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COMMENTS ON NOTATION

In this document I have tried to remain consistent with the following practices:

• scalars are italicized lower case letters

• vectors are bold faced italic lower case letters

• matrices (or tensors of rank greater than or equal to 2) are upper cased bold faced italic
letters

• scalar components of vectors or tensors are italic, but not bold faced

For example:

• a is a scalar

• a is a vector, ai is a component of a

• A is a matrix (or higher order tensor), Aij is a component of A

Index notation is used only where necessary; in general the more compact vector notation is pre-
ferred. The following vector notations will be used:

• ∇ for the gradient

• ∇· for the divergence

• ∇× for the curl

• ∆ for the Laplacian

The general domain Ω, with boundary Γ is a convex domain with Lipschitz continuous boundary.
When taking integrals over Ω, only a single integral sign is used, regardless of dimension. Thus:

∫
Ω
dΩ =


∫

Ω dx in 1D∫∫
Ω dxdy in 2D∫∫∫

Ω dxdydz in 3D
.

The number of integral signs actually needed will be clear based on context.
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ABSTRACT

Finite element methods are a common tool to solve problems in computational fluid dynamics

(CFD). This thesis explores the finite element package deal.ii and specific applications to incom-

pressible CFD. Some notation and results from finite element theory are summarised, and a brief

overview of some of the features of deal.ii is given. Following this, several CFD applications are

presented, including the Stokes equations, the Navier-Stokes equations and the equations for Darcy

flow in porous media. Comparison with benchmark problems are provided for the Stokes and

Navier-Stokes equations and a case study looking at foam deformation is provided for Darcy flow.

Code is provided where applicable.
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CHAPTER 1

INTRODUCTION

Computational fluid dynamics (CFD) is a widely used technique to investigate a range of problems

arising in physics, chemistry, biology and engineering. Of particular interest in this thesis is the

investigation of incompressible flow. This thesis will look at three sets of equations: the Stokes

equations for viscous slow moving flow, the more general Navier-Stokes equations, and the equations

for Darcy flow in porous media.

There are many techniques for solving the partial differential equations arising in CFD. These

include finite difference, finite volume, finite element and integral equations methods. This thesis

focuses exclusively on the use of finite elements. The first chapter provides a brief introduction to

finite elements, including the notation used and some basic results from finite element analysis. A

one dimensional example is provided to help clarify some important concepts.

In order to solve finite element problems quickly and efficiently we turn to the C++ finite

element package deal.ii. Deal.ii was developed in Germany, but is now maintained primarily at

Texas A&M. It is currently one of the most widely used open source finite element libraries. The

second chapter provides some details on deal.ii, including the different quadrature and mapping

routines as well as the linear solvers available.

The third chapter deals with the incompressible Stokes equations for slow moving viscous fluids.

The steady state governing equations are given and a finite element discretization is derived. Key

results concerning the stability and the accuracy of the resulting approximation are presented, and

the Taylor-Hood element pair is introduced. A convergence study and benchmark problems for

different boundary conditions are given. Some code is provided to demonstrate how to solve these

kind of problems in deal.ii. Next, the unsteady incompressible Stokes equations are presented and

discretized using a first order time stepping scheme. Code and a convergence study are provided.

The fourth chapter introduces the incompressible Navier-Stokes equations. These are the most

widely used equations in CFD. The steady governing equations are introduced as is the concept of

the Reynolds number. The equations are linearized and a finite element discretization is presented.

1



A convergence study is performed, and benchmark problems are looked at. Code is provided where

applicable. Next, the unsteady incompressible equations are presented and discretized with a first

order time stepping scheme. Again convergence studies and benchmark problems are investigated.

The fifth and final chapter looks at the equations for Darcy flow in porous media. The gov-

erning equations are presented, and a finite element discretization is provided. This finite element

discretization necessitates the introduction of a new element, the Raviart-Thomas (RT ) element.

Some results concerning the RT element are given and a convergence study provided. The final

section deals with a case study which combines Hooke’s law and the Darcy equations to investigate

the effect of fluid flow on foam deformation.
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CHAPTER 2

THE FINITE ELEMENT METHOD

Finite element methods (FEM) are a common technique used to numerically solve partial differential

equations (PDEs). There are many desirable features provided by FEM. Solving PDEs on arbitrary

domains is made relatively simple, as is increasing the accuracy of the approximation using higher

order elements. The implementation of Neumann or mixed boundary conditions becomes very

natural an easy to implement. In addition, the underlying theory behind finite elements is robust

and well understood. Because of this, FEM is used in a variety of fields from solid mechanics to

electromagnetics to fluid dynamics.

This chapter introduces some basic concepts from finite element analysis, including the defini-

tions of various function spaces and norms we will be using throughout the rest of the document.

A one dimensional example is provided to illustrate many of the key parts of FEM.

2.1 Function Spaces and Norms

In order to discuss finite elements, we must first define the appropriate function spaces, norms

and inner products. The specific class of function spaces we will be interested in are called Hilbert

spaces. Hilbert spaces are defined as complete vector spaces whose norm is derived from an inner

product. The relationship between the norm and inner product allows us to compute errors in terms

of projections. The completeness requirement means that any sequence of approximate solutions

that converge will in fact converge to a unique element in the space. For more details on Hilbert

spaces, including the precise definition of completeness, see [3].

The first such space, denoted L2(Ω), is the space of all square integrable functions over Ω, i.e.:

L2(Ω) = {q :
∫

Ω
q2dΩ <∞}.

This space comes equipped with the norm and inner product:

(p, q) =
∫

Ω
pqdΩ ||q||0 = (q, q)1/2.

3



To simplify notation in the definition of the remaining spaces, we will rewrite the partial differen-

tial operator using a multi-index. Let α = (α1, α2. · · · , αn), where αi, i = 1, · · · , n is a non-negative

integer. Then the partial differential operator can be expressed as:

Dα = ∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xnαn
.

For example in R2, α = (α1, α2), so for |α| = 2 we have the following possibilities:

D(2,0) = ∂2

∂x2
1

D(1,1) = ∂2

∂x1∂x2
D(0,2) = ∂2

∂x2
2

The space of all continuous functions on Ω is denoted as C0(Ω). For non-negative integers k we

can define the space Ck(Ω) as:

Ck(Ω) = {q : Dαq ∈ C0(Ω) for |α| ≤ k},

That is, Ck(Ω) is the space of all functions that have all derivatives of up to and including order

k continuous over Ω. In addition we denote by Ck0 (Ω) functions that are in Ck(Ω) and 0 on the

boundary.

Before defining the remaining spaces, we must provide the definition of a weak derivative. A

function q ∈ L2(Ω) in Rn has a weak L2(Ω) derivative of order α if there exists a function v ∈ L2(Ω)

such that: ∫
Ω
qDαφdΩ = (−1)|α|

∫
Ω
vφdΩ,

for all φ ∈ C∞0 (Ω).

We can now define the Sobolev spaces, defined for any non-negative integer k as:

Hk(Ω) = {q ∈ L2(Ω) : Dαq ∈ L2(Ω) for |α| ≤ k}.

Thus a function in Hk(Ω) will be k times weakly differentiable. The space Hk(Ω) comes equipped

with the norm:

||q||k =

||q||0 +
∑
|α|≤k

||Dαq||20

1/2

.

A specific Sobolev space that we will be using often throughout the remainder of this thesis is

the space H1(Ω) and the subspace H1
0 (Ω) defined by:

H1
0 (Ω) = {q ∈ H1(Ω) : q = 0 on Γ}.

4



On the domain Ω ⊂ Rn, Both these spaces have the norm:

||q||1 =
(
||q||20 +

n∑
i=1

∣∣∣∣∣∣∣∣ ∂q∂xi
∣∣∣∣∣∣∣∣2

0

)1/2

,

and the subspace H1
0 (Ω) has an equivalent semi-norm:

|q|1 =
(

n∑
i=1

∣∣∣∣∣∣∣∣ ∂q∂xi
∣∣∣∣∣∣∣∣2

0

)1/2

.

The space of all bounded linear functionals on H1
0 (Ω) is defined as H−1(Ω):

H−1(Ω) = {q : (q, v) <∞ for all v ∈ H1
0 (Ω)},

while the space of all functions in H1(Ω) restricted to the boundary Γ are denoted H1/2(Γ).

For vector valued functions with n components we will use the spaces:

L2(Ω) = {vvv : vi ∈ L2(Ω) for i = 1, · · · , n}

Ck(Ω) = {vvv : vi ∈ Ck(Ω) for i = 1, · · · , n}

Hk(Ω) = {vvv : vi ∈ Hk(Ω) for i = 1, · · · , n}

H1
0(Ω) = {vvv : vi ∈ H1

0 (Ω) for i = 1, · · · , n}

H−1(Ω) = {vvv : vi ∈ H−1(Ω) for i = 1, · · · , n}

and

H1/2(Γ) = {vvv : vi ∈ H1/2(Γ) for i = 1, · · · , n}.

For k ≥ 0, Hk(Ω) comes equipped with the norm:

||vvv||k =
(

n∑
i=1
||vi||2k

)1/2

,

with the equivalent semi-norm for H1
0(Ω):

|vvv|1 =
(

n∑
i=1
|vi|21

)1/2

.

The inner product for functions in L2(Ω) is defined as:

(uuu,vvv) =
∫

Ω
uuu · vvvdΩ.
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Another Sobolev space, which is defined only for vector valued functions, is Hdiv(Ω), defined as:

Hdiv(Ω) = {vvv ∈ L2(Ω) : ∇ · vvv ∈ L2(Ω)}.

This space comes equipped with the norm:

||vvv||div =
(
||vvv||20 + ||∇ · vvv||20

)1/2
,

and the equivalent semi-norm:

|vvv|div = ||∇ · vvv||0.

The final function spaces we will make use of are polynomial spaces Pm(Ω) and Qm(Ω). Over

a domain Ω, Pm(Ω) is defined as the space of all polynomials of total degree m or less and Qm(Ω)

is defined as all polynomials of degree m or less in each coordinate direction. The vector valued

spaces Pm(Ω) and Qm(Ω) are defined as expected:

Pm(Ω) = {vvv : vi ∈ Pm(Ω) for i = 1, · · · , n}

Qm(Ω) = {vvv : vi ∈ Qm(Ω) for i = 1, · · · , n}.

2.2 Weak Formulation

In order to put a given PDE into the finite element framework, we must first put it into its weak

form. To do this, we take the L2 inner product of our PDE with a test function v over the domain

Ω. We then use integration by parts, or in dimensions higher than one, Green’s identity, to balance

the derivatives between v and the objective function in the PDE. In this section we will define the

abstract weak problem an provide conditions which garantee a unique solution. We conclude by

demonstrating how to determine the weak formulation of the 1D Poisson equation.

We wish to state the problem as follows. For a Hilbert space V , find u ∈ V such that:

A(u, v) = F (v) for all v ∈ V. (2.1)

where A(·, ·) is a bilinear form V × V → R1 and F (·) is a linear functional V → R1.

The Lax-Miligram theorem states that (2.1) has a unique solution if the following three condi-

tions apply:

6



1. A is bounded on V , i.e.:

|A(u, v)| ≤M ||u||||v|| for all u, v ∈ V,

for some positive constant M .

2. A is coercive on V , i.e.:
A(u, u) ≥ m||u||2 for all u ∈ V,

for some positive constant m.

3. F is bounded on V , i.e.:
sup
v∈V

|F (v)|
||v||

<∞, v 6= 0.

In general V is an infinite dimensional vector space. In order to compute an approximate

solution, we choose V h ⊂ V to be a finite dimensional vector space. This means we can form a

basis for V h, {φi}, i = 1, · · · , N , and write a discrete problem as: Seek uh ∈ V h such that:

A(uh, vh) = F (vh) for all vh ∈ V h (2.2)

Since uh ∈ V h, it can be written as a linear combination of the basis functions:

u =
N∑
j=1

cjφj . (2.3)

Testing against any vh ∈ V h is equivalent to testing against every basis function of V h. This allows

us to rewrite (2.2) as:

A

 n∑
j=1

cjφj , φi

 = F (φi) i = 1, · · · , N,

which is equivalent to the linear system:

AAAccc = fff,

with AAAij = A(φj , φi) and fff i = F (φi). This linear system can be solved for the coefficients ccc = cj ,

j = 1, · · · , N in (2.3).

2.2.1 Example: Poisson Equation

As an example, consider the Poisson equation in 1D:

−u′′ = f(x) 0 ≤ x ≤ 1, (2.4)

7



along with boundary conditions:

u(0) = u(1) = 0. (2.5)

Taking the L2 inner product of (2.4) with a test function v ∈ L2([0, 1]) over the interval [0, 1]

gives:

−(u′′, v) = (f(x), v).

Applying integration by parts on the left hand side:

−(u′′, v) = −
∫ 1

0
u′′vdx = −u′v

∣∣∣∣1
0

+
∫ 1

0
u′v′dx = (f, v)

If we enforce v(0) = v(1) = 0, then the boundary term vanishes and we can write:

(u′, v′) = (f, v). (2.6)

Note now that u and v are both required to have one derivative. Furthermore we have that u and

v are both zero on the endpoints of our domain. This means that u and v are both in H1
0 ([0, 1]).

Since v is an arbitrary function, we can state our weak problem as: Find u ∈ H1
0 ([0, 1]) such that:

A(u, v) = F (v) for all v ∈ H1
0 ([0, 1]),

where A(u, v) is the bilinear form (u′, v′) and F (v) is the linear functional (f, v).

As stated, v lives in an infinite dimensional space. In order to compute a solution, we look

at V h, a finite dimensional subspace of H1
0 ([0, 1]). We then require that (2.6) hold for functions

belonging to V h. The discrete weak problem is then: Find uh ∈ V h such that:

A(uh, vh) = F (vh) for all vh ∈ V h. (2.7)

We can show by using the Lax-Milgram theorem that (2.7) has a unique solution uh ∈ V h for

any V h ∈ H1
0 ([0, 1]). If we let {φi}, i = 1, · · · , N be a basis for V h, we can let u =

N∑
j=1

cjφj and we

can rewrite (2.7) as the linear system:

AAAccc = fff,

where:

AAAij = (φ′j , φ′i)

fff i = (f, φi),

which we can solve for the coefficients cj , j = 1, · · · , N .

8



2.3 Finite Element Spaces

We still haven’t specified a choice of V h. For finite elements the typical choice is a space of

piecewise continuous polynomials. This basis will be chosen to have compact support. This is done

to ensure a sparse matrix AAA.

Let Jh be a mesh of Ω̄, where Ω̄ is an approximation to Ω. In order to fully specify the finite

element space over an element of Jh we must provide 3 pieces of information:

1. the geometric element

2. the degree of the polynomial within any element

3. the degrees of freedom used to determine the polynomial

One popular choice are the Lagrangian basis functions. These degrees of freedom for these

elements are the function values at the nodes. To define a Lagrangian polynomial of degree k on

quadrilateral requires k+1 nodes in 1D, and in general (k+1)d nodes in dimension d. Typically we

choose the nodes to be equally spaced, although this is not necessary. See figure 2.1 for a typical

placement of nodes for a bilinear and biquadratic element on a square.

