumption 6.3.3, a sufficient condition for Type II methods to be
consistent is that for any consistency test problem solution {ψ̃, ũ} the identity(La

θ(ψ̃; θa),φ
) − (La(ψ̃),Θaφ

)
= −

∫
Ωb∪Ωc

(
θcLc

S(ũ) : Lc
E(v) − Lc

S(ũ) : Lc
E(θcv)

)
dx

(6.30)

holds for all {φ,v} ∈ Xab
0 × Y bc

0 . Type II methods pass the patch test if (6.30) is
satisfied for patch test solutions.

Remark 6.5 It is not hard to see that the reason Type I methods fail to be con-
sistent is that for any solution of a consistency test problem the atomistic terms
in (6.28) vanish but the continuum terms do not. By using internal atomistic and
continuum blending, Type II methods make it possible to “cancel” consistency
errors by using a suitably defined La

θ . Indeed, the right hand side in (6.30) and
the term

(La(ψ̃),Θaφ
)

on the left hand side are completely defined once θc and
θa have been selected. Then, one can choose La

θ so that (6.30) holds.

In [4], a specific choice for La
θ(·; θa) is defined that satisfies (6.30) for a partic-

ular set of one-dimensional patch test problems. The choice can be mechanically
justified as a blended force balance.

It is worth pointing out that among the four methods discusssed here, Type II
methods are the only one that can preserve the symmetry of the underlying atom-
istic and continuum problems. This has a positive effect on their stability and
leads to symmetric linear systems that are easier to solve than the nonsymmetric
linear systems generated by the other three methods.
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6.3.13.1 Methods of type III
For external atomistic and continuum blending the abstract AtC method (6.14)
assumes the form: find {ψ,u} ∈ XD × Y bc

D such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(La(ψ),Θaφ
)

+
∫

Ωb∪Ωc

Lc
S(u) : Lc

E(θcv)dx

= − (χ,Θaφ) +
∫

Ωb∪Ωc

θcf · vdx ∀ {φ,v} ∈ Xab
0 × Y bc

0

C(ψ,u) = 0 ∀{ψ,u} ∈ Xb
D × Y b

D

(6.31)

Type III methods can be interpreted as residual blending methods because they
merge the continuum residual Lcu − f with the atomistic residual La(ψ) − χ.
This fact endows Type III methods with an attractive feature that is not shared
by the other three AtC blending methods: for a consistency problem solution,
the atomistic and continuum terms in (6.29) separately cancel out and so, this
method is intrinsically consistent. This observation is formalized in the following
theorem [5].

6.3.14 Theorem

Under Assumption 6.3.3, Type III methods are consistent and pass the patch test.

6.3.14.1 Methods of type IV
For internal atomistic and external continuum blending the abstract AtC method
(6.14) assumes the form: find {ψ,u} ∈ XD × Y bc

D such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(La
θ(ψ; θa),φ

)
+

∫
Ωb∪Ωc

θcLc
S(u) : Lc

E(v)dx

= − (χ,Θaφ) +
∫

Ωb∪Ωc

θcf · vdx ∀ {φ,v} ∈ Xab
0 × Y bc

0

C(ψ,u) = 0 ∀{ψ,u} ∈ Xb
D × Y b

D

(6.32)

The types of the atomistic and the continuum blending in Type IV methods
are reversed with respect to Type I methods. As a result, these methods can be
thought of as “dual” to Type I. The duality of the two classes is further under-
scored by the fact that in Type IV methods the continuous terms cancel for any
consistency problem solution but the atomistic terms do not; exactly the opposite
was true for Type I methods. Clearly, Type IV methods are also inconsistent.

6.3.15 Summary and comparison of force-based AtC blending methods

Consistency properties of the four types of AtC blending methods are compared
and contrasted in Table 6.2.

AtC blending methods of Types I and II have appeared previously. For exam-
ple, according to our classification scheme, the AtC blending method described
in [8] is of Type I; see equations (10) and (11) of that paper. An example of a
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Table 6.2. Atomistic and continuous contributions in AtC methods at a consis-
tency problem solution {ψ̃, ũ}

Type of the method Ba
θ (ψ̃,φ) − Ga

θ (φ) Bc
θ(ũ,v) − Gc

θ(v) Consistent?

I = 0 �= 0 No
II �= 0 �= 0 Depends on La

θa

III = 0 = 0 Yes
IV �= 0 = 0 No

Type II method can be found in [4, 20]. We also remark that Methods of types
I, III, and IV do not satisfy Newton’s third law over the blend region, and so
these methods do not lead to a symmetric formulation.

We also contrast AtC blending with the quasicontinuum method [39]. In
a local quasicontinuum method, the Cauchy-Born hypothesis [10] is used to
eliminate degrees of freedom in a particle model, lessening the computational
complexity. The local quasicontinuum approximation has no direct relation to
blending. In certain circumstances, the local/nonlocal interface arising in the
quasicontinuum method can be viewed as the blending approach of Type II
methods with a d − 1 dimensional interface; see [14]. Furthermore, the forces
in the quasicontinuum method are derived from a global energy functional and
obey Newton’s third law (or equivalently, the conservation of linear momentum).

