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Abstract

Recent discoveries of new high temperature superconductors initiated investiga-

tions to harness these new materials’ properties. Unfortunately, many new high tem-

perature superconductors come with odd properties such as multi-band interactions and

anisotropic behavior, as is the case for Magnesium Diboride. In this research, Ginzburg

Landau model variants are modified to try to simulate these materials more realistically

at a mesoscopic scale. In particular an Anisotropic Two-Band Time Dependent Ginzburg

Landau with inter-band coupling effects is formed to describe Magnesium Diboride. The

influence of the coupling parameter η on the critical current is also investigated using a

series of numerical studies.
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Chapter 1

Superconductivity

1.1 Introduction

Superconductivity has sparked great interest in the study of physics over the last century.

Many great scientists have pondered on how to understand this interesting phenomenon,

as well as harness it. Superconductivity is a state in which a conductor has zero elec-

trical resistance and exhibits the Meissner effect. This amazing property opened a new

door for physics when it was discovered in 1911[1]. A material with zero electrical re-

sistance can carry energy much more efficiently than a conventional conductor, due to

the near disappearance of joule heating. This property of zero resistance also leads to

some interesting magnetic properties. A material in the superconducting state while in

a magnetic field completely expels any field lines from penetrating the sample. Thus

superconductors also possess perfect diamagnetism, known as the Meissner Effect.

There is actually a division amongst superconducting materials in regard to the

Meissner effect, Type I and Type II superconductors. If the magnetic field surround-

ing a superconductor reaches a critical strength, the superconductor generally exhibits

one of two behaviors. Type I superconductors completely lose their superconducting

properties once this magnetic strength is reached, returning to the normal state of the

material. On the other hand, Type II superconductors remain in the superconducting

state but are penetrated by magnetic flux vortices, slightly reducing the superconducting

current in the material. There is a second, stronger critical magnetic field strength that

returns Type II superconductors to their normal or non-superconducting state. Unfor-

tunately, these properties generally only exist when a substance is cooled near absolute

zero. Once the temperature in the sample reaches a critical temperature, the sample

loses its superconducting properties. More recently, high temperature superconductors

have been discovered that may lead to more feasible technology using superconductors,

1



Chapter 1. Superconductivity 2

taking advantage of their powerful properties.

Many models have been derived to understand superconductivity in hopes to har-

ness it as well as discover new physics. One of these models, the BCS model, is derived

from the microscopic effects of coupled electrons or Cooper pairs. Another model, the

Ginzburg-Landau model, is a mesoscopic model and has the same scale resolution as the

magnetic vortices in Type II superconductors. The Ginzburg-Landau model possesses

the correct scaling to model such magnetic properties. The Ginzburg-Landau theory

was developed by Ginzburg and Landau between the years of 1937 and 1950 [2] and

verified by Gor’kov in 1959[3].

Numerical studies of the Ginzburg-Landau model have been done over the last

few decades. Generally these numerical studies are aimed at studying the nucleation

and behaviors of the magnetic vortices in Type II superconductors. Du et al. were some

of the first to do numerical simulations of the Ginzburg-Landau model using the Finite

Elements Method [4, 5]. They first proved the existence and uniqueness of an approxi-

mate solution of the Ginzburg-Landau equations, then computed numerical simulation

of superconducting samples. Many scientists and mathematicians have extended the

Ginzburg-Landau model to handle more complex situations, such as time dependence

[6, 7], anisotropy [8, 9], normal inclusions [8, 10], non-isothermal model[11, 12], random

thermal fluctuations [8, 13], and since the discovery of new Two Band superconductors,

a two band Ginzburg-Landau model [14].