On each element there will be a local basis function associated with each node. The local basis

function i will be 1 at local node i, and 0 at all other nodes. To enforce continuity of the global

basis functions, we will patch together local basis functions from neighbouring elements so that

they match values at nodes which are common to more than 1 element.

v v

vv

v v v
v v v

vvv

Figure 2.1: Locations of degrees of freedom for Lagrangian elements. Left: bilinear ele-
ment, right : biquadratic element.
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If we denote by h the diameter of the largest element in Jh and assume our true solution u(xxx)

is in Hk+1(Ω), then using Lagrangian elements of order k, the following error estimates hold:

||u− uh||0 ≤ C1h
k+1||u||k+1

and

||u− uh||1 ≤ C2h
k||u||k+1

for some constants C1 and C2.

2.3.1 Example : Lagrangian Elements in 1D

Returning to our Poisson equation example, we can split the interval [0, 1] into N = 4 equal

intervals, [0, 0.25], [0.25, 0.5], [0.5, 0.75] and [0.75, 1]. If we use quadratic elements, we will need 3

points in each element. We will take these to be the 2 endpoints and the midpoint of each element.

0 0.25 0.5 0.75 1

φ1 φ2 φ3 φ4 φ5 φ6 φ7

Figure 2.2: Quadratic Lagrange basis functions on the interval [0, 1] using a uniform par-
tition with h = 1/4. Note that since we have homogeneous Dirichlet boundary conditions
we do not need basis functions at the endpoints of the domain.

It should be clear from figure 2.2 that since only a few of the basis functions have overlapping

non-zero portions (i.e. they all have compact support),
∫ 1
0 φ
′
iφ
′
jdx = 0 for |i− j| > 2. This means

that our matrix AAA has entries:

AAAij =
{∫ 1

0 φ
′
jφ
′
idx if |i− j| ≤ 2

0 otherwise

In other words, AAA is a sparse banded matrix, in this case with bandwidth 5. Sparse, structured

matrices are in general much cheaper to store and much cheaper to solve than dense matrices. This

demonstrates one of the nice features of finite elements and the importance of compact support.
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2.4 Implementation

Efficiently assembling the matrix AAA and right hand side fff is a key part of any finite element

solver. The best way to do this is often to integrate over each element of Ω̄ individually and add

the contributions to the appropriate entries in AAA and fff . These integrals (especially those in fff)

will in general have to be computed numerically using quadrature. An efficient algorithm therefore

might look like:

• loop over all elements E

• loop over all quadrature points xxxq in E , with associated weight wq

• loop over all basis functions φi nonzero over E

• fff i = fff i + F (φi(xxxq))wq

• loop over all basis functions φi nonzero over E

• AAAij = AAAij +A(φj(xxxq), φi(xxxq))wq

This implementation assumes that we know the quadrature points and weights as well as the

definition of the basis function on each element. In practice however, as we’ll see, this works best

only for simple elements on structured meshes. In general we will calculate the integrals on a

reference element (unit line, square or cube) and then map the integral to the actual element.

2.5 2d Problems

The transition from 1d to 2d problems is straightforward. The biggest difference is in generating

the weak formulation. Consider the Poisson equation in 2d with homogeneous Dirichlet boundary

condition:

−∆u = f(xxx) in Ω (2.8a)

u = 0 on Γ. (2.8b)

Taking the L2 inner product of (2.8a) with a test function v ∈ H1
0 (Ω) we get:

−(∆u, v) = (f, v).
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We can apply the product rule to show that:

−(∆u, v) = −
∫

Ω
∆uvdΩ = −

∫
Ω
∇ · (∇uv)dΩ +

∫
Ω
∇u · ∇vdΩ.

From the divergence theorem we know that:∫
Ω
∇ · (∇uv)dΩ =

∮
Γ
v∇u ·nnndΓ.

Since v ∈ H1
0 (Ω) it is 0 on the boundary and this term is therefore 0. This leads to our final

Galerkin weak formulation:

A(u, v) = (∇u,∇v) = F (v)

The identity ∫
Ω

∆uvdΩ =
∮

Γ
v∇u ·nnndΓ−

∫
Ω
∇u · ∇vdΩ (2.9)

is known as Green’s identity and is used often as the equivalent to integration by parts in higher

dimensions.

The remaining steps, writing the discrete weak formulation and assembling and solving the

resulting linear system are exactly the same as for the 1D case.
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CHAPTER 3

DEAL.II

Deal.ii is an open source C++ finite element package [2]. It is the successor to DEAL (Differential

Equations Analysis Library). The ease of adaptive meshing and the speed of the solvers provided

by deal.ii as well as the flexibility of C++ are all useful tools for many finite element computations.

Deal.ii originated at the University of Heidelberg in Germany. Today it is maintained primarily

at Texas A&M University, although it has contributors throughout the world. It is one of the most

widely used open source finite element packages. The use of C++ templates allows problems in 1,

2 or 3 dimensions to be solved with minimal changes to the code. Deal.ii only allows quadrilateral

elements in 2D or hexahedral elements in 3D.

3.1 Meshing

Meshing can be done on various simple objects in 2 or 3D directly in deal.ii using the Grid-

Generator class. They can also be loaded in from external programs like Gmsh, Lagrit and Cubit.

Once a mesh is created or loaded it is stored in the Triangulation class, where it can be refined

or otherwise modified as needed. All the meshes on non-rectangular domains later in this thesis

were created in Gmsh.

3.2 Quadrature

To calculate the integrals arising in the matrices, quadrature must be used. Any integral over

a domain Ω can be approximated by a summation:∫
Ω
f(xxx)dΩ ≈

n∑
i=1

f(qqqi)wi

The quadrature points {qqqi} and weights {wi}, i = 1, · · · , n depend upon the quadrature rule

being used. Deal.ii provides many kinds of quadrature routines such as Gauss-Legendre, Gauss-

Chebyshev, Gauss-Lobatto, Trapezoid, Milne and Simpson. The Quadrature class in deal.ii cre-
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n qqqi
wi

1 0 2

2 ±
√

1/3
1

3 0
±
√

3/5

8/9
5/9

4
±
√

3/7− 2/7
√

6/5

±
√

3/7 + 2/7
√

6/5

18+
√

30
36

18−
√

30
36

5
0

±1
3

√
5− 2

√
10/7

±1
3

√
5 + 2

√
10/7

128/225
322+13

√
70

900
322−13

√
70

900

Table 3.1: First 5 Gaussian quadrature rules on the interval [−1, 1].

ates and stores quadrature points and weights on the unit line [0, 1], the unit square [0, 1] × [0, 1]

or the unit cube [0, 1]× [0, 1]× [0, 1].

The most popular choice for quadrature is Gauss-Legendre. This rule is designed to integrate

polynomials exactly using the fewest number of points. Specifically in 1D a Gauss-Legendre rule

using n points can integrate any polynomial of degree 2n − 1 exactly. The first 5 rules over the

interval [−1, 1] are given in table 3.1. Deal.ii maps these to the unit line. Higher dimensional

quadrature rules are created by taking tensor products of 1D quadrature rules.

3.3 Mappings

When assembling the finite element matrices we will have to compute integrals of the form:∫
Q
ω(xxx)dQ (3.1)

where Q is an arbitrary quadrilateral in 2D or a hexahedron in 3D. Restricting ourselves to 2D,

the quadrature rules stored in the Quadrature class are only valid for integrals over the unit box.

The integral (3.1) can be calculated over the unit box Q̂:∫
Q
ω(xxx)dxxx =

∫
Q̂
ω(F (x̂xx))| detJJJ(x̂xx)|dQ̂
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where xxx = F (x̂xx) for some mapping F : Q̂ → R2, and

JJJ(x̂xx) = ∇̂F =
(
∂x/∂x̂ ∂x/∂ŷ
∂y/∂x̂ ∂y/∂ŷ

)

is the Jacobian of the transformation. The mappings described below are available in the deal.ii

Mapping class.

v v

vv

(0, 0) (1, 0)

(1, 1)(0, 1)

v
v
vv

��
���

���
�

```
```

`̀
�
�
�
�
�
�
�
��

(x1, y1)
(x2, y2)

(x3, y3)
(x4, y4)

-
xxx = F (x̂xx)

Figure 3.1: A mapping from the reference square.

3.3.1 Bilinear mapping

A bilinear mapping is a mapping of the form:

F (x̂, ŷ) =
(
A B C
E G H

) x̂
ŷ
x̂ŷ

+
(
D
K

)
.

Since we want (0, 0) to map to (x1, y1), (1, 0) to map to (x2, y2) and so on, we can create a linear

system to solve for the coefficients:

0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1





A
B
C
D
E
G
H
K


=



x1
x2
x3
x4
y1
y2
y3
y4


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Bilinear mappings map straight lines in the unit square to straight lines in the actual quadri-

lateral. They also preserve things like the midpoints of the edges and the centre of mass of the

element.To evaluate basis functions on K̂, we can simply evaluate the corresponding basis function

on the reference square. In other words φ(xxx) = φ̂(x̂xx). To evaluate the gradient of the basis functions

we must use the chain rule:
∂φ

∂x̂i
= ∂φ̂

∂x̂i
= ∂φ̂

∂x

∂x

∂x̂i
+ ∂φ̂

∂y

∂y

∂x̂i

This leads to teh following relationship:(
∂φ/∂x
∂φ/∂y

)
= (JJJT )−1

(
∂φ̂/∂x̂
∂φ̂/∂ŷ

)

3.3.2 Piola transformation

For vector valued functions in Hdiv(Ω) we need the mapping to preserve the normal components

of the vector, since for certain elements (e.g. Raviart-Thomas elements) the normal component of

the basis function may be a degree of freedom. In general a bilinear mapping does not do this. A

mapping that does this is called the Piola transformation. Given an affine mapping F : Q̂ → R2,

for example the bilinear mapping discussed in the previous section, and a function û(x̂xx) defined on

the unit square, then we can define the Piola transformation as:

uuu(x) = 1
detJJJ(x̂xx)J

JJ(x̂xx)ûuu(x̂xx)

where JJJ is the Jacobian of F .

For û ∈ Hdiv(Q̂) and p̂ ∈ H1(Q̂) this transformation has the properties [1]:∫
Q
uuu · ∇pdQ =

∫
Q̂
ûuu · ∇̂p̂dQ̂∫

Q
∇ · uuupdQ =

∫
Q̂
∇̂ · ûuup̂dQ̂∫

∂K
uuu ·nnnpds =

∫
∂K̂
ûuu · n̂nndŝ

3.4 Linear Solvers

The deal.ii Solver class supports a wide array of linear solvers including:

• Conjugate gradient

• Biconjugate gradient stabilized method
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• Generalized minimal residual method

• Richardson

• Sparse direct solve

3.5 Adaptive Meshing

In order to achieve a desired accuracy when solving real world problems it often necessary to

reduce the mesh size. Rather than uniformly refining the mesh, we can instead refine only where

the solution is changing most rapidly. This helps to gain a more accurate solution while limiting

the increase in the number of unknowns. One way to quantify how much a solution is changing is

to consider for each element Q, with edges e1, e2, e3 and e4, the quantity

η2
Q = hQ

2p

4∑
i=1

∫
ei

[
a
∂wh

∂nnni

]
dei,

where:

•
[
·
]
denotes the jump across ei

• wh is the computed solution

• hQ is the largest diagonal of the element (the element diameter)

• p is the degree of the approximating polynomial

• a is a scaling coefficient

This is called the Kelly error estimate [6] and it measures the jump in the gradient of the solution

across each element. Deal.ii implements this in the KellyErrorEstimator class. After computing

this for each cell we can then refine a percentage of cells with the highest ηQ.

3.6 Graphical Output

The class DataOut can output matrices to various formats including:

• EPS

• VTK

• GNUPLOT

All visualizations of finite element solutions provided later in this thesis have been created using

the VTK format in VisIt.
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CHAPTER 4

STOKES FLOW

The Stokes equations describe the motion of a creeping incompressible Newtonian fluid. They are

used extensively in applications involving slow moving viscous fluids, as they are a linear system

on PDEs and are generally much easier to solve than the full nonlinear Navier-Stokes equations.

This chapter will introduce the steady and unsteady Stokes equations and their finite element

discretization. To show existence and uniqueness we will review a well known result from the theory

of mixed FEM called the Ladyzhenskaya-Babuska-Brezzi condition and introduce the Taylor-Hood

element pair, which is a key element in CFD and one we will use in this chapter and also when

working with the Navier-Stokes equations. Convergence studies and comparisons to benchmark

problems will be provided throughout for a variety of boundary conditions.

4.1 Steady Governing Equations

Inside a domain Ω with boundary Γ, the non-dimensional steady state Stokes equations are

given by:

−ν∆uuu+∇p = fff(xxx) (4.1a)

∇ · uuu = 0, (4.1b)

where:

• uuu is the velocity of the fluid; in 2D uuu = 〈u, v〉

• p is the fluid pressure

• fff(xxx) ∈ H−1(Ω) is a known forcing function

• ν is the (constant) kinematic viscosity of the fluid

Initially we will assume homogeneous Dirichlet boundary conditions on the velocity, i.e. uuu = 000 on

Γ.
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4.2 Weak Formulation
4.2.1 Galerkin Weak Formulation

We begin by taking the L2 inner product of (4.1a) with a vector valued function vvv(xxx) ∈ H1
0(Ω):

−ν (∆uuu,vvv) + (∇p,vvv) = (fff,vvv) . (4.2)

We can use Green’s identity, 2.9, on the first term to obtain (using index notation):∫
Ω

∆uuu · vvvdΩ =
∫

Ω

∂

∂xi

(
∂uj
∂xi

)
ωjdΩ

=
∮

Γ

∂uj
∂xi

niωjdΓ−
∫

Ω

∂uj
∂xi

∂ωj
∂xi

dΩ =
∮

Γ
(∇uuu ·nnn) · vvvdΓ−

∫
Ω
∇uuu : ∇vvvdΩ.

Applying the same technique on the (∇p,vvv) term:∫
Ω
∇p · vvvdΩ =

∫
Ω

∂p

∂xi
ωidΩ

=
∮

Γ
pωinidΓ−

∫
Ω
p
∂ωi
∂xi

dΩ =
∮

Γ
pvvv ·nnndΓ−

∫
Ω
p∇ · vvvdΩ.

Plugging these expressions back into (4.2) yields:

ν (∇uuu,∇vvv)− (p,∇ · vvv) = (fff,vvv) +
∮

Γ
((∇uuu ·nnn) · vvv − pvvv ·nnn) dΓ.