6.4 Energy-based blending

Obviously we can always tie together energy based atomistic and continuum
models by blending weak forms of their associated first-order optimality systems.
This optimize and then blend approach reduces formulation of AtC methods
for energy-based models to the force-based setting from the last section. In this
section we shall consider a bona fide energy-based blending that can be described
as blend and then optimize approach.

6.4.1 An abstract AtC blending method

In the blend and then optimize approach the first two key blending ingredients,
i.e., the blending functions and the constraint operator C, are shared with the
force-based approach but the last two are different and are derived from the
atomistic (6.7) and continuum (6.10) potential energy functionals. Specifically,
instead of Ba

θ (·, ·; θa) and Bc
θ(·, ·; θc) we now consider:

• a blended atomistic potential energy functional

Ea
θ (ψ; θa) =

∑
α∈A∪B

(
W a

α;θa
(ψ) + χα;θa

·ψα

)
such that Ea

θ (ψ; 1) = Ea(ψ) ;
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• a blended continuum potential energy functional

Ec
θ(u; θc) =

∫
Ωb∪Ωc

(
Wθc(u) + fθc · u

)
dΩ such that Ec

θ(u; 1) = Ec(u) .

Using these definitions, an abstract, energy-based AtC blending method can
be stated as the following constrained optimization problem (compare with
(6.14)):⎧⎪⎪⎪⎨⎪⎪⎪⎩

minimize Eθ(ψ,u; θa, θc) = Ea
θ (ψ; θa) + Ec

θ(u; θc)

subject to

ψα = u(xα) ∀α∈C\(C ∩ D) and C(ψ,u) = 0 ∀{ψ,u}∈Xb
D×Y b

D

(6.33)

The blended atomistic-continuum potential energy Eθ(ψ,u; θa, θc) describes a
hybrid model that is neither continuous nor atomistic. However, owing to the
definition of blended atomistic and continuum energies, Eθ has the following
additive property:

Eθ(u,ψ; θa, θc)

=
∑
α∈A

(
W a

α(ψ) + χα ·ψα

)
→ atomistic energy in atomistic region

+
∫

Ωc

(
W c(u) + f · u

)
dΩ → continuum energy in continuum region

+
∑
α∈B

(
W c

α;θa
(ψ) + χα;θa

·ψα

)
→ atomistic energy in bridge region

+
∫

Ωb

(
W c

θc
(u) + fθc

· u
)
dΩ → continuum energy in bridge region

The first and the second terms are simply the atomistic and continuum potential
energies for the atomistic and continuum subdomains, respectively. The third and
fourth terms together represent the blended energy in the bridge region. Different
definitions of W c

θc
, W a

α;θa
, etc., will result in different blending methods.

6.4.2 Enforcing the constraints

Similarly to the weak force-based weak problem (6.14) the blended optimization
problem (6.33) is subject to two constraints. The first one is the usual slaving
condition which ties atomistic displacements in Ωc to the continuum displace-
ments. As in the force-based case, this constraint can be trivially imposed by
simply substituting the appropriate atomistic displacements in the energy func-
tional by the associated continuum values. Thus, in what follows we shall assume
that this constraint had already been enforced in (6.33).
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The second, blending, constraint in (6.33) serves the same purpose as in
the force-based blending: its role is to tie together the atomistic and continuum
solutions over the bridge region. Examples of such operators were given in Sec-
tion 6.3.4.1; the same blending constraints can also be applied in energy-based
methods. To enforce these constraints we again have a choice of two different
strategies.

The first one uses Lagrange multipliers to replace the constrained optimiza-
tion problem (6.33) by the unconstrained problem of finding the saddle-point
{{ψ,u},λ} ∈ {XD × Y bc

D } × Q′ of the Lagrangian functional

L(u,ψ, �λ; θa, θc) = Eθ(u,ψ; θa, θc) + 〈C(u,ψ),λ〉 .

According to the Lagrange multiplier rule, we can now take independent
variations in each of ψ, u, and λ to obtain the optimality system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δψEθ(u,ψ; θa, θc) +
〈
δψC(ψ,u),λ

〉
= 0

δuEθ(u,ψ; θa, θc) +
〈
δuC(ψ,u),λ

〉
= 0

C(u,ψ) = 0

(6.34)

Note that since Eθ(u,ψ; θa, θc) is a sum of functionals of u only and of ψ only,
that δuEθ depends only on u and δψEθ depends only on ψ. Thus, coupling is
effected solely by the Lagrange multiplier terms which mirrors the force-based
setting. In particular, the structure of (6.34) closely resembles that of (6.16).

The second strategy to enforce the constraints, used in force-based blending
methods, is also applicable to energy-based methods. We remind that in this
approach the constraints are imposed on the solution spaces, which transforms
(6.33) into the following unconstrained minimization problem: find6 {ψ,u} ∈
(Xa

D × Y c
D) ⊕ (Xb

D × Y b
D) ∩ Zb

D such that

Eθ(u,ψ; θa, θc) ≤ Eθ(v,φ; θa, θc) ∀ {φ,v} ∈ (Xa
0 × Y c

0 ) ⊕ (Xb
0 × Y b

0 ) ∩ Zb
0 .