Repetitious discoveries of new high temperature superconductors have sparked a

keen interest in the subject. Higher temperature superconductors make superconduct-

ing technology much more feasible. This is because low temperature superconductors

need to be cooled by expensive liquid helium to keep the sample super cooled. Some

of there new high temperature superconductors can be supercooled with much less ex-

pensive substances, such as liquid nitrogen. Unfortunately, these new high temperature

superconductors typically come with odd properties, such as having two superconduct-

ing electron bands. Extensive numerical simulations using two band GL models, have

not been published yet. These new models can capture the physics of new high temper-

ature superconductors that the original model is not able to capture. Modeling these

high temperature superconductors is the key to exploiting their miraculous properties

and engineering new, more efficient technology.

1.1.1 Superconductivity and Its Mathematical Description

Superconductivity was first discovered in 1911 by H. Karmerlingh Onnes, a Dutch physi-

cist. Onnes was investigating the properties of Mercury near absolute zero temperature,

when he found some of these super cooled materials lost all electrical resistance when a



Chapter 1. Superconductivity 3

current was applied. Onnes noticed this behavior only exhibited itself when the sample

was cooled below a material-dependent temperature, which he called the critical tem-

perature, Tc [1]. Several compounds, ranging from simple metals to complex metallic

and semi-metallic materials exhibit superconducting properties, but only at very low

temperatures relative to ambient temperature around us. Some examples of supercon-

ducting compounds with low critical temperatures are aluminum with Tc= 1.175 K ,

lead with Tc= 7.196 K, and with high critical temperatures such as magnesium diboride

with Tc = 39.0 K, and the complex compound Cs2RbC60 with Tc= 33.0 K [1].

Superconductors also have a peculiar behavior when placed or supercooled in a

magnetic field. A superconductor’s critical temperature is lowered when placed in a

magnetic field and it continues to decrease as the magnetic field strength rises. At some

point the strength of the magnetic field completely destroys the superconducting prop-

erties in the sample. Each superconductor also has a critical magnetic field strength,

Hc that interrupts superconductivity. Another interesting magnetic property of super-

conductors is the Meissner Effect. The Meissner effect was first discovered by H.W.

Meissner and R. Ochsenfeld [15] and it is the Meissner effect that actually classifies a

material as a superconductor [1]. When a material in the superconducting state is placed

in a magnetic field, it completely cancels the magnetic field lines within the material of

the surface. If the strength of the magnetic field rises above the critical magnetic field

strength, Hc, then the magnetic field penetrates the sample and it returns to its normal

state.

As mentioned above, there is a division amongst superconductors concerning the

Meissner effect. Type I superconductors exhibit the Meissner effect fully, returning to

their normal material state once H > Hc. Type II superconductors have two critical

temperatures, Hc1 and Hc2. The Type II superconducting sample expels the magnetic

field from within its interior when H < Hc1. When H > Hc1 and H < Hc2 , the sample

is penetrated by magnetic flux tubes, or vortices. The sample material is in the normal

state at the center of the vortices while the surrounding material continues to be in

a superconducting state. When H > Hc2 then the sample completely returns to the

normal state like the Type I superconductor. When a superconductor experiences the

full Meissner effect it is in a state of perfect diamagnetism.

These new, mysterious properties sparked a keen interest in physicists and mathe-

maticians. Since the discovery of the superconductivity, scientists have tried to capture

this phenomenon using mathematical descriptions. One of the first models to do this

was the London Theory, derived in 1935 by H. London and F. London as shown in

[2]. The London brothers based their theory explaining the Meissner Effect in terms

of Maxwell system on the boundary of the superconductor with a constant tempera-

ture under Tc. They proposed that the superconductor contained a supercurrent, js,

which flows without a potential difference being applied to the superconductor. The
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supercurrent is related to the magnetic field strength |H| , by:

∇×H =
4π

c
js, (1.1)

where c is the speed of light. The supercurrent can written in terms of the electron

velocity v(r), the electron charge e, and the number of superconducting electrons per

unit volume, ne :

neev(r) = js(r) (1.2)

From this the kinetic energy, EK , of the current was shown to be:

EK =
1

2

∫
Ω
msne|v(r)|2dr =

1

8π

∫
Ω
λ2
L|∇ ×H|2dr Ω ⊂ R3, (1.3)

where me is the effective mass of the electron, and λL is the penetration depth, defined

as

λL =

√
msc2

4πnee
. (1.4)

The magnetic energy of the superconductor, EM , is

EM =

∫
Ω

H2

8π
dr . (1.5)

From the kinetic and magnetic energies, the Londons constructed the free energy,

F , of the superconducting system:

F = Fr + EK + EM , (1.6)

where Fr is the energy of the electrons at rest in the system. Using the previous defini-

tions of EM and EK leads to

F = Fr +
1

8π

∫
Ω

(H2 + λ2
L|∇ ×H|2) dr . (1.7)

Assuming Fr to be constant, then the free energy F , is minimized to satisfy the principle

of least action. The minimizers of the free equation must satisfy:

H + λ2
L∇×∇×H = 0 . (1.8)

This is known as the London equation. Another important characteristic of the London

Theory is the coherence length ξ0. When EK was formed for the free energy equation,

it was assumed that v(r) varied slowly. This can be quantified as λL � ξ0, where the

coherence length, ξ0, is the range of the correlation between electrons and is defined as
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being of the order of:
~vf
kBT0

,

where ~ is the Plank constant, kB is the Boltzmann constant, vf the Fermi velocity.

The London penetration depth, λL, and the coherence length, ξ0, of an particular su-

perconducting material can be used to redefine the previous Type I and Type II super

conductors. When a superconducting material’s penetration depth and coherence length

satisfy λL � ξ0 the superconductor is a Type I superconductor. If λL � ξ0 for a super-

conducting material, then it is a Type II superconductor.

Soon after the London theory was formed, Landau formed a general second order

phase transition theory [2]. This theory is based on the assumption that there was a

complex order parameter, ψ that goes to zero as the phase transition happens. Then the

free energy density can be expanded in terms of ψ, with coefficients that are functions

of temperature T. The Helmholtz free energy,F , expanded in terms of constant ψ over

volume Ω (in 3D, for 2D Ω is a surface) is then:

F =

∫
Ω
fn + α(T )|ψ|2 +

β(T )

2
|ψ|4 + ... , (1.9)

where fn is the free energy state of the normal state. Landau’s general phase theory was

only valid for temperatures near a critical value Tc, with values below Tc being correlated

to the superconducting state. This lead to the coefficients being approximated as :

α(T ) ≈ (T − Tc)α1 β(T ) ≈ β0 (1.10)

with α1 > 0 and β0 >0 , both constant. In the context of superconductivity, |ψ|2 is

interpreted as the density of superconducting electrons in the sample. |ψ|2 tends to 0 if

T > Tc, corresponding to the normal state and it tends to -αβ if T < Tc, corresponding

to the superconducting state. The next great stride in the understanding of supercon-

ductivity was when Landau and Ginzburg used Landau’s general phase transition theory

to model a superconductor in a magnetic field.

————————————-

1.1.2 The Ginzburg-Landau Theory and its Verification

Landau and Ginzburg proposed a new phenomenological theory to describe supercon-

ductors in the presence of a magnetic field, 1950 [2]. They created a new Gibbs energy

functional, G(ψ,A), defined, in two dimensions as:

G(ψ,A) = Fn+

∫
Ω
α|ψ|2 +

β

2
|ψ|4 +

1

2ms
|(−i~∇− esA

c
)ψ|2 +

1

8π
|∇×A−He|2dV (1.11)
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He is the applied field, and ψ no longer needs to remain constant. ms and es are the

effective electron mass and charge respectively. Fn is the free energy of the normal state,

and A, is the vector potential defined as,

H = ∇×A . (1.12)

Next calculus of variations was used to find the first order variation in the Gibbs energy

functional. The resulting Euler-Lagrange equations are known as the Ginzburg-Landau

equations or GL equations for short. The GL equations below are a coupled nonlinear,

system of partial differential equations[2]:

αψ + β|ψ|2ψ +
1

2ms
(−i~∇− esA

c
)2ψ = 0, in Ω (1.13)

js
c

=
1

4π
∇× (∇×A−He) =

e~
2imsc

(ψ∗∇ψ − ψ∇ψ∗)− e2
s

msc2
|ψ|2A, in Ω (1.14)

with the boundary conditions

(−i~∇− es
c

A)ψ · n = 0, on ∂Ω

(∇×A−He)× n = 0, on ∂Ω .

where n is normal vector to the boundary. There are two important characteristic

lengths in the Ginzburg-Landau model, similar to those in the London model of super-

conductivity. The spatial penetration depth λ(T), a temperature dependent function,

characterizes a superconducting material by specifying how deep a magnetic field can

penetrate the surface of the superconducting sample. The second, the coherence length,

ξ(T), specifies the spatial width of the transition layer between the normal and super-

conducting regions. This length describes the distance over which ψ can change by a

noticeable amount [8]. The ratio of these lengths, κ, is the Ginzburg-Landau constant:

λ = (−msβc
2

4παe2
s

)
1
2 (1.15)

ξ = (− ~2

2msα
)
1
2 (1.16)

κ =
λ

ξ
. (1.17)

Once the phenomenological GL theory was developed, a microscopic theory de-

scribing superconductivity was needed to verify it [2]. In 1957 a new microscopic theory,
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the BCS theory was just what was needed [16]. The BCS theory, named after its dis-

coverers (Bardeen, Cooper, and Schrieffer), describes superconductivity as a byproduct

of lattice vibrations at low temperatures. When a metal is supercooled, much of its

thermal activity ceases. The BCS theory claims that when electrons pass through this

supercooled conductor, not only do random collisions between the lattice and electrons

stop, but the electrons form Cooper pairs due to precise lattice vibrations. Electrons

pairing seems counter intuitive, but this pairing is driven by the positively charged lat-

tice choreographing the electron pairs. The electrons are coupled in the energetically

favorable Cooper pair, the combined spin of the coupled system is zero. This allows

the Cooper pairs to not be bound by the Pauli exclusion principle. All the electrons

forming Cooper pairs can be in same quantum state, allowing them to flow with zero

resistance in a correlated manner. When T > Tc or H > Hc, the Cooper pairs are broken

and the material is no longer a superconductor. In 1959, Gor’kov proved the Ginzburg-

Landau theory was a limiting case of the BCS theory [2] . Furthermore, Gor’kov and

Eliashberg extended the GL model to an evolutionary time dependent model in 1968 [2].

Gor’kov and Eliashberg proposed that if a superconductor was driven from equilibrium,

the relaxation back to equilibrium can be described as [14]

Γ(
∂ψ

∂t
+
ie

~
Φψ) = − δG

δψ∗
, (1.18)

j = jn + js = σn(−1

c

∂A

∂t
−∇Φ)− c∂Fs

∂A
, (1.19)

where Γ is a damping constant, σ is the conductivity in the normal state, and Φ is the

potential difference of the system, G is the Gibbs free Energy and Fs is the portion of

the Gibbs free energy that does not contain the magnetic field strength terms, defined

as,

Fs =

∫
Ω
fn + α|ψ|2 +

β

2
|ψ|4 +

1

2ms
|(−i~∇− esA

c
)ψ|2 dΩ . (1.20)

From this the minimizers of the system are found using calculus of variations. The

minimizers are the Euler Lagrange equations that become the time dependent Ginzburg-

Landau equations:

Γ(
∂ψ

∂t
+
ie

~
φψ) + αψ + β|ψ|2ψ +

1

2ms
(−i~∇− esA

c
)2ψ = 0, on Ω and ∀t (1.21)

j =
1

4π
∇×(∇×A−H) = σn(−1

c

∂A

∂t
−∇φ)+

es~
ims

(ψ∗∇ψ−ψ∇ψ∗)− 4e2
s

msc
|ψ|2A, on Ω and ∀t

(1.22)