The boundary integral term can be rewritten:∮
Γ
(∇uuu ·nnn) · vvv − pvvv ·nnndΓ =

∮
Γ

(nnn · ∇uuu ·nnn− p)vvv ·nnndΓ. (4.3)

If we choose vvv ∈ H1
0(Ω), then this boundary integral is equal to 0.

The weak form of the second equation can be found by multiplying (4.1b) by a scalar test

function q(xxx) ∈ L2(Ω):

− (q,∇ · uuu) = 0.

Then the final weak form of the Stokes equations can be written as:

a(uuu,vvv) + b(vvv, p) = (fff,vvv) for all vvv ∈ H1
0(Ω) (4.4a)

b(uuu, q) = 0 for all q ∈ L2(Ω) (4.4b)

where:
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• a(uuu,vvv) = ν (∇uuu,∇vvv)

• b(vvv, q) = −(q,∇ · vvv)

Note that in the weak form we only require the gradient of uuu to exist, and we have no differentiability

requirements on p. Thus we are looking for functions uuu, p such that uuu ∈ H1
0(Ω) and p ∈ L2(Ω).

4.2.2 Discrete Weak Formulation

In order to compute a solution we will have to restrict uuu and p to finite dimensional spaces.

Thus we will be looking for approximations to uuu and p, uuuh and ph, such that uuuh ∈ Vh ⊂ H1
0(Ω)

and ph ∈ Sh ⊂ L2(Ω). Our discrete weak problem reads as follows: seek uuuh ∈ Vh and ph ∈ Sh such

that:

a(uuuh, vvvh) + b(vvvh, ph) = (fff,vvvh) for all vvvh ∈ Vh (4.5a)

b(uuuh, qh) = 0 for all qh ∈ Sh (4.5b)

The next step is to choose a basis for Vh and Sh. If we let {vvvk(xxx)}, k = 1, · · · ,K, be a basis

for Vh and {qj(xxx)}, j = 1, · · · , J , be a basis for Sh, we can express our solutions uuuh and ph as a

linear combination of these basis functions:

uuuh(xxx) =
K∑
k=1

αkvvvk(xxx) ph(xxx) =
J∑
j=1

βjqj(xxx)

Testing against all functions vvvh ∈ Vh or qh ∈ Sh is equivalent to testing against the basis for that

space, so (4.5) can be rewritten as:

K∑
k=1

αka(vvvk, vvv`) +
J∑
j=1

βjb(qj , vvv`) = (fff,vvv`) for ` = 1, · · · ,K (4.6a)

K∑
k=1

αkb(vvvk, qi) = 0 for i = 1, · · · , J (4.6b)

which is a linear system of size (K+J)× (K+J) which can be solved for the unknown coefficients

{αk} and {βj}. This linear system is symmetric, but it turns out that it it not positive definite.

This effects our choice of linear solver. For example we cannot use conjugate gradient. Instead we

will use a sparse direct solver.

One important point to note here is that this system as written will be singular. This is due to

the fact that the pressure only appears as a gradient and without any boundary conditions. This
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means that if we find a solution p that satisfies (4.1a), then p + C where C is a constant would

also satisfy it. There are several ways around this; in our setup we will simply set the pressure at

some particular point in Ω to be 0.

4.3 Finite Element Space

In order for the discrete weak problem (4.5) to have a unique solution we can no longer use

the Lax-Milgram theorem described in section 2.2. Since uuuh, vvvh ∈ Vh
0 ⊂ H1

0(Ω) and ph, qh ∈ Sh ⊂

L2(Ω), the finite element method applied to the Stokes equations is known as a mixed finite element

method. In order to have a unique solution to the discrete weak problem we must have that:

1. (fff,vvvh) is bounded for all vvvh ∈ Vh

2. a(uuuh, vvvh) is bounded and coercive for all uuuh, vvvh ∈ Vh

3. b(vvvh, qh) must be bounded for all vvvh ∈ Vh and qh ∈ Sh

4. b(vvvh, qh) must satisfy:

inf
qh∈Sh
qh 6=0

sup
vvvh∈Vh

vvvh 6=0

(
b(vvvh, qh)
||vvvh||V ||qh||S

)
≥ m. (4.7)

It turns out that the first three of these conditions are automatically true for any choice of Vh and

Sh. The fourth conition is called the Ladyzhenskaya-Babuska-Brezzi (LBB) or inf-sup condition.

In mixed finite elements this replaces the coercivity requirement in the Lax-Milgram theorem. See

[5] for a more detailed discussion of this condition and techniques to verify that it is satisfied.

We can use the bilinear form b(·, ·) to define the subspace Z consisting of weakly divergence free

functions:

Z = {vvv ∈ H1
0(Ω) : b(vvv, q) = 0 for all q ∈ L2(Ω)}.

Likewise we can define the space consisting of discretely weak divergence free functions, Zh:

Z = {vvvh ∈ Vh : b(vvvh, q) = 0 for all qh ∈ Sh}.

Note that in general Zh 6⊂ Z, meaning that discretely divergence free functions are not actually

divergence free. A measure of the angle between the spaces Zh and Z is given by:

Θ = sup
zzzh∈Zh
|zzzh|1=1

inf
zzz∈Z
|zzz − zzzh|1.
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Provided (4.7) is satisfied, then we can derive the following error estimates:

|uuu− uuuh|1 ≤ C1 inf
vvvh∈Vh

|uuu− vvvh|1 + C2Θ inf
qh∈Sh

||p− qh||0 (4.8a)

||p− ph||0 ≤ C3 inf
vvvh∈Vh

|uuu− vvvh|1 + C4 inf
qh∈Sh

||p− qh||0 (4.8b)

where Ci, i = 1, · · · , 4, are constants independent of h. It is efficient to make the rates of convergence

of the two terms on the right hand sides equal. Note the error estimates depend on the H1 seminorm

for the velocity and the L2 norm for the pressure. In practice this means that if we are using

polynomial approximating functions, then we should take one power higher for the velocity than

the pressure.

4.3.1 The Taylor-Hood Element Pair

One choice of VVV h and Sh which satisfy (4.7) for the Stokes equations is the Taylor-Hood element

pair. Let Jh be a quadrilateral mesh of Ω̄ where Ω̄ is an approximation to Ω. Then the Taylor-Hood

element pair is defined as:

Vh = {vvv : vvv ∈ Q2(�),� ∈ Jh, vvv ∈ C0(Ω̄)}

Sh = {q : q ∈ Q1(�),� ∈ Jh, q ∈ C0(Ω̄)}

In other words we choose VVV h to be the space of all piecewise continuous polynomials of degree 2

in each component, and Sh to be the space of all piecewise continuous bilinear polynomials. The

degrees of freedom for the velocity space are the function values at corners of the quadrilaterals,

as well as the midpoints of each edge and the midpoint of the element. The degrees of freedom

for the pressure space are just the function values at the corners of each quadrilateral. Assuming

uuu ∈ H3(Ω) and p ∈ H2(Ω), we get the following error estimates for this element pair:

|uuu− uuuh|1 = O(h2) (4.9a)

||uuu− uuuh||0 = O(h3) (4.9b)

||p− ph||0 = O(h2) (4.9c)

where h is the diameter of the largest element in Jh. Note that both |uuu−uuuh|1 and ||p− ph||0 have

the same order of convergence which is what we wanted from (4.8).
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4.4 Inhomogeneous Velocity Boundary Conditions

So far we have only considered homogeneous Dirichlet boundary conditions on uuu. Suppose

instead we consider the boundary condition:

uuu = ggg on Γ with
∫

Γ
ggg ·nnndΓ = 0, (4.10)

where ggg(xxx) ∈ H1/2(Γ). The compatibility condition on ggg ·nnn is needed to ensure global conservation

of mass. Define the set:

Vg = {uuu ∈ H1(Ω) : uuu = ggg on Γ, qqq ∈ H1/2(Γ)}.

In order to solve our discrete weak problem (4.5) we must define a space Vh for our velocity.

Functions that will belong to Vh will be piecewise polynomials and thus will not in general satisfy

the boundary condition (4.10). Therefore we choose an interpolant gggh which is in the space Vh

and restricted to the boundary Γ.

If we let Vh be a Lagrangian finite element space, then the degrees of freedom are exclusively

values at points. Let {vvvk}, k = 1, · · · ,K be a basis for V h, with the first K1 of these basis

functions being associated with interior nodes, i.e. vvvk = 0 on Γ for k = 1, · · · ,K1. The remaining

basis functions are associated with nodes on Γ. This allows us to write:

gggh(xxx) =
K∑

k=K1+1
α̃kvvvk(xxx),

where α̃ is the appropriate component of g evaluated at node xxxk. Thus if uuuh ∈ Vh satisfies

uuuh(xxx) = gggh(xxx) for xxx ∈ Γ, we can write:

uuuh(xxx) =
K1∑
k=1

αkvvvk +
K∑

k=K1+1
α̃kvvvk(xxx).

Note that the only unknowns here are the αk, k = 1, · · · ,K1. The second summation becomes part

of the data of the discrete system.

If we define the set:

Vh
g = {vvv ∈ Vh : vvv = gggh on Γ},

then we can write our weak problem as: Seek uuuh ∈ VVV h
g and ph ∈ Sh, such that (4.5) holds for all

vvvh ∈ V0 and qh ∈ Sh. It turns out that all error estimates, in particular those for the Taylor-Hood

element pair given in section 4.3.1 are still valid for this problem.
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The linear system is now of size K ×K, whereas if the boundary conditions were homogeneous

the system would be of size K1 ×K1. However since K −K1 of the coefficients are already known

from the boundary data, we can zero out those rows and simply set α̃k to be the appropriate

component of ggg evaluated at xxxk.

4.5 Implementation

Consider the discrete weak formulation of the Stokes equations given by:

a(uuuh, vvvh) + b(vvvh, ph) = (fff,vvvh) for all vvvh ∈ Vh
0

b(uuuh, qh) = 0 for all qh ∈ Sh

along with the boundary conditions uuuh = gggh on Γ.

We start by providing the definitions neccessary for our StokesSolver class:

template<int dim>
class StokesSolver
{

public:
StokesSolver();
void run();

Function<dim> *forcing_function;
Function<dim> *boundary_values;

private:
void setup_geometry(int cycle);
void assemble_system();
void solve();

Triangulation<dim> mesh;
FESystem<dim> fe;
DoFHandler<dim> dof_handler;

ConstraintMatrix constraints;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
Vector<double> system_rhs;
Vector<double> solution;

};
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template<int dim>
StokesSolver<dim>::StokesSolver():

fe(FE_Q<dim>(2), dim, FE_Q<dim>(1), 1),
dof_handler(mesh)

{}

Here, <dim > is the dimension of the problem, 2 for all cases we consider. The initialization of fe

is therefore asking for 2 quadratic Lagrange elements and 1 linear Lagrange element.

template<int dim>
void StokesSolver<dim>::setup_geometry (int cycle)
{

GridIn<dim> grid_in;
grid_in.attach_triangulation(mesh);
std::ifstream input_file(input.gmesh_file.c_str());
grid_in.read_msh(input_file);

dof_handler.distribute_dofs(fe);

FEValuesExtractors::Vector velocities(0);
FEValuesExtractors::Scalar pressure(dim);

typename DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(), endc = dof_handler.end();

std::vector<bool> boundary_dofs(dof_handler.n_dofs(), false);

constraints.clear();

//set Dirichlet boundary conditions on the velocity everywhere
VectorTools::interpolate_boundary_values(dof_handler, 0,

*boundary_values, constraints, fe.component_mask(velocities));

//constrain first pressure dof to be 0
DoFTools::extract_boundary_dofs(dof_handler, fe.component_mask(pressure),

boundary_dofs);

const unsigned int first_boundary_dof = std::distance(boundary_dofs.begin(),
std::find (boundary_dofs.begin(), boundary_dofs.end(), true));

constraints.add_line(first_boundary_dof);
constraints.close();

CompressedSparsityPattern c_sparsity(dof_handler.n_dofs(), dof_handler.n_dofs());
DoFTools::make_sparsity_pattern (dof_handler, c_sparsity);
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constraints.condense(c_sparsity);
sparsity_pattern.copy_from(c_sparsity);

system_matrix.reinit(sparsity_pattern);
solution.reinit(dof_handler.n_dofs());
system_rhs.reinit(dof_handler.n_dofs());

}

To assemble the matrix, we follow the procedure outlined in section 2.4. The deal.ii class

DofHandler keeps track of the degrees of freedom of our problem. We can ask the DofHandler

object for an iterator object to each cell in our mesh. On each cell we evaluate the forcing function,

as well as vvvk, ∇vvvk, ∇·vvvk and qk for each of the basis functions active over the cell at each quadrature

point. The assembly routine in deal.ii looks like:
template <int dim>
void StokesSolver<dim>::assemble_system()
{

QGauss<dim> quadrature_formula(fe.degree + 1);

const int dofs_per_cell = fe.dofs_per_cell;
const int n_q_points = quadrature_formula.size();

std::vector<Vector<double> > rhs_values (n_q_points, Vector<double>(dim+1));
std::vector<Tensor<2,dim> > grad_phi_u (dofs_per_cell);
std::vector<double> div_phi_u (dofs_per_cell);
std::vector<double> phi_p (dofs_per_cell);
std::vector<Tensor<1,dim> > phi_u (dofs_per_cell);

Vector<double> cell_rhs(dofs_per_cell);
FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);

std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
const FEValuesExtractors::Vector velocities (0);
const FEValuesExtractors::Scalar pressure (dim);

FEValues<dim> fe_values(fe, quadrature_formula, update_values | update_gradients
|update_JxW_values | update_quadrature_points);

typename DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(), endc = dof_handler.end();

for (; cell!=endc; ++cell)
{
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fe_values.reinit(cell);
cell_matrix = 0;
cell_rhs = 0;

forcing_function->vector_value_list(fe_values.get_quadrature_points(),
rhs_values);

//calculate cell contribution to system
for (int q = 0; q < n_q_points; q++)
{

for (int k=0; k<dofs_per_cell; k++)
{

grad_phi_u[k] = fe_values[velocities].gradient (k, q);
div_phi_u[k] = fe_values[velocities].divergence (k, q);
phi_p[k] = fe_values[pressure].value (k, q);
phi_u[k] = fe_values[velocities].value (k, q);

}

for (int i = 0; i < dofs_per_cell; i++)
{

for (int j = 0; j < dofs_per_cell; j++)
{

cell_matrix(i,j) +=
(input.mu*double_contract(grad_phi_u[i],grad_phi_u[j])

- phi_p[i]*div_phi_u[j]
- phi_p[j]*div_phi_u[i])
*fe_values.JxW(q);

}

int equation_i = fe.system_to_component_index(i).first;
cell_rhs[i] += fe_values.shape_value(i,q)