(6.35)

Problem (6.35) is the counterpart of the blended weak problem (6.18).

6.4.3 Taxonomy of AtC blending methods

In many ways formulation of energy-based AtC blending methods closely follows
that of force-based methods, and gives rise to problems with like structures.
In Section 6.3.11 we identified four different types of force-based AtC blending
methods. Roughly speaking, these four types corresponded to the number of
possible ways to allocate the blending functions between test and trial functions
in (6.14). We called the blending “external” when the blending function was
assigned to the test function and “internal” otherwise.

6The spaces Zb
D and Zb

0 were defined in (6.17).
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In energy-based blending there are no test and trial functions but analogues of
internal and external blending still exists. Since external blending is not supposed
to change the mechanical definition of the potential energy, in the present case it
corresponds to a weighting of the energy functional. For the atomistic potential
energy we thus have the choice of

Ea
θ (ψ; θa) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
α∈A∪B

θa(xα)
(
W a

α(ψ) + χα ·ψα

)
⇐= external

or∑
α∈A∪B

(
W c

α;θa
(ψ) + χα;θa

·ψα

)
⇐= internal

(6.36)

Similarly, for the continuum blended potential energy the choices are

Ec
θ(u; θc) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Ωb∪Ωc

θc(x)
(
W c(u) + f · u

)
dΩ ⇐= external

or∫
Ωb∪Ωc

(
W c

θc
(u) + fθc · u

)
dΩ ⇐= internal

(6.37)

It follows that formally, energy-based blending can also result in four dif-
ferent types of AtC blending methods. Perhaps the two most important cases
are the analogues of Type II and Type III methods, in which the type of the
blending is the same for the atomistic and continuum energies. The overlapping
domain decomposition coupling method in [8] is an example of a Type II blending
method.

It is not clear whether or not analogues of Type I and Type IV methods
would be useful at all in the energy-based coupling context. One concern is that
by mixing different blending strategies it may be very difficult to ensure that the
energy in the blend regions is not over or under-counted.

6.5 Generalized continua

The intrinsic incompatibility of coupling mechanical models with local/nonlocal
force interaction suggests that we consider generalizations of classical continuum
mechanics as described in [7, 13, 19, 35, 36, 37], or continuum realizations of
molecular dynamics [1, 42, 12, 43, 30]. We refer to these classes of methods as
generalized continua. They are motivated, in large part, by introducing a length-
scale (absent in classical elasticity) by augmenting the displacement field with
supplementary fields (e.g., rotations) that provide information about fine-scale
kinematics, by using higher-order gradients of the displacement field, by aver-
aging local strains and/or stresses, or by introducing a notion of a field into
molecular dynamics. We also mention the papers [15, 23] where variational prin-
ciples for the generalized continua are described useful for finite element based
discretizations, and [21] where the classical theory is augmented with internal
bonds.
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The blending methods reviewed in this paper may also be applied for use with
generalized continua, and require modification to (6.4), and the equations that
follow. In particular, Lc(u),Lc

S(·) and Lc
E(·) may not correspond to a differential

operator, and a continuum notion of the force operator La introduced in (6.1)
may need modification.

A generalized continua can fulfill two roles within a blending method. The
first is to replace the classical elastic theory, the second is as an intermedia-
tory between molecular dynamics and classical elasticity. The second approach
becomes viable if there is theoretical justification linking the generalized continua
with classical elasticity, especially if the force interaction model is nonlocal.

For instance, the recent paper [38] explains that if the underlying deformation
is sufficiently smooth, then peridynamics [36, 37] is asymptotically equivalent
[38] to classical elasticity as the length-scale decreases, and has a symbiotic rela-
tionship with molecular dynamics. As a result, a discretized peridynamic model
can be implemented using an off-the-shelf molecular dynamic code as described
in [32]. Future work blends molecular dynamics and peridynamics to enable
multiscale materials modeling.

6.6 Conclusions

In this paper we reviewed a novel mathematical framework for encoding and clas-
sifying force or energy-based AtC blending methods. In particular, we identified
four key ingredients of such methods and two possible blending types that can
be applied in the force-based or energy-based settings. We also stated formal def-
initions of consistency and patch tests for AtC blending methods, and explained
how the ghost force effects and unphysical interface boundary conditions are
mitigated in such methods.

Based on the type of blending applied to the atomistic and continuum mod-
els, AtC blending methods can be divided into four different categories. Only
one of these categories, Type II methods, leads to AtC formulations that are
simultaneously consistent, symmetric and do not violate Newton’s third law over
the bridge region.

Equally important for the AtC blending methods is the choice of the blend-
ing constraint operator whose purpose is to reconcile atomistic and continuum
displacements in the bridge region so as to impose a suitable notion of “conti-
nuity” in the coupled solution. The choice of how to enforce these constraints
does not modify the final result, but has important implications for the imple-
mentation of AtC methods. We have considered two different choices: classical
Lagrange multipliers, and restricted AtC spaces whose elements explicitly satisfy
the constraints.
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