Chapter 1. Superconductivity 8

with boundary conditions and initial conditions:

(−i~∇− es
c

A)ψ · n = 0, in ∂Ω and ∀t

(∇×A−He)× n = 0, in ∂Ω and ∀t

ψ(x, 0) = ψ0(x), in Ω

A(x, 0) = A0(x), in Ω

The time dependent Ginzburg-Landau model opened a new dimension in the study

of superconductivity. The time dependent model allows one to look at the formation

of magnetic vortices in Type II superconductors as well as the dynamical motion of

them. Applied current in the superconducting sample could also be modeled more

realistically with the time dependent model, especially alternating current. The time

dependent Ginzburg-Landau model laid a basis for future work in superconductivity.

More recently many scientists have taken advantage of computers to solve the Ginzburg-

Landau equations numerically.

1.2 Recent Research and Thesis Discussion

1.2.1 More Recent Research

In the last 20 years, much effort has gone into numerical models for superconductors.

Computers have made these numerical calculations a more efficient venture than previous

times. The Ginzburg-Landau equations are a coupled pair of nonlinear partial differ-

ential equations. Numerical methods such as finite elements method have been used to

solve this system. Du et al. [4, 5] was one of the first to explore this area. In Du’s work,

the Ginzburg-Landau equations are first made suitable for the finite elements method.

This was done by first non-dimensionalizing the equations along a length scale of ξ, the

coherence length mentioned earlier. This non-dimensionalization is done to rescale the

problem, for more uniform scaling between parameters. Also non-dimensionalizing the

equations eliminates many of the parameters by combining them into new parameters,

typically more convenient ones. The ξ length scale is chosen because this is the scale that

ψ, the order parameter, changes over. Next the Ginzburg-Landau equations are made

well-posed by using a gauge symmetry. This is essentially choosing a manner in which

the variables of the system are represented in terms of each other, but is derived from

physical symmetries. Typically the Coulomb or Zero Potential gauge is used to repre-

sent φ in terms of A, while adjusting the boundary conditions to complete the gauge
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transformation. Du proves the existence of the minimizer of the Ginzburg-Landau free

energy functional, rigorously, in terms of Sobolev spaces. The Ginburg Landau equa-

tions are naturally gauged this way. Next the finite element approximations are shown

to exist and the error bounds are found.

The next extension in the numerical simulations was [6] proving the global ex-

istence and uniqueness of the solutions of the time dependent Ginzburg-Landau equa-

tions. In [6] the magnetic vortices are modeled, but on a small sample with boundary-

dominated effects. Du also modeled superconductivity for s-wave and d-wave supercon-

ductivity [17, 18]. S-wave superconductivity is where the superconducting electrons are

in the s-orbitals. Similarly the d-wave superconductivity is when the superconducting

electrons are in the d-orbitals. From this many variants of the Ginzburg-Landau model

were made. Each model is specialized for a particular set of circumstances. Normal

inclusions were modeled in [10], by placing impurities in the superconducting sample.

This is done to study the pinning effects of vortices from the normal inclusions. A

variable thickness model was derived in [19, 20]. This allows for the study of vortex

dynamics in a sample with a variable thickness, which is a more realistic sample than

a perfectly homogeneous sample. Applied current in the superconducting sample was

studied in[8, 14]. A high κ model was made in [21, 22] which reduces the coupled pair

of Ginzburg Luandau equations to one equation by expanding the functions ψ and A in

terms of κ. This is much more computationally efficient when the particular material

of interest has a high value of κ. Anisotropic models of the grain boundary and rotated

crystal variety were studied in [9] and [8], respectively. Another anisotropic model is the

Lawrence Doniach model [8, 23, 24] that is effective when the layer spacing is too large

to accurately be modeled by the anisotropic GL model. Models pertaining to thermal ef-

fects have also been derived. In [11, 12], the temperature of the superconducting sample

is posed as an unknowns function and solved for, while in [8, 13], the thermal variation

is posed as a stochastic process and is modeled much like a random noise process. These

models have also extended to three dimensions for results that can be directly compared

to experiments,[8, 25].