*rhs_values[q](equation_i)*fe_values.JxW(q);
}

}

cell->get_dof_indices(local_dof_indices);
constraints.distribute_local_to_global(cell_matrix, cell_rhs,

local_dof_indices, system_matrix, system_rhs);
}

}

To solve our system, we use one of the solvers from UMFPACK. UMFPACK provides a set of

routines for solving sparse linear systems. We will use a direct method.

template<int dim>
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void StokesSolver<dim>::solve()
{

SparseDirectUMFPACK A_direct;
A_direct.initialize(system_matrix);

A_direct.vmult(solution, system_rhs);
constraints.distribute(solution);

}

4.6 Convergence Study

To test our code we can use the method of manufactured solutions. Let:

uuu(x, y) =
(

cos(πx)
yπ sin(πx)

)
(4.11)

p(x, y) = (xy)2 (4.12)

Note that ∇·uuu = 0. We can use these solutions to generate a forcing function fff(x, y) and boundary

conditions on the unit square. In deal.ii we can define these functions as:

template<int dim>
class ExactSolutionBoundaryValues : public Function<dim>
{

public:
ExactSolutionBoundaryValues() : Function<dim>(3) {}
virtual void vector_value(const Point<dim> &p,

Vector<double> &values) const;
};

template<int dim>
void ExactSolutionBoundaryValues<dim>::vector_value(const Point<dim> &p,

Vector<double> &values) const
{

double x = p[0];
double y = p[1];

values(0) = cos(M_PI*x);
values(1) = y*M_PI*sin(M_PI*x);
values(2) = 0;

}

template<int dim>
class ExactSolutionForcingFunction : public Function<dim>
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{
public:

ExactSolutionForcingFunction() : Function<dim>(3) {};
virtual void vector_value(const Point<dim> &p,

Vector<double> &values) const;
};

template<int dim>
void ExactSolutionForcingFunction<dim>::vector_value(const Point<dim> &p,

Vector<double> &values) const
{

double x = p[0];
double y = p[1];

values(0) = cos(M_PI*x)*pow(M_PI,2) + 2*x*pow(y,2);
values(1) = sin(M_PI*x)*y*pow(M_PI,3) + 2*y*pow(x,2));
values(2) = 0;

}

By uniformly refining the mesh we can test the convergence of our code and verify we get the

theoretical rates. Doing so, we can generate the convergence tables 4.1 and 4.2. These tables

demonstrate the theoretical rates predicted by (4.9).

# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 187 1.140× 10−2 3.421× 10−3 - 1.054× 10−1 -
64 659 1.498× 10−3 4.270× 10−4 3.00 2.642× 10−2 2.00
256 2467 1.895× 10−4 5.335× 10−5 3.00 6.609× 10−3 2.00

Table 4.1: Convergence rates for uuu(xxx) in the steady Stokes equations using Taylor-Hood
elements.

# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 187 2.386× 10−1 1.171× 10−1 - 2.386× 10−1 -
64 659 5.811× 10−2 4.699× 10−2 1.87 6.459× 10−2 1.63
256 2467 1.500× 10−2 1.234× 10−2 1.93 1.179× 10−2 1.33

Table 4.2: Convergence rates for p(xxx) in the steady Stokes equations using Taylor-Hood elements.

4.7 Steady Lid Driven Cavity

A standard test problem in CFD is the lid driven cavity problem. In this problem we have

fluid in a box of height H and width W with a lid moving to the right with velocity u0. We
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assume no-slip boundary conditions, so the fluid has velocity uuu = 0 on the sides and bottom, and

uuu =
(
u0 0

)T
on the top. See the setup in figure 4.1.

@@
��

uuu =
(
u0 0

)T

H

W

Figure 4.1: Setup of the lid driven cavity problem.

If we take H = 5, W = 1 and u0 = 1, we can qualitatively recreate the streamlines from figure

3.8 in [9]. As shown in figure 4.2, we get 4 primary eddies running down the height of the box.
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Figure 4.2: Streamlines for the lid driven cavity problem with u0 = 1, ν = 0.01, H = 5
and W = 1.

4.8 Alternate Boundary Conditions

Up until now we have assumed Dirichlet boundary conditions on the velocity. In many appli-

cations we may with to prescribe different boundary conditions. Looking at the boundary integral

(4.3) from our weak formulation, we see that this is a known quantity if either vvv ·nnn = 0, as we have

assumed up until now, or we prescribe the natural boundary condition nnn·∇uuu·nnn−p. This section will

explore other boundary conditions that can be applied, in particular the stress boundary condition.

There are other possible boundary conditions not discussed here, see [5] for more details.
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4.8.1 Addition to Weak Formulation

Let us begin by denoting two segments of the boundary Γ, Γn and Γτ . These segments may

overlap, may be empty and their union need not cover the entire domain, see figure 4.3 for an

example of the various partitions.

'

&

$

%

A

C

D B

Figure 4.3: An example of the various possible domain segments: ABC = Γn, BCD = Γτ ,
BC = Γn ∩ Γτ , AD = Γ/(Γn ∪ Γτ ).

Let us now define the spaces:

Vg = {vvv ∈ H1(Ω) : vvv ·nnn = gn on Γn and nnn× vvv ×nnn = gggτ on Γτ}

V0 = {vvv ∈ H1(Ω) : vvv ·nnn = 0 on Γn and vvv ×nnn = 0 on Γτ}

Suppose that we wish to prescribe the normal velocity on Γn and the tangential velocity on Γτ .

Then we have the boundary conditions:

uuu ·nnn = gn on Γn

nnn× uuu×nnn = gggτ on Γτ

In other words uuu ∈ Vg. For i = 1, 2, we will be considering weak formulations of the form:

ai(uuu,vvv) + b(uuu, p) = (fff,vvv) + di(vvv) for all vvv ∈ V0

b(uuu, q) = 0 for all q ∈ L2(Ω)

where b(·, ·) is defined as in the previous sections, but now ai(·, ·) takes the form:

ai(uuu,vvv) =

ν
∫

Ω∇uuu : vvvdΩ for i = 1
1
2
∫
Ω ν

(
∇uuu+ (∇uuu)T

)
:
(
∇vvv + (∇vvv)T

)
dΩ for i = 2
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Obviously a1(·, ·) is the same as the a(·, ·) from the previous sections and comes from applying

Green’s identity to the Laplacian ∆uuu. The other bilinear form, a2(·, ·) comes from applying Green’s

identity to the equivalent tensor ∇ ·
(
ν
(
∇uuu+ (∇uuu)T

))
. The linear functional di(·) is a boundary

integral arising from Green’s identity. We define di(vvv) as:

di(vvv) =
∫

Γ/Γn
rivvv ·nnndΓ +

∫
Γ/Γτ

sssi · vvv ×nnndΓ

where:

ri =

−p+ νnnn · ∇uuu ·nnn for i = 1
−p+ νnnn ·

(
∇uuu+ (∇uuu)T

)
·nnn for i = 2

sssi =

νnnn · ∇uuu×nnn for i = 1
νnnn ·

(
∇uuu+ (∇uuu)T

)
×nnn for i = 2

If we specify the velocity uuu, we are by definition specifying both the normal and tangential velocity.

In this case the space V0 is the space H1
0, and so vvv · nnn = 0 and vvv × nnn = 0. Therefore in order to

evaluate di(vvv) we must specify:

1. the velocity uuu on Γn ∩ Γτ

2. ri and sssi on Γ/(Γn ∪ Γτ )

3. the normal velocity and sssi on Γn/(Γn ∩ Γτ )

4. the tangential velocity and rrri on Γτ/(Γn ∩ Γτ )

For i = 1, ri and sssi have no physical meaning. For i = 2 however, ri is the normal stress, σ, and

sssi is the tangential stress, τ . These are the boundary conditions we will use for slit flow.

4.8.2 Slit Flow

For a slit flow problem we will consider a rectangular domain of height h and length `. On the

top and bottom of this domain we will specify no-slip conditions on the velocity. In addition we

will prescribe the normal stress on both the inlet (left side) and outlet (right side). On both the

inlet and the outlet we will set the tangential velocity, v to be 0.
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uuu = 0

uuu = 0

σ = rin
v = 0

σ = rout
v = 0Ω

Figure 4.4: Sketch of the domain used for slit flow problems.

In 2D, the normal stress is given by:

r = −p+ νnnn ·
(
∇uuu+ (∇uuu)T

)
·nnn

= −p+ νnnn ·
((

ux uy
vx vy

)
+
(
ux vx
uy vy

))
·nnn

= −p+ νnnn ·
(

2ux uy + vx
uy + vx 2vy

)
·nnn

For slit flow we know that on the inlet nnn = (−1, 0)T and nnn = (1, 0)T on the outlet. On both the

inlet and the outlet vx = vy = 0, as shown in figure 4.4. Using this information we can calculate

rin and rout:

rin = rout = −p+ 2νux

Let vvv = (v1, v2)T , then we can calculate d(vvv) on the inlet and outlet as:

d(vvv)in =
∫

Γin
rin

(
v1
v2

)
(−1, 0)dΓ = −rin

∫ h

0
v1dy

d(vvv)out =
∫

Γout
rout

(
v1
v2

)
(1, 0)dΓ = rout

∫ h

0
v1dy

In this problem, since we are prescribing boundary conditions that involve the pressure, the

pressure solution is unique and we do not have to modify our matrix to avoid it being singular.

Implementation. To implement slit flow in deal.ii, we have to modify a couple parts of the

code. First, the boundary conditions on the inlet and outlet set only the v component of the

velocity to 0. To do this we have to label the inlet and the outlet separately from the top and

bottom. In the setup_geometry routine we must add the following code:
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//set boundary labels:
// (1) : inlet
// (2) : outlet
// (3) : everything else
for (; cell!=endc; ++cell)
{

for (int f=0; f<GeometryInfo<dim>::faces_per_cell; f++)
{

if (cell->face(f)->at_boundary())
{

if (fabs(cell->face(f)->center()[0]) < 1e-8)
{

cell->face(f)->set_boundary_indicator(1);
}
else if (fabs(cell->face(f)->center()[0] - input.domain_length) < 1e-8)
{

cell->face(f)->set_boundary_indicator(2);
}
else
{

cell->face(f)->set_boundary_indicator(3);
}

}
}

}

To apply the boundary conditions on only the v component of the velocity, we can use a scalar

ComponentMask on boundaries 1 and 2:

//apply velocity boundary conditions to top and bottom only
//set tangential (vertical) velocity at inlet and outlet
FEValuesExtractors::Scalar velocity_y(1);

VectorTools::interpolate_boundary_values(dof_handler, 3,
*boundary_values, constraints, fe.component_mask(velocities));

VectorTools::interpolate_boundary_values(dof_handler, 1,
*boundary_values, constraints, fe.component_mask(velocity_y));

VectorTools::interpolate_boundary_values(dof_handler, 2,
*boundary_values, constraints, fe.component_mask(velocity_y));

The matrix assemble routine changes slightly. During the matrix assembly we will have to

evaluate the line integral d(vhvhvh). To do this we will need to specify a quadrature rule for the line
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integral:

QGauss<dim-1> face_quadrature_formula(3);
const int n_q_points_face = face_quadrature_formula.size();
FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula, update_values

| update_quadrature_points | update_gradients | update_JxW_values);

The dense matrix for each cell, cell_matrix, is now populated by:

cell_matrix(i,j) +=
(phi_u[i]*phi_u[j] + 0.5*input.mu*
double_contract(grad_phi_u[i] + transpose(grad_phi_u[i]),

grad_phi_u[j] + transpose(grad_phi_u[j]))
- phi_p[i]*div_phi_u[j] - phi_p[j]*div_phi_u[i])
*fe_values.JxW(q);

Also inside the assembly routine for each cell we will have to check and see if it borders the

inlet or the outlet, and if it does, use quadrature to evaluate the line integral d(vhvhvh) on the portion

of that cell that is on the inlet or outlet:

//add line integral term to rhs for inlet and outlet normal stress
for (unsigned int face=0; face < GeometryInfo<dim>::faces_per_cell; face++)
{

if (cell->face(face)->at_boundary())
{

fe_face_values.reinit (cell, face);

for (unsigned int q_boundary = 0; q_boundary < n_q_points_face;
q_boundary++)

{
for (int k=0; k<dofs_per_cell; k++)
{

phi_u[k] = fe_face_values[velocities].value (k, q_boundary);
}

Point<dim> q_point = fe_face_values.quadrature_point(q_boundary);
double x = q_point[0];

for (int i = 0; i < dofs_per_cell; i++)
{

if (fabs(x) < 1e-8)
{

cell_rhs[i] -= input.r_in
*phi_u[i][0]*fe_face_values.JxW(q_boundary);

}
else if (fabs(x - input.domain_length) < 1e-8)
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{
cell_rhs[i] += input.r_out

*phi_u[i][0]*fe_face_values.JxW(q_boundary);
}

}
}

}
}

4.8.3 Poiseuille flow

A simple test case for slit flow is pressure driven Poiseuille flow. For this flow we assume a

linear pressure drop. We prescribe a pressure Pin at the inlet and Pout at the outlet. Since v = 0

at the inlet and outlet, we can assume that v = 0 everywhere in our domain. Then the continuity

equation tells us that:

ux + vy = 0⇒ ux = 0.

This leads us to the exact solutions:

uuu(x, y) =
(
−Pin−Pout

2` (y2 − hy)
0

)

p(x, y) = Pin −
Pin − Pout

`
x

Note that in this case, since ux = 0, the normal stresses at the inlet and outlet are simply −Pin

and −Pout respectively, The computed solution with Pin = 1e5 and Pout = 0 is shown in figure 4.5.

We can compare our computed solutions to the exact solution. Since uuu is a second order

polynomial and p is a linear polynomial we expect our finite element solver using Q2 elements for

the velocity and Q1 elements for the pressure to be able to compute the solution exactly. If we

look at the errors in tables 4.3 and 4.4, we see that all the error norms for both the pressure and

the velocity are very small and independent of mesh resolution. This leads us to conclude that we

are finding the true solution.
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Figure 4.5: Steady Stokes Poiseuille flow with Pin = 1× 105 and Pout = 0. Top: velocity
vector field, bottom: pressure.

h # cells # unknowns L∞ error L2 error H1 error
1/4 196 2032 1.156× 10−15 8.074× 10−16 1.437× 10−14

1/8 784 7589 2.194× 10−15 1.596× 10−15 3.744× 10−14

1/16 3136 29287 3.442× 10−15 1.685× 10−15 7.722× 10−15

Table 4.3: Errors for uuu(xxx) in steady Poiseuille flow.

h # cells # unknowns L∞ error L2 error H1 error
1/4 196 2032 2.220× 10−14 8.653× 10−15 9.032× 10−14

1/8 784 7589 7.550× 10−14 2.276× 10−14 4.297× 10−13

1/16 3136 29287 1.767× 10−13 3.519× 10−14 1.218× 10−12

Table 4.4: Errors for p(xxx) in steady Poiseuille flow..
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4.9 Adaptive Meshing

Recall that as long as uuu and p are sufficiently smooth, the Taylor-Hood element pair has order

h3 accuracy in uuu and h2 accuracy in p in the L2 norm. This means that uniformly halving the

diameter of each element should reduce the error in uuu by a factor of 8 and the error in p by a factor

of 4. In 2D, halving the diameter of each element means splitting it in 4. Each element has 4

pressure degrees of freedom and 18 velocity degrees of freedom. Of course a lot of them are shared

between elements, but as is shown in the convergence table in section 4.5, the number of unknowns

grows quite quickly under uniform refinement. To get better approximations without such a large

increase in the number of unknowns we turn to the adaptive mesh refinement techniques described

in section 3.5.

For fluid flow problems we may not be equally interested in the pressure and the velocity. In

that case we can consider the Kelly error estimate for only the velocity for example, or we could

choose a different scaling coefficient a for the pressure and the velocity. If are only interested in

the velocity profile, the Kelley error estimate for just the velocity would be:

η2
Q = hQ

4

4∑
i=1

∫
ei

[
∂uh

∂nnni

]
+
[
∂vh

∂nnni

]
dei. (4.13)

Implementing this is deal.ii is quite simple. We define an additional function in the Stokes-

Solver class, refine_grid():

template<int dim>
void StokesSolver<dim>::refine_grid()
{

const FEValuesExtractors::Vector velocities (0);

Vector<float> estimated_error_per_cell (mesh.n_active_cells());
KellyErrorEstimator<dim>::estimate (dof_handler, QGauss<1>(dim + 1),

typename FunctionMap<dim>::type(), solution, estimated_error_per_cell,
fe.component_mask(velocities));

GridRefinement::refine_and_coarsen_fixed_fraction (mesh,
estimated_error_per_cell, 0.7, 0.1);

mesh.prepare_coarsening_and_refinement();
mesh.execute_coarsening_and_refinement ();

}
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Figure 4.6 shows how adaptive mesh refinement for the lid driven cavity problem. Notice that

it refines in the top corners where there exists singularities, but leaves the bottom unrefined. This

refinement results in a much more appealing solution.
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Figure 4.6: Adaptive mesh refinement for the lid driven cavity problem on the unit square.
Mesh and velocity magnitude shown for, top to bottom: uniform mesh, single adaptive
refinement, three adaptive refinements.

41



4.10 Unsteady Flow

The time dependent Stokes flow equations are:

uuut − ν∆uuu+∇p = fff(xxx, t) for t ∈ [0, T ],xxx ∈ Ω (4.14a)

∇ · uuu = 0 (4.14b)

uuu(xxx, 0) = uuu0(xxx) (4.14c)

Using the same techniques as in 4.2.1 we can derive a Galerkin weak formulation:

(uuut, vvv) + a(uuu,vvv) + b(vvv, p) = (fff,vvv) for all vvv ∈ H1
0(Ω)

b(uuu, q) = 0 for all q ∈ L2(Ω)

and the discrete weak formulation:

(uuuht , vvvh) + a(uuuh, vvvh) + b(vvvh, ph) = (fff,vvvh) for all vvvh ∈ Vh (4.15a)

b(uuuh, qh) = 0 for all qh ∈ Sh (4.15b)

where a(·, ·), b(·, ·) Vh and Sh are defined as before. To discretize time we begin by splitting our

time interval [0, T ] into M intervals of uniform length δ = T/M . Then let uuum, pm and fffm be

equal to uuuh(xxx,mδ), ph(xxx,mδ) and fff(xxx,mδ) respectively. We will use the backward Euler method

to discretize the uuut term:

uuut(xxx, (m+ 1)δ) = uuum+1 − uuum

δ

Substituting this into (4.15) yields:

1
δ

(uuum+1, vvvh) + a(uuum+1, vvvh) + b(vvvh, pm+1) = (fffm+1, vvvh) + 1
δ

(uuum, vvvh) for all vvvh ∈ Vh

b(uuum+1, qh) = 0 for all qh ∈ Sh

Note that an initial condition uuu0 is required for the velocity, but since there is no pt term we do

not require an initial condition for the pressure.

4.10.1 Implementation

Implementing an unsteady Stokes solver with backwards Euler is not much more difficult than

the steady case. In our class definition we will need a few additional things:
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• an initial conditions function, Function<dim> *forcing_function

• the solution from the previous timestep, Vector<double> old_solution

• a mass matrix, SparseMatrix<double> mass_matrix, as well as a routine to assemble it void
assemble_mass_matrix()

• a routine to run the time loop, void run_time_loop()

Assembling the mass matrix and the new system matrix requires only minor modifications to

the assembly routines discussed above.

template<int dim>
void StokesSolver<dim>::run_time_loop()
{

assemble_matrix();
assemble_mass_matrix();

VectorTools::interpolate(dof_handler, *initial_conditions, old_solution);
solution = old_solution;

double t = input.t0;

Vector<double> tmp;
tmp.reinit(solution.size());//tmp is contribution from previous time step

while (t < input.tf)
{

t += input.dt;

forcing_function->set_time(t);
boundary_values->set_time(t);

mass_matrix.vmult(tmp, old_solution);

//built in routine to create the rhs (f,phi)
VectorTools::create_right_hand_side(dof_handler, QGauss<dim>(fe.degree+1),

*forcing_function, system_rhs);

system_rhs *= input.dt;
system_rhs.add(tmp);

constraints.condense(system_matrix, system_rhs);

solve();
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old_solution = solution;
}

}

4.10.2 Convergence Study

Implementing this problem is very similar to the steady state case. To test our code we again

use the method of manufactured solutions. Given the exact solution:

uuu(x, y, t) =
(
e−t cos(πx)
e−tyπ sin(πx)

)
(4.16)

p(x, y, t) = (xy)2 (4.17)

we can generate an initial condition, a forcing function and boundary conditions on the unit square.

Since backwards Euler is order δ accurate in time, in order to see the expected h3 accuracy for

uuuh, we take δ = h3. Taking T = 1/64, we can generate tables 4.5 and 4.6 that demonstrate the

convergence rates predicted by (4.9).

# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 187 3.574× 10−3 1.069× 10−3 - 3.302× 10−2 -
64 659 4.593× 10−4 1.337× 10−4 3.00 8.278× 10−3 2.00
256 2467 5.938× 10−5 1.672× 10−5 3.00 2.071× 10−3 2.00

Table 4.5: Convergence rates for uuu(xxx, 1/64) in the unsteady Stokes equations using Taylor-
Hood elements in space and backwards Euler in time.

# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 187 7.156× 10−2 5.599× 10−2 - 1.082× 10−1 -
64 659 1.548× 10−2 1.260× 10−2 2.15 4.727× 10−2 1.19
256 2467 4.006× 10−3 3.335× 10−3 1.92 2.304× 10−2 1.04

Table 4.6: Convergence rates for p(xxx, 1/64) in the unsteady Stokes equations using Taylor-
Hood elements in space and backwards Euler in time.

4.10.3 Lid Driven Cavity

The time dependent lid driven cavity problem is again commonly used to test unsteady flows.

The setup is the exact same as in section 4.7: the lid moves to the right with speed u = 1 and

all other faces are stationary. The initial condition is uuu = 0 everywhere. The computed velocity

magnitudes at various times are shown in figure 4.7.
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Figure 4.7: Velocity magnitude for time dependent driven cavity flow with ν = 0.01. From
top left clockwise, t = 0.05, t = 0.25, t = 0.5, t = 1.
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CHAPTER 5

NAVIER-STOKES FLOW

The Navier-Stokes equations describe the motion of a fluid. Unlike the Stokes equations, these form

a system of nonlinear PDEs. This chapter will cover linearization of the equations, using the the

Gateaux derivative, as well as the weak formulation. The derivation of the both the Galerkin weak

formulation and the discrete weak formulation follow closely to those of the Stokes equations given

in section 4.2.1 and 4.2.2. Code will be provided that demonstrates how to resolve the nonlinear

term using Newton’s method. Convergence studies are given for both the steady and unsteady

equations and some comparisons to published results are provided.

5.1 Steady Governing Equations

Inside a domain Ω with boundary Γ, the non-dimensional steady state Navier-Stokes equations

for an incompressible Newtonian fluid are given by:

−ν∆uuu+ uuu · ∇uuu+∇p = fff(xxx) (5.1a)

∇ · uuu = 0 (5.1b)

where:

• uuu is the velocity of the fluid; in 2D uuu = 〈u, v〉

• p is the fluid pressure

• fff(xxx) ∈ H−1(Ω) is a known forcing function

• ν is the (constant) kinematic viscosity of the fluid

These equations come of course with boundary conditions, the simplest of which is just Dirichlet

boundary conditions on the velocity. Other possible boundary conditions exist, see section 4.8 for a

discussion of stress boundary conditions or [5] for other boundary conditions. All results discussed

concerning boundary conditions for the Stokes equations apply for the Navier-Stokes equations.
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5.1.1 Reynolds Number

The Reynolds number is a dimensionless number which is used to compare fluid flow character-

istics across different problems. It is defined as the ratio of inertial to viscous forces, given by the

formula:

Re = UL

ν
,

where L is a characteristic length and U is a characteristic velocity. In general, flows at low Reynolds

numbers will be laminar and the flow becomes more turbulent as the Reynolds number increases.

The Stokes equations described in the previous section can be thought of as the limiting case of

the Navier-Stokes equations as Re→ 0.

5.2 Linearization

A difficulty in solving the Navier-Stokes equations is the nonlinear term in (5.1a). This term

can be linearized using Newton’s method. In general, to find a root of a function H(x) = 0,

Newton’s method can be written as:

H ′(x, δx) = −H(x)

or equivalently, given x0:

H ′(xk, xk − xk−1) = −H(xk) (5.2)

for k = 0, 1, · · · . For scalars, H ′(x) is just the ordinary derivative, while for vectors it is the

Jacobian. For functions, H ′(x, δx) is the Gâteaux derivative given by:

H ′(x, δx) = lim
ε→0

H(x+ εδx)−H(x)
ε

(5.3)

This provides us with a way to linearize (5.1a). Let:

H(x) = −ν∆uuu+ uuu · ∇uuu+∇p− fff
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then we can use (5.3) to calculate H ′:
H ′({uuuk, pk},{δuuu, δp})

= lim
ε→0

1
ε

(
−ν∆(uuuk + εδuuuk) + (uuuk + εδuuu) · ∇(uuuk + εδuuu) +∇(pk + εδp)−

fff − (−ν∆uuuk + uuuk · ∇uuuk +∇pk − fff)
)

= lim
ε→0

−εν∆δuuu+ uuuk · ∇(uuuk + εδuuu) + εδuuu · ∇(uuuk + εδuuuk) + εδp− uuuk · ∇uuuk

ε

= lim
ε→0

−εν∆δuuu+ εuuuk · ∇δuuu+ εδuuu · ∇uuuk + ε2δuuu · ∇δuuu+ εδp

ε

= −ν∆δuuu+ uuuk · ∇δuuu+ δuuu · ∇uuu+ δp

Remembering that δuuu = uuuk+1 − uuuk and δp = pk+1 − pk this can be simplified even further:
H ′({uuuk, pk}, {δuuu, δp}) = −ν∆uuuk+1 + ν∆uuuk + uuuk · ∇uuuk+1 + uuuk+1 · ∇uuuk − 2uuuk · ∇uk + pk+1 − pk

Plugging this into (5.2) yields:
−ν∆uuuk+1 + ν∆uuuk + uuuk+1 · ∇uuuk + uuuk · ∇uuuk+1 − 2uuuk · ∇uuuk + pk+1 − pk = −(−ν∆uuuk + uuuk · ∇uuuk +∇pk − fff)

⇒ −ν∆uuuk+1 + uuuk+1∇ · uuuk + uuu∇ · uuuk+1 + pk+1 = uuuk · ∇uuuk + fff

In other words, given uuu0, we can solve this sequence of linear systems:

−ν∆uuuk+1 + uuuk+1∇ · uuuk + uuu∇ · uuuk+1 + pk+1 = uuuk · ∇uuuk + fff (5.4a)

∇ · uuuk+1 = 0 (5.4b)

to find a solution to (5.1a) and (5.1b). Note that no initial guess for the pressure is needed, since

(5.1a) is linear in p. If uuu0 is sufficiently close to the actual solution, then this method will converge

quadratically.

5.3 Weak Formulation
5.3.1 Galerkin Weak Formulation

The Galerkin weak formulation for the Navier-Stokes equations (5.1a) and (5.1b) is derived

in exactly the same way as for the Stokes equations in section 4.2.1. Taking the inner product

of (5.1a) with a test function vvv ∈ H1
0(Ω) and (5.1b) with a test function q ∈ L2(Ω) and applying

Green’s identity where appropriate, we get:

a(uuu,vvv) + c(uuu,uuu,vvv) + b(vvv, p) = (fff,vvv) for all vvv ∈ H1
0(Ω) (5.5a)

b(uuu, q) = 0 for all q ∈ L2(Ω) (5.5b)

where:
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• a(uuu,vvv) = ν (∇uuu,∇vvv)

• b(vvv, q) = −(q,∇ · vvv)

• c(uuu,www,vvv) = uuu · ∇www · vvv

Given the linearization (5.4), we can turn (5.5a) and (5.5b) into a sequence of linear problems:

a(uuuk+1, vvv) + c(uuuk+1,uuuk, vvv) + c(uuuk,uuuk+1, vvv) + b(vvv, pk+1) = (fff,vvv) + c(uuuk,uuuk, vvv) for all vvv ∈ H1
0(Ω) (5.6a)

b(uuuk+1, q) = 0 for all q ∈ L2(Ω) (5.6b)

5.3.2 Discrete Weak Formulation
We begin again by choosing Vh ⊂ H1

0(Ω) and Sh ⊂ L2(Ω), such that:

a(uuuk+1, vvvh) + c(uuuk+1,uuuk, vvvh) + c(uuuk,uuuk+1, vvvh) + b(vvvh, pk+1)
= (fff,vvvh) + c(uuuk,uuuk, vvvh) for all vvvh ∈ Vh (5.7a)

b(uuuk+1, qh) = 0 for all qh ∈ Sh (5.7b)

where it is understood that for the sake of cleaner notation, in this context uuuk and pk are the k-th

iteration of the finite element approximation to uuu and p. Thus uuuk ∈ Vh and pk ∈ Sh.

Just like the Stokes equations, in order for a unique solution to exist we must choose Vh and

Sh such that b(vvvh, qh) satisfies the LBB condition (4.7). Again, the Taylor-Hood element pair

described in section 4.3.1 satisfies this condition.

5.4 Implementation

Implementation of a finite element solver for the Navier-Stokes equations is very similar to the

implementation for the Stokes equations solver described in section 4.5. The main difference is that

now we have to do a nonlinear solve.