All those models are great tools for their specified scope of interest but each has

its own downfalls. Typically using only one of these models does not capture all of the

physics going on in a superconductor. For instance, a model lacking any non-isothermal

feature assumes the temperature is constant and very close to the critical temperature,

Tc. This model disregards any thermal effect by-products of the dynamical motion of

magnetic vortices and joule heating. The isothermal model of a superconductor can be

correct if the superconductor is immersed in a thermal bath to keep its temperature

constant, but this is more of an ideal situation than reality. Until recently computers

were not powerful enough to realistically model a superconductor. At first, the samples
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were small leading to boundary dominated effects. This means the full interaction of

the magnetic vortices in superconductors could not be studied. Another issue is that

most of the models were two dimensional. In certain situations this is acceptable, but

reality is in three dimensions. Even in the cases where a three dimensional model was

made, the samples were still very small due to the memory storage required. Today,

computers are much more powerful and parallel computing is much easier to implement

than in the past.

Another new study has come into play since the discovery of new high tempera-

ture superconductors. The new high temperature superconductors have very novel and

interesting properties. Some of them are high temperature superconductors, making

superconducting technology more feasible. Another great property is some of them are

very inexpensive to make such as magnesium diboride and graphene, being much cheaper

than their complex iron and copper superconducting counterparts. The down side to

these high temperature superconductors is that the manner in which superconductivity

exists in them is very different than conventional superconductors. Some of these mate-

rials can’t be successfully explained by the BCS theory, yet phrenological theories like

the multi-band GL can be fitted to experiments to handle such materials [26]. These

high temperature superconductors carry odd properties such as multi band supercon-

ductivity combined with anisotropy and even mixed Type I and Type II states [27].

Chan was one of the first to put serious effort into numerical modeling of multi-band

superconductors, particularly the Two Band Time Dependent Ginzburg-Landau model

in [14]. He followed Du’s numerical methods using the finite elements method. Chan

studied the vortex dynamics of two band superconductors as well as applied current to

the sample from direct and current sources. Chan’s work gave great insight into the

formation and dynamics of superconductors and their magnetic vortices, but was lim-

ited in some ways. The studies were only two dimensional and lack features that most

high temperature superconductors contain. Some of the features are anisotropy, and

new thermal effects from the two band interactions. Many two band superconducting

materials contain these odd properties such as MgB2 , LuNi2B2C, and YNi2B2C. Mak-

ing new models that include these features as well as a three dimensional representation

are critical in studying these new superconducting materials.



Chapter 2

The Finite Element Method

2.1 Finite Element Method Overview

The Finite Element Method, or FEM for short, is a numerical method used to solve

partial differential equations. The method is based on the general approach of the

Method of Weighted Residuals and has its roots in variational techniques. The method

is similar to the finite difference method in that the domain is discretized into a set of

nodes or points. However, the Finite difference method only provides a discrete solution

at the nodes, unlike FEM, which can (but necessarily) generate a continuous solution.

This is done by forming the weak from of the problem. The weak form is typically found

by multiplying the equation by a test function from an infinite dimensional space V and

then integrating over the spatial domain. Then the solution is approximated in some

finite dimensional vector space V h ⊂ V . To understand this approach consider the one

dimensional Poisson’s Equation as the prototype problem for simplicity.

− u′′(x) = f(x) in 0 < x < 1 (2.1)

with boundary conditions

u′(0) = 0, u(1) = 0 (2.2)

To obtain the continuous weak from the equation is then multiplied by a test function,

v(x ) from the vector space V. Then the equation is integrated by parts. In this way the

problem is solved in a weak sense because the solution to the original problem coincides

with the solution to the weak problem and conversely if the solution is smooth enough.