In our class definition for NavierStokesSolver we will need to keep track of the previous

Newton iteration, Vector<double> previous_newton_step. During the matrix assembly we will

have to evaluate the previous velocity solution at the quadrature points in each cell.
template<int dim>
void NavierStokesSolver<dim>::assemble_system()
{

//clear the system matrix and rhs, because these change every iteration
system_matrix.reinit(sparsity_pattern);
system_rhs.reinit(dof_handler.n_dofs());

QGauss<dim> quadrature_formula (fe.degree + 1);
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const int dofs_per_cell = fe.dofs_per_cell;
const int n_q_points = quadrature_formula.size();
const int n_q_points_face = face_quadrature_formula.size();

std::vector<Tensor<1,dim> > previous_newton_velocity_values (n_q_points);
std::vector<Tensor< 2, dim> > previous_newton_velocity_gradients (n_q_points);

std::vector<Vector<double> > rhs_values (n_q_points, Vector<double>(dim+1));
std::vector<Tensor<2,dim> > grad_phi_u (dofs_per_cell);
std::vector<double> div_phi_u (dofs_per_cell);
std::vector<double> phi_p (dofs_per_cell);
std::vector<Tensor<1,dim> > phi_u (dofs_per_cell);

Vector<double> cell_rhs (dofs_per_cell);
FullMatrix<double> cell_matrix (dofs_per_cell, dofs_per_cell);

std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
const FEValuesExtractors::Vector velocities (0);
const FEValuesExtractors::Scalar pressure (dim);

FEValues<dim> fe_values(fe, quadrature_formula, update_values |
update_gradients | update_JxW_values | update_quadrature_points);

typename DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(), endc = dof_handler.end();

for (; cell!=endc; ++cell)
{

fe_values.reinit(cell);
cell_matrix = 0;
cell_rhs = 0;

//Calculate velocity values and gradients from previous newton iteration
//at each quadrature point in cell
fe_values[velocities].get_function_values(previous_newton_step,

previous_newton_velocity_values);
fe_values[velocities].get_function_gradients(previous_newton_step,

previous_newton_velocity_gradients);

forcing_function->vector_value_list(fe_values.get_quadrature_points(),
rhs_values);

//calculate cell contribution to system
for (int q = 0; q < n_q_points; q++)
{

for (int k=0; k<dofs_per_cell; k++)
{

grad_phi_u[k] = fe_values[velocities].gradient (k, q);
div_phi_u[k] = fe_values[velocities].divergence (k, q);
phi_p[k] = fe_values[pressure].value (k, q);
phi_u[k] = fe_values[velocities].value (k, q);

50



}

for (int i = 0; i < dofs_per_cell; i++)
{

for (int j = 0; j < dofs_per_cell; j++)
{

cell_matrix(i,j) +=
(input.nu*double_contract(grad_phi_u[i],grad_phi_u[j])

+ phi_u[j]
*transpose(

previous_newton_velocity_gradients[q])
*phi_u[i]
+ previous_newton_velocity_values[q]
*transpose(grad_phi_u[j])*phi_u[i]
- phi_p[j]*div_phi_u[i]
- phi_p[i]*div_phi_u[j])

*fe_values.JxW(q);

}

int equation_i = fe.system_to_component_index(i).first;
cell_rhs[i] +=

(fe_values.shape_value(i,q)*rhs_values[q](equation_i)
+ previous_newton_velocity_values[q]
*transpose(

previous_newton_velocity_gradients[q])*phi_u[i])
*fe_values.JxW(q);

}
}

cell->get_dof_indices(local_dof_indices);
constraints.distribute_local_to_global(cell_matrix, cell_rhs,

local_dof_indices, system_matrix, system_rhs);
}

}

We need two additional things for our nonlinear solve: an initial guess and a stopping criteria.

For our initial guess we will simply use the solution of the Stokes equations for the same ν, boundary

conditions and forcing function.

Recall that we are solving for the coefficients α and β in our basis expansions:

uuuh(xxx) =
K∑
k=1

αkvvvk(xxx)

and

ph(xxx) =
J∑
j=1

βjqj(xxx).
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Then to test for convergence we look at the norm of the difference in our solution vector:

residual =

(
L∑
`=1

(αk` − α
k−1
` )2 +

J∑
j=1

(βkj − βk−1
j )2

)1/2

L+ J
.

If this residual gets below a certain tolerance we say the sequence has converged.

template<int dim>
void NavierStokesSolver<dim>::run_newton_loop(int cycle)
{

int MAX_ITER = 10;
double TOL = 1e-8;

int iter = 0;
double residual = 0;

//solve Stokes equations for initial guess
assemble_stokes_system();
solve();

previous_newton_step = solution;

while (iter == 0 || (residual > TOL && iter < MAX_ITER))
{

assemble_system(input.nu);
solve();

Vector<double> res_vec = solution;
res_vec -= previous_newton_step;

residual = res_vec.l2_norm()/(dof_handler.n_dofs());
previous_newton_step = solution;

iter++;
printf("Residual = %4.10e\n", residual);

}

if (iter == MAX_ITER)
{

printf("WARNING: Newton’s method failed to converge\n");
}

}
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# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 187 1.140× 10−2 3.42× 10−3 - 1.054× 10−1 -
64 659 1.498× 10−3 4.275× 10−4 3.00 2.642× 10−2 2.00
256 2467 1.895× 10−4 5.337× 10−5 3.00 6.609× 10−3 2.00

Table 5.1: Convergence rates for uuu(xxx) in the steady Navier-Stokes equations using Taylor-
Hood elements.

# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 187 2.189× 10−1 1.667× 10−1 - 1.959× 10−1 -
64 659 5.801× 10−2 4.661× 10−2 1.84 6.440× 10−2 1.61
256 2467 1.499× 10−2 1.231× 10−2 1.92 2.565× 10−2 1.33

Table 5.2: Convergence rates for p(xxx) in the steady Navier-Stokes equations using Taylor-
Hood elements.

5.4.1 Convergence Study

We can use the same functions (4.11) and (4.12) as we did for Stokes flow to generate a forcing

function and boundary conditions on the unit square. Doing so leads to the convergence tables 5.1

and 5.2. These tables demonstrate the convergence rates predicted by (4.9).

We are also interested in the performance of our Newton solver. For the above problem with

ν = 1 and h = 1/8, Newton’s method converges in 2 iterations to a tolerance of 1 × 10−8 with

residuals of 3.07× 10−2 and 1.20× 10−11. Iteration counts for other values of ν are given in table

5.3. As ν decreases the Stokes solution becomes a worse initial guess, so we require more iterations

to find a solution. Eventually when we reach a small enough ν, Newton’s method fails to converge.

Recall that the convergence rate of Newton’s method should be quadratic. Given a sequence of

residuals, {ri}, i = 1, · · · , n, the convergence rates {qj}, j = 1, · · · , n− 2 of Newton’s method can

ν iterations
1 2
0.1 3
0.05 4
0.01 8
0.005 did not converge in 10 iterations

Table 5.3: Performance of Newton’s method for various values of ν using convergence test
problem.
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residual convergence
1.675× 10−2 -
1.566× 10−2 -
6.356× 10−3 13.40
4.724× 10−3 0.32
2.497× 10−3 2.15
7.751× 10−4 1.83
1.333× 10−4 1.51
5.302× 10−6 1.83
6.302× 10−9 2.09

Table 5.4: Convergence rates for Newton’s method in the test problem at ν = 0.01.

be calculated from the formula:

qi = log(ri+2/ri+1)
log(ri+1/ri)

.

For ν = 0.01, the residuals and convergence rates are given in table 5.4. The residuals appear to

approach quadratic convergence.

5.4.2 Lid Driven Cavity

For the Lid Driven Cavity problem, as described in section 4.7, we can compute the Reynolds

number. On the unit box, the characteristic length, L is 1. The characteristic velocity for this

problem is the speed of the lid, u0. If we take this speed to be 1 as well, then the Reynolds number

for this problem is simply ν−1.

Our results compare well with those in [4] as shown in figure 5.1.
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Figure 5.1: Steady state velocity magnitude for the driven cavity problem and comparison
with published results of u velocity at x = 0.5. Top: Re = 100, bottom: Re = 400.
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5.4.3 Flow Around a Cylinder

Another benchmark problem we can look at is the 2D flow past a cylinder problem. The

geometry is given in figure 5.2.

0.41

6

?

2.2� -

~0.2� -

0.2
?

6
0.1
?
6

Figure 5.2: Sketch of the domain used for flow around a cylinder, see [8].

For low Re we can assume there exists a steady state solution. Let us prescribe the inflow and

outflow velocity as:

uuu(xxx) =
(

4Umaxy(h−y)
h2

0

)
,

where h is the domain height, in our case 0.41, and Umax is the maximum inflow speed. Assume

no-slip boundary conditions on all other boundaries.

The Reynolds number can be calculated, with U being the average inflow velocity:

U = 1
h

∫ h

0

4Umaxy(h− y)
h2 dy = 4Umax

h3

(
hy2

2 − y3

3

)∣∣∣∣h
0

= 2
3Umax.

The characteristic length scale for this problem is the diameter of the circle, thus L = 0.1. This

means that we can compute Re as:

Re = 2Umax(0.1)
3ν . (5.8)

If we set Umax = 0.3 and ν = 0.01, then we get that Re = 20.

Some quantities of interest are the lift and drag on the circle, as well as the pressure drop,

p2 − p1, between the points (0.15, 2) and (0.25, 2), which are just in front of and behind the circle.
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Figure 5.3: Normal and tangential stresses at a point P on the circle.

As shown in figure 5.3, the stress vector normal to a point on the circle can be calculated by:

TTTnnn = 〈τ, σ〉 = σσσ ·nnn,

where τ is the component of TTTnnn tangential to the surface, σ is the component normal to the surface,

and the stress tensor σσσ is given by:

σσσ = ν∇uuu− pIII.

The total drag force, FD, and lift force, FL, on the circle are calculated by taking the line integral

of the normal stress vector over the entire circle:

〈FD, FL〉 =
∮
S
TTTnnnds.

From these values we can calculate the dimensionless lift and drag coefficients:

CD = 2
U2L

FD CL = 2
U2L

FL.

In deal.ii the lift and drag coefficients, along with the pressure drop can be calculated as follows:

template<int dim>
void NavierStokesSolver<dim>::calculate_lift_and_drag()
{

QGauss<dim-1> face_quadrature_formula(3);
const int n_q_points = face_quadrature_formula.size();

const FEValuesExtractors::Vector velocities (0);
const FEValuesExtractors::Scalar pressure (dim);

std::vector<double> pressure_values(n_q_points);
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std::vector<Tensor< 2, dim> > velocity_gradients(n_q_points);

Tensor<1,dim> normal_vector;
Tensor<2,dim> fluid_stress;
Tensor<2,dim> fluid_pressure;
Tensor<1,dim> forces;

FEFaceValues<dim> fe_face_values (fe, face_quadrature_formula, update_values
| update_quadrature_points | update_gradients | update_JxW_values
| update_normal_vectors );

typename DoFHandler<dim>::active_cell_iterator
cell = dof_handler.begin_active(), endc = dof_handler.end();

double drag = 0;
double lift = 0;

for (; cell!=endc; ++cell)
{

for (int face=0; face < GeometryInfo<dim>::faces_per_cell; face++)
{

if (cell->face(face)->at_boundary())
{

fe_face_values.reinit (cell, face);
std::vector<Point<dim> > q_points =

fe_face_values.get_quadrature_points();

if (cell->face(face)->boundary_indicator() == 4)//on the cirlce
{

fe_face_values[velocities].
get_function_gradients(solution, velocity_gradients);

fe_face_values[pressure].
get_function_values(solution, pressure_values);

for (int q = 0; q < n_q_points; q++)
{

normal_vector = -fe_face_values.normal_vector(q);

fluid_pressure[0][0] = pressure_values[q];
fluid_pressure[1][1] = pressure_values[q];

fluid_stress = input.nu*velocity_gradients[q]
- fluid_pressure;

forces = fluid_stress*normal_vector*fe_face_values.JxW(q);
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drag += forces[0];
lift += forces[1];

}
}

}
}

}

//calculate pressure drop
Point<dim> p1, p2;
p1[0] = 0.15;
p1[1] = 0.2;
p2[0] = 0.25;
p2[1] = 0.2;
Vector<double> solution_values1(dim+1);
Vector<double> solution_values2(dim+1);

VectorTools::point_value(dof_handler, solution, p1, solution_values1);
VectorTools::point_value(dof_handler, solution, p2, solution_values2);

double p_diff = solution_values1(dim) - solution_values2(dim);
}

The computed velocity magintude is shown in figure 5.4. We can compare our results with

those in [8]. In that paper several simulations were made of this problem using various techniques.

Our computed quantites of interest after 2 adaptive mesh refinements are:

deal.ii published results [8]
CD 5.573086 5.5700 - 5.5900
CL 0.009396 0.0104 - 0.0110

p2 − p1 0.117475 0.1172-0.1176

The lift is slightly low, but these values are all within the ranges calculated by the other models.

Figure 5.4: Velocity magnitude for flow around a cylinder at Re = 20.
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5.5 Unsteady Flow

There are a wide range of problems for the Navier-Stokes equations that do not exhibit steady

state solutions. In order to study these problems we must look at the time dependent Navier-Stokes

equations, given by:

uuut − ν∆uuu+ uuu · ∇uuu+∇p = fff(xxx, t) xxx ∈ Ω, t ∈ [0, T ]

∇ · uuu = 0

uuu(xxx, 0) = uuu0(xxx)

These equations come with appropriate boundary conditions. We can discretize in time using
backwards Euler as we did for Stokes flow in section 4.10, in which case we arrive at the sequence
of linear systems:

1
δ

(uuum+1,(k+1), vvvh) + a(uuum+1,(k+1), vvvh) + c(uuum+1(k+1),uuum+1,(k), vvvh) + c(uuum+1,(k),uuum+1,(k+1), vvvh)

+ b(vvvh, pm+1,(k+1)) = (fffm+1, vvvh) + c(uuum+1,(k),uuum+1,(k), vvvh) + (uuum, vvvh)
∇ · uuum+1,(k+1) = 0

where uuum,(k) and pm,(k) are the velocity and the pressure respectively at time mδ and Newton

iteration k. Note that again we do not require any initial condition for the pressure and that we

can use the initial velocity condition uuu0(x) as uuu0. We can also use the solution from the previous

timestep as the initial guess for Newton’s method, i.e. uuum+1,(0) = uuum.

This method requires solving a nonlinear system at each timestep. This is in general very

expensive. One way to get around this is to time lag the velocity in the nonlinear term, either

partially, or fully. Partially lagging the velocity yields the now linear system:

1
δ

(uuum+1, vvvh) + a(uuum+1, vvvh) + c(uuum,uuum+1, vvvh) + b(vvvh, pm+1) = (fffm+1, vvvh) + 1
δ

(uuum, vvvh)

∇ · uuum+1) = 0

This now requires solving a different linear system at each timestep. If we fully lag the velocity we

get the system:

1
δ

(uuum+1, vvvh) + a(uuum+1, vvvh) + b(vvvh, pm+1) = (fffm+1, vvvh)− c(uuum,uuum, vvvh) + (uuum, vvvh)

∇ · uuum+1) = 0
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which require us to solve the same linear system at each timestep. This enables us to do an LU

factorization of the matrix once outside the time loop and reuse it at each timestep. Of course

since these methods do not explicitly treat the nonlinear term, they are less accurate than the full

Newton solve at each timestep. This places restrictions on the size of the timestep. If the timestep

is too large than time lagging the velocity may give inaccurate answers. All results in this thesis

have been obtained doing a full Newton solve at each timestep.

5.5.1 Implementation

The deal.ii implementation of this is very similar to the implementation of the unsteady Stokes

equations discussed in section 4.10.1. The main difference here is that we now have to implement

Newton’s method inside the time loop.

template<int dim>
void NavierStokesSolver<dim>::run_time_loop()
{

VectorTools::interpolate(dof_handler, *initial_conditions, old_solution);
solution = old_solution;

assemble_mass_matrix();

double t = input.t0;

Vector<double> tmp; //tmp is contribution from previous time step
tmp.reinit(solution.size());

while (t < input.tf)
{

t += input.dt;

forcing_function->set_time(t);
boundary_values->set_time(t);

constraints.close();

int MAX_ITER = 10;
double TOL = 1e-8;
int iter = 0;
double residual = 0;

previous_newton_step = old_solution;
mass_matrix.vmult(tmp, old_solution);
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while (iter == 0 || (residual > TOL && iter < MAX_ITER))
{

assemble_system();
system_rhs.add(tmp);

constraints.condense(system_matrix, system_rhs);

solve();

Vector<double> res_vec = solution;
res_vec -= previous_newton_step;

residual = res_vec.l2_norm()/(dof_handler.n_dofs());
previous_newton_step = solution;

iter++;

printf("Residual = %4.10e\n", residual);
}

if (iter == MAX_ITER)
{

printf("WARNING: Newton’s method failed to converge\n");
}

old_solution = solution;
}

}

5.5.2 Convergence Study

To test our code we again use the method of manufactured solutions. Using the same exact

solution (4.16) and (4.17), with δ = h3, we can generate the error tables 5.5 and 5.6 which show

the desired rate of convergence.

# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 187 1.123× 10−2 3.258× 10−3 - 1.043× 10−1 -
64 659 1.474× 10−3 4.166× 10−4 2.97 2.605× 10−2 2.00
256 2467 1.865× 10−4 5.240× 10−5 2.99 6.509× 10−3 2.00

Table 5.5: Convergence rates for uuu(xxx) in the unsteady Navier-Stokes equations using
Taylor-Hood elements and backward Euler.
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# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 187 2.452× 10−1 1.869× 10−1 - 1.845× 10−1 -
64 659 4.899× 10−2 4.055× 10−2 2.20 3.859× 10−2 2.26
256 2467 1.261× 10−2 1.059× 10−2 1.94 9.829× 10−3 1.97

Table 5.6: Convergence rates for p(xxx) in the unsteady Navier-Stokes equations using
Taylor-Hood elements and backward Euler.

5.5.3 Flow Around a Cylinder

We will consider the same problem as in 5.4.3, however this time for the inflow and outflow

boundary conditions:

uuu(xxx) =
(

4Umaxy(h−y)
h2

0

)
,

we will take Umax to be 1.5. From 5.8 this gives a Reynolds number of 100.

At this Reynolds number if we start with uuu = 000 as our initial condition, after a certain amount

of time our solution becomes periodic. The velocity magnitude for various times is shown in figure

5.5.

We can again compare our model to the results obtained in [8]. The coefficients CL and CD

as well as the pressure drop p2 − p1 are defined in section 5.4.3. In addition we will calculate the

Strouhal number, St, defined as:

St = Lf

U
.

If we run the simulation to t = 25, the flow field is fully developed into a periodic solution. At

this point we can look at any cycle of CL, where a cycle starts at t = t0 where the lift is largest,

and ends at t = t0 + 1/f where CL is largest again. See figure 5.6 for plots of the lift and drag

coefficients as well as the pressure drop over one cycle.

Over one cycle we can calculate the maximum lift and drag coefficients and the maximum

pressure drop as well as the Strouhal number:

deal.ii published results [8]
max CD 3.181 3.2200 - 3.2400
max CL 0.865 0.9900 - 1.0100

max p2 − p1 2.474 2.4600-2.500
St 0.296 0.2950-0.3050

As with the stationary case, the lift coefficient is a little low, but within the ranges of solutions

given in [8].
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Figure 5.5: Velocity magnitude for flow past a cylinder at Re = 100. Top to bottom:
t = 0.5, t = 1.0, t = 2.0, t = 3.0, t = 3.2.
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Figure 5.6: Top to bottom : Lift coefficient, drag coefficient and pressure drop for 1 cycle.
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CHAPTER 6

DARCY FLOW IN POROUS MEDIA

Flow through a porous medium can be described by Darcy’s Law. Originally determined from

experiment by the French engineer Henry Darcy in 1856 to describe water flowing through sands,

it has since been derived from first principles by applying a technique called volume averaging to

the Stokes equations [10] [11]. In chapter we present equations for Darcy flow and a finite element

discretization method. As with the Stokes and Navier-Stokes equations this will be a mixed finite

element method, however unlike those equations the Taylor-Hood element pair does not guarantee

existence and uniqueness. Rather, we will use the Raviart-Thomas (RT ) element for the velocity.

Results concerning the RT element are provided and a convergence study on the Darcy equations

is done. In the remaining sections a case study is presented that combines Hooke’s Law with the

Darcy equations to investigate how fluid stresses deform a polystyrene foam.

6.1 Governing Equations

The equations for Darcy flow in a domain Ω with boundary Γ = Γ1 ∪ Γ2 are given by:

ν

κ(xxx)u
uu+∇p = fff(xxx) in Ω (6.1a)

∇ · uuu = 0 in Ω (6.1b)

p = g(xxx) on Γ1 (6.1c)

uuu ·nnn = 0 on Γ2 (6.1d)

where again uuu is the fluid velocity, p is the fluid pressure and ν is the kinematic viscosity of the

fluid. The functions fff(xxx) and g(xxx) are given as is the permeability κ(xxx).
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6.2 Weak Formulation
6.2.1 Galerkin Weak Formulation

Define the space:

Hdiv,0 =: {vvv ∈ L2(Ω) : ∇ · vvv ∈ L2(Ω) and vvv ·nnn = 0 on Γ2}

Taking the inner product of (6.1a) with a test function v ∈ Hdiv,0 and integrating the second term

by parts we get:

(ν
κ
uuu,vvv)− (p,∇ · vvv) = (fff,vvv)−

∮
Γ
pvvv ·nnndΓ.

Or equivalently:

a(uuu,vvv) + b(vvv, p) = (fff,vvv) + d(vvv)

where:

• a(uuu,vvv) = ν
∫

Ω
1
κuuu · vvvdΩ

• b(vvv, p) = −
∫
Ω p∇ · vvvdΩ

• d(vvv) = −
∫
Γ1
gvvv ·nnndΓ

Taking the inner product of (6.1b) with a test function q ∈ L2(Ω) yields:

b(uuu, q) = 0.

Putting this all together yields the Galerkin weak problem we have to solve. Find uuu ∈ Hdiv(Ω),

p ∈ L2(Ω) such that:

a(uuu,vvv) + b(vvv, p) = (fff,vvv) + d(vvv) for all vvv ∈ Hdiv,0

b(uuu, q) = 0 for all q ∈ L2(Ω)

6.2.2 Discrete Weak Formulation

As in sections 4.2.2 and 5.3.2 we will choose finite dimensional subspaces Vh and Sh of the

infinite dimensional subspaces for uuu and p in which to compute a solution uuuh and ph. Our discrete

problem will then read: seek uuuh ∈ Hdiv(Ω), ph ∈ L2(Ω) such that:

a(uuuh, vvvh) + b(vvvh, ph) = (fff,vvvh) + d(vvvh) for all vvvh ∈ Vh

b(uuuh, qh) = 0 for all qh ∈ Sh
(6.2)
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As with the Stokes and Navier-Stokes equations, Sh ∈ L2(Ω), however unlike the previous cases,

Vh /∈ H1
0(Ω), but rather Vh ∈ Hdiv,0(Ω).

Once we have decided on Vh and Sh we can turn (6.2) into a matrix problem by denoting

{vvvk(xxx)}, k = 1, · · · ,K and {qj(xxx)}, j = 1, · · · , J as the basis for Vh and Sh respectively. Then as

before, we have:

uuuh(xxx) =
K∑
k=1

αkvvvk(xxx) ph(xxx) =
J∑
j=1

βjqj(xxx)

and we can rewrite (6.2) as:
K∑
k=1

αka(vvvk, vvv`) +
J∑
j=1

βjb(qj , vvv`) = (fff,vvv`) + d(vvv`) for ` = 1, · · · ,K

K∑
k=1

αkb(vvvk, qi) = 0 for i = 1, · · · , J

(6.3)

which we can solve for the unknown coefficients {αk} and {βj}. Assuming Γ1 is not empty, we will

have some boundary conditions on p, so this system will not be singular.

6.3 Finite Element Spaces

We saw in section 4.3.1 that the Taylor-Hood element pair satisfies the conditions necessary

for a unique solution for the discrete weak form of the Stokes equations (4.5). It turns out that in

general the Taylor-Hood element pair does not satisfy all the conditions for the weak form of the

Darcy equations.

Recall that in order to guarantee a unique solution to the weak formulation we must have:

1. (fff,vvvh) is bounded for all vvvh ∈ Vh

2. a(uuuh, vvvh) is bounded and coercive for all uuuh, vvvh ∈ Vh

3. b(vvvh, qh) satisfies the LBB condition (4.7)

For Stokes flow it turns out that these conditions, with the exception of the LBB condition are

all satisfied for any Vh ∈ H1
0(Ω) and Sh ∈ L2(Ω). The Taylor-Hood element pair then satisfied

the LBB condtion. For the Darcy flow equations, it is no longer true that a(·, ·) is coercive for

any Vh ∈ Hdiv,0. The Taylor-Hood element pair requires too much continuity on the velocity and

therefore cannot be used.

A popular choice of elements for Darcy flow problems is the Raviart-Thomas (RT ) element for

velocity and discontinuous linear elements for the pressure.
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6.3.1 Raviart-Thomas Elements

In order for a function vvv to be in Hdiv we have to show that ∇·vvv exists and that it is in L2(Ω).

For the divergence of a function to exist (in a weak sense), there must exist a function q ∈ L2(Ω)

such that: ∫
Ω
vvv · ∇φdΩ = −

∫
Ω
qφdΩ for all φ ∈ C∞0 .

Let Jh be a quadrilateral mesh of Ω̄ where Ω̄ is an approximation to Ω. We can apply Green’s

identity over each element � ∈ Jh with boundary δ�:∫
Ω
vvv · ∇φdΩ =

∑
�∈Jh

∫
�
vvv · ∇φd�

Green’s identity ⇒ = −
∑

�∈Jh

∫
�
∇ · vvvφd� +

∑
�∈Jh

∫
�

(vvv ·nnn)|δ�φd�

= −
∑

�∈Jh

∫
�
∇ · vvvφd� +

∑
e∈δ�

∫
e
[(vvv ·nnn)|e]φde

where [(vvv · nnn)|e] is the jump of vvv · nnn across edge e. If this is 0, meaning the normal component

of vvv is continuous across each element boundary, then we have the required conditions for a weak

divergence to exist. This weak divergence is given by:

∇ · v =
∑

�∈Jh

∇ · vvv,

i.e. the sum of the strong divergence over each element. This is in L2(Ω) because over each element

we know that vvv is a polynomial.

To define the RT element on a quadrilateral in R2 [1] we will first define the space:

RT [k](�) = Pk,+1,k(�)× Pk,k+1(�), (6.4)

where Pk,` is defined to be all polynomials of degree ≤ k in x and ≤ ` in y. A basis for RT [k] is

given by: {(
xiyj

0

)
,

(
0

xjyi

)}
, 0 ≤ i ≤ k + 1, 0 ≤ j ≤ k.

The dimension of this basis is 2(k + 1)(k + 2).

The degrees of freedom Θ are given by:∫
Γ
pkφφφ ·nnndΓi pk ∈ Pk(Γ) for each edge of � (6.5)∫

Ω
φφφ · pppkdΩ pppk ∈ΨΨΨk(�) (6.6)
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where ΨΨΨk is defined as:

ΨΨΨk(�) = Pk−1,k × Pk,k−1.

Appendix A provides an explicit derivation of the basis functions for RT [0] and RT [1].

If we use RT elements of order k along with discontinuous linear pressure elements, then as

long as the actual solution uuu ∈ Hk(Ω) the following error estimates hold [7]:

||u− uh||div + ||p− ph||0 ≤ Chk||p||k+1

||u− uh||0 ≤ hk+1||u||k+1

||p− ph||0 ≤ Chk+1||p||max{k+1,2}

6.4 Implementation

The Raviart-Thomas element is implemented in deal.ii in the class FE_RaviartThomas.

template<int dim>
DarcyFlow<dim>::DarcyFlow():

fe (FE_RaviartThomas<dim>(1), 1, FE_DGQ<dim>(1), 1),
dof_handler(mesh)

{}

Using this element requires little unexpected changes to our code. To apply the boundary

conditions we now use the function VectorTools::project_boundary_values_div_conforming on the

boundaries where we prescribe uuu ·nnn.

//apply through boundary conditions on top and bottom
VectorTools::project_boundary_values_div_conforming(dof_handler, 0,

*boundary_values, 1, constraints);
VectorTools::project_boundary_values_div_conforming(dof_handler, 0,

*boundary_values, 2, constraints);

6.4.1 Convergence Study

To test our code we turn again to the exact solution (4.11); unlike the previous cases however

we choose the exact solution for p:

p(x, y) = sin(πx).

This is done so that we have constant pressure on the left and right sides of the unit square. Using

these solutions we can create boundary conditions uuu · nnn on the top and bottom of the unit square
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# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 208 6.068× 10−1 2.341× 10−1 - 9.080× 10−1 -
64 800 1.590× 10−1 5.866× 10−2 1.99 4.561× 10−1 0.99
256 3136 4.022× 10−2 1.474× 10−2 2.00 2.283× 10−1 1.00

Table 6.1: Convergence rates for uuu(xxx) for Darcy flow using RT 1 elements for the velocity
and discontinuous P1 elements for the pressure.