We have

− u′′v = fv (2.3)

−
∫ 1

0
u′′v dx =

∫ 1

0
fv dx (2.4)

11
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− u′v|10 +

∫ 1

0
u′v′ dx =

∫ 1

0
fv dx ∀ v ∈ V (2.5)

Yielding the standard weak problem. Seek u ∈ V , satisfying∫ 1

0
u′v′ dx = u′v|10 +

∫ 1

0
fv dx ∀v ∈ V (2.6)

Now the boundary conditions can be discussed. There are typically two types of bound-

ary conditions used in the finite elements method, Dirichlet and Neumann boundary

conditions. Dirichlet boundary conditions place conditions on constraints on the so-

lution u on the boundary, while Neumann boundary conditions place constraints on

the derivative of the solution u′. For this problem the Neumann boundary condition

is known as natural boundary condition because it can be implemented naturally into

Equation (2.6) through the boundary term. Dirichlet boundary conditions are known as

essential boundary conditions because they must be enforced on the solution space. If

the one dimensional Poisson’s equation Equation (2.1), defined on the domain a < x < b,

has Dirichlet and Neumann boundary conditions,

u′(0) = 0

u(1) = 0
(2.7)

Then weak formulation of the problem becomes, seek u ∈ V∫ 1

0
u′v′ dx =

∫ 0

1
fv dx ∀v ∈ V (2.8)

where V consists of all functions which are sufficiently smooth and are zero at x = 1.

2.1.1 Discretizing the Weak Form

Discretization of the weak from is necessary to solve the weak problem given in Equation

(2.6). To do this, we choose a finite dimensional subspace V h ⊂ V and pose the weak

problem over this subspace. Then the domain of interest, Ω, is discretized into a set of

non overlapping intervals. For generality, let (a < x < b) ∈ Ω be the one dimensional

domain, then it can discretized by a set of points {x0, x1, · · · , xn+1}, where x0 = a and

xn+1 = b and the largest interval is of length h. The discrete weak problem (DWP) is

stated as, seek uh ∈ V h such that∫ b

a
(uh)′(vh)′ dx =

∫ a

b
fvh dx ∀vh ∈ V h (2.9)

where the Dirichlet boundary condition is imposed on the discrete space V h.
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Now that the discretized grid has been made, a specific finite vector space, V h

can chosen. Typically V h is chosen to be a subspace of continuous piecewise polyno-

mials. For this simple example V h is chosen to be a subspace of continuous piecewise

linear polynomial functions. Consider the weak problem from Equation (2.6), but now

with u(0) = 1 as the boundary condition on the right side. If the solution is of the form

given in Figure 2.1, then an approximate solution in the space V h is given by Figure

2.2.

Figure 2.1: A general function f(x)

The basis is chosen to be piecewise linear polynomial “hat functions” that have

the property φj(xi) = δi,j . They are given explicitly by

φi(x) =


x−xi−1

xi−xi−1
: xi−1 < x < xi

xi+1−x
xi+1−xi : xi < x < xi+1

0 : elsewhere

(2.10)

More generally for any set of nodal basis functions,

φi(xj) = δij (2.11)

and function values in the intervals between the nodes depends on the specific species of

basis function chosen. Returning to the simple example, a nodal basis function described
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Figure 2.2: The function f(x) is approximated in the discrete V h using piecewise
linear polynomials.

in Equation (2.10) can be seen in Figure 2.3 In the one dimensional case a homogeneous

Dirichlet boundary condition at the endpoint does not have a basis function so that it

has a value of 0 at the end point from the adjacent basis function. On the contrary, Neu-

mann conditions constitute a basis function at the end point, making the problem larger.

Each interval [xi, xi+1] containing one of more basis functions in its domain is

known as a finite element or element for short. The geometry of the elements and the

basis functions chosen for the domain are the key features of the finite element method.

Continuing with