# cells # unknowns L∞ error L2 error L2 convergence H1 error H1 convergence
16 208 4.845× 10−2 3.226× 10−2 - 9.980× 10−1 -
64 800 1.266× 10−2 8.112× 10−3 1.99 5.025× 10−1 0.99
256 3136 3.201× 10−3 2.031× 10−3 2.00 2.517× 10−1 1.00

Table 6.2: Convergence rates for p(xxx) for Darcy flow using RT 1 elements for the velocity
and discontinuous P1 elements for the pressure.

as well as an appropriate forcing function. This leads to the convergence tables 6.1 and 6.2 which

demonstrate the desired convergence rates.

6.5 Case Study : Foam Deformation

Polystyrene foam infused with resin is viewed as a potential way to control placement of additives

inside a larger structure. For example if one wanted to mechanically reinforce one particular area

of an aeroplane fuselage, one could place a foam containing carbon nanotubes at that point before

resin infusion. In many applications, such as the one mentioned, it is important that the surface of

the hardened resin remains smooth. It has been experimentally shown that in the area above the

foam this is not the case, with bumps that can be around 10% of the foam height. See figure 6.1

for an SEM image of a piece of deformed foam.

One hypothesis that might explain this phenomenon relates to inhomogeneity in the foam

porosity. As fluid flows through the foam the nonuniform velocity and pressure fields exert stresses

on the foam. These stresses can be converted to strains, and theses strains used to calculate the

deformation of the foam.

6.5.1 Problem Description

Consider a cross section of a porous foam as shown in figure 6.2. We prescribe pressure boundary

conditions on the inflow and outflow and no-through boundary conditions on the velocity on the

top and bottom.
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Figure 6.1: Cross section of a piece polystyrene foam after resin infusion.

Stress. We can solve (6.2) to get a pressure and velocity profile. From this, a stress tensor

field can be calculated:

σσσ = −pIII + µ
(
∇uuu+ (∇uuu)T

)
.

This can be split into components:

σσσ =
(
σxx σxy
σyx σyy

)
where:

σxx = −p+ 2µ∂u
∂x

σyy = −p+ 2µ∂v
∂y

σxy = σyx = µ

(
∂u

∂y
+ ∂v

∂x

)
Note that σij is the force per unit area acting in coordinate direction i on a plane perpendicular

to coordinate direction j. This means that σxx and σyy are normal stresses, while σxy = σyx are

shear stresses.

72



uuu ·nnn = 0

uuu ·nnn = 0

p = pin p = poutΩ

Figure 6.2: Initial cross section of porous foam.

Strain. Strain measures the deformation of an object relative to a reference length. Given a

displacement field ξξξ(xxx) = 〈α, β〉, the strain tensor field εεε can be calculated as:

εεε = 1
2
(
∇ξξξ + (∇ξξξ)T

)
=
(
εxx εxy
εyx εyy

)

where:

εxx = ∂α

∂x
(6.7a)

εyy = ∂β

∂y
(6.7b)

εxy = εyx = 1
2

(
∂α

∂y
+ ∂β

∂x

)
(6.7c)

Hooke’s Law. The relationship between stress and strain can be described in the linear elastic

region in figure 6.3 by Hooke’s Law. In 1D, Hooke’s Law states:

σ = Eε,

where E is the elastic (Young’s) modulus of the material. This modulus is in fact the constant

slope of the stress-strain curve in the linear elastic region. For 2D isotropic materials, Hooke’s Law

can be expressed as:  εxx
εyy
2εxy

 = 1
E

 1 −µ 0
−µ 1 0
0 0 2(1 + µ)


σxxσyy
σxy

 (6.8)

where E is again the elastic modulus of the material and µ is its Poisson ratio. (In most literature

ν is the Poisson ratio, however we have already used that for the kinematic viscosity.)
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Figure 6.3: An example of a stress-strain curve for a solid material. Hooke’s Law is valid
in the low strain linear region, ε < ε∗.

Displacement. If we are only interested in vertical displacement (i.e. finding the ridges at

the top of the foam), then all we need to do is integrate (6.7b):

∂β

∂y
= εyy ⇒ β(x, y) =

∫ y

0
εyy(x, Y )dY + c(x).

One assumption we can make is that the bottom of the foam stays fixed, i.e. β(x, 0) = 0. Doing

this means that c(x) = 0, and we get:

β(x, y) =
∫ y

0
εyy(x, Y )dY.

Plugging in εyy from (6.8) yields:

β = 1
E

∫ y

0
σyy − νσxxdY (6.9)

Porosity. To generate a porosity field φ(xxx), we take N circular pores at random locations xxxi,

i = 1, · · · , N and give each one a random inner radius γin
i and a random outer radius γout

i . For

each pore inside its inner radius the porosity is 1 (full void) and outside its porosity is 0. Between
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its inner and its outer radii the porosity decreases linearly from 1 to 0. At each point xxx ∈ Ω, the

porosity φ is determined by summing all the porosities of each pore. Mathematically this can be

described as:

φ(xxx) = min
(

max
(

N∑
i=1

ηi(xxx), φmin

)
, φmax

)
where

ηi(xxx) =


1 if |xxx− xxxi| ≤ γin

i
|xxx−xxxi|−γout

i

γin
i −γ

out
i

if γin
i ≤ |xxx− xxxi| ≤ γout

i

0 otherwise

Permeability. The relationship between permeability and porosity can be quite complicated,

however we will assume an isotropic permeability with the simple relationship:

κ(xxx) = Aφ(xxx)B,

where A and B are constants. Note that since the foam is isotropic, we can take the permeability

to be a scalar.

Local elastic modulus. The local elastic modulus will depend upon the local porosity. As

the porosity increases, we expect the modulus to decrease. We will assume the linear relationship:

E(xxx) = Ē
1− φ(xxx)

1− φ̄
,

where Ē and φ̄ are the bulk elastic modulus and porosity respectively.

6.5.2 Results

The first step is to generate the porosity field. To do so we use the following parameters:

initial foam height 1 mm
foam length 5 mm
N 30
rin [0.001 mm, 0.03 mm]
rout [0.05 mm, 0.12 mm]
φmin 1× 10−3

φmax 0.95

This gives the porosity field shown in figure 6.4, with an average porosity of 0.672.

To solve the remaining problem, consider the following parameters:
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Figure 6.4: Porosity distribution for the first iteration.

ν 10 Pa s
µ 0.1
A 2× 10−4

B 2
Ē 1× 105 Pa
pin 1× 105 Pa
pout 9.9× 104 Pa

Figure 6.5: Pressure distribution for the first 3 iterations.
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Figure 6.6: εyy distribution for the first 3 iterations.
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Figure 6.7: Vertical displacement distribution for the first 3 iterations.
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The average displacement of the top of the foam for the first 3 iterations are: {6.94×10−3mm, 1.20×

10−5mm, 8.57 × 10−8mm}. We can conclude therefore that our iteration scheme converges very

quickly.

To compare with experimental results, we will use the same parameters, but with Ē = 1× 106

Pa. Using this stiffer foam we see average displacements of {6.96×10−4mm, 1.17×10−7mm, 8.59×

10−11mm} for the first 3 iterations. This indicates that although the fluid stresses have an impact

on the foam shape, our model underestimates the size of the bumps. Sensitivity studies can show

us the general trends our model predicts. To start with, using the same base parameters as above,

we will look at the sensitivity of the Young’s modulus.
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Figure 6.8: Sensitivity of bulk Young’s modulus

Figure 6.8 shows that as expected from Hooke’s law, the displacement scales as 1/Ē. Perhaps a

more interesting sensitivity study is the sensitivity to the bulk porosity φ̄. Bulk porosity is not an
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Figure 6.9: Sensitivity of bulk porosity

input to our model, however one way to control it is by varying the number of pores N . Since the

porosity field is actually random, we will run the simulation 5 times for each N .

As can be seen in figure 6.9, as the bulk porosity decreases, the average displacement actually

increases. This is due to the fact that local modulus depends upon the porosity. If the foam is very

uniform, then the local modulus is very close to the bulk modulus everywhere so we don’t get low

local modulus anywhere in the foam. This limits the deformation at high bulk porosities.

A final sensitivity study is looking at the effect of the maximum porosity φmax as shown in

figure 6.10.This study shows that the displacement is very sensitive to the maximum porosity.
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Figure 6.10: Sensitivity of maximum porosity
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APPENDIX A

EXPLICIT FORM OF RAVIART-THOMAS
ELEMENTS

In this appendix we derive the explicit basis functions for RT 0 and RT 1 on the reference square.

1. k = 0:

For k = 0, our basis functions RT [0](�) will be of the form:

φi = P0(�) + xP0(�)

=
(
a1
b1

)
+
(
a2x
b2y

)

For k = 0, Ψk(�) is empty, so we only need to consider the edge degrees of freedom given
by (6.5). The integral along the boundary can be broken up along each edge, as labeled in
figure A.1. For each of the four edges, P0(Γ) is 1. So we have 4 integrals to calculate for
each basis function. For φ1, we want the normal derivative to be 1 along E1 and 0 along the
other edges. This gives:

(a) E1 : n = î.

⇒
∫ 1

−1
a1 + a2xdy = 2(a1 + a2) = 1

(b) E2 : n = ĵ.

⇒
∫ −1

1
b1 + b2ydx = −2(b1 + b2) = 0

(c) E3 : n = −î.

⇒
∫ −1

1
−(a1 + a2x)dy = 2(a1 − a2) = 0

(d) E4 : n = −ĵ.

⇒
∫ 1

−1
−(b1 + b2y)dx = −2(b1 − b2) = 0

This can be put into a linear system to solve for the coefficients:
2 2 0 0
0 0 −2 −2
2 −2 0 0
0 0 −2 2



a1
a2
b1
b2

 =


1
0
0
0

 ,
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Figure A.1: The reference square.

which can be solved to give:

φ1 = 1
4

(
1 + x

0

)
To calculate the other 3 basis functions, the matrix will stay the same, but the right hand
side will change. The other basis functions are:

φ2 = −1
4

(
0

1 + y

)
φ3 = 1

4

(
1− x

0

)
φ4 = 1

4

(
0

y − 1

)

2. k = 1:

For k = 1, RT [1](�) = P1(�) + xP1(�). Recall that P1 contains linear combinations of:

{1, x, y, xy}

Therefore the basis functions for RT [1](�) will be of the form:

φi =
(
a1 + a2x+ a3y + a4xy + a5x

2 + a6x
2y

b1 + b2x+ b3y + b4xy + b5y
2 + b6xy

2

)
,

which has 12 unknown coefficients. The space Ψ1(�) now contains the functions:

Ψ1 = P0,1 × P1,0 = {1, y} × {1, x}

which has a basis: {(
1
0

)
,

(
y
0

)
,

(
0
1

)
,

(
0
x

)}
Again we will start by doing the line integrals over each edge.
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(a) E1 : n = î, x = 1. We will have to consider pk = 1 and pk = y.

i. pk = 1:

⇒
∫ 1

−1
a1 + a2 + a3y + a4y + a5 + a6ydy = 2(a1 + a2 + a5) = 1

ii. pk = y:

⇒
∫ 1

−1
y(a1 + a2 + a3y + a4y + a5 + a6y)dy = 2

3(a3 + a4 + a6) = 0

(b) E2 : n = ĵ, y = 1. We will have to consider pk = 1 and pk = x.

i. pk = 1:

⇒
∫ −1

1
b1 + b2x+ b3 + b4x+ b5 + b6xdx = −2(b1 + b3 + b5) = 0

ii. pk = y:

⇒
∫ −1

1
x(b1 + b2x+ b3 + b4x+ b5 + b6x)dx = −2

3(b2 + b4 + b6) = 0

(c) E3 : n = −î, x = −1.

i. pk = 1:

⇒
∫ −1

1
−(a1 − a2 + a3y − a4y + a5 + a6y)dy = 2(a1 − a2 + a5) = 0

ii. pk = y:

⇒
∫ −1

1
−y(a1 − a2 + a3x− a4x+ a5 + a6x)dy = 2

3(a3 − a4 + a6) = 0

(d) E4 : n = −ĵ, y = −1.

i. pk = 1:

⇒
∫ 1

−1
−(b1 + b2x− b3 − b4x+ b5 + b6x)dx = −2(b1 − b3 + b5) = 0

ii. pk = y:

⇒
∫ 1

−1
−x(b1 + b2x− b3 − b4x+ b5 + b6x)dx = −2

3(b2 − b4 + b6) = 0

To calculate the interior degrees of freedom we will have to calculate 4 double integrals over
the reference square:

(a) pk = 〈1, 0〉: ∫ 1

−1

∫ 1

−1
φ1 · pkdydx = 4a1 + 4

3a5 = 0
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(b) pk = 〈y, 0〉: ∫ 1

−1

∫ 1

−1
φ1 · pkdydx = 4

3a3 + 4
9a6 = 0

(c) pk = 〈0, 1〉: ∫ 1

−1

∫ 1

−1
φ1 · pkdydx = 4b1 + 4

3b5 = 0

(d) pk = 〈0, x〉: ∫ 1

−1

∫ 1

−1
φ1 · pkdydx = +4

3b2 + 4
9b6 = 0

This leads to the linear system:



2 2 0 0 2 0 0 0 0 0 0 0
0 0 2

3
2
3 0 2

3 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 −2 0 −2 0
0 0 0 0 0 0 0 −2

3 0 −2
3 0 −2

3
2 −2 0 0 −2 0 0 0 0 0 0 0
0 0 2

3 −2
3 0 2

3 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 2 0 −2 0
0 0 0 0 0 0 0 −2

3 0 2
3 0 −2

3
4 0 0 0 4

3 0 0 0 0 0 0 0
0 0 4

3 0 0 4
9 0 0 0 0 0 0

0 0 0 0 0 0 4 0 0 0 4
3 0

0 0 0 0 0 0 0 4
3 0 0 0 4

9





a1
a2
a3
a4
a5
a6
b1
b2
b3
b4
b5
b6



=



1
0
0
0
0
0
0
0
0
0
0
0



,

which can be solved to give:

φ1 = 1
4

(
1 + 4x− 3x2

0

)
.

By modifying the righthand side we can solve for the other 11 basis functions:

φ2 = −1
8

(
3y − 6xy − 9x2y

0

)
φ3 = 1

8

(
0

1− 2y − 3y2

)
φ4 = 1

8

(
0

3x− 6xy − 9xy2

)

φ5 = 1
4

(
1− 2x− 3x2

0

)
φ6 = −1

8

(
3y + 6xy − 9x2y

0

)
φ7 = 1

8

(
0

1 + 2y − 3y2

)

φ8 = 1
4

(
0

3x+ 6xy − 9xy2

)
φ9 = −1

4

(
3x+ 3x2

0

)
φ10 = 1

8

(
9y − 9y2

0

)

φ11 = 1
8

(
0

3− 3y2

)
φ12 = 1

8

(
0

9x− 9xy2

)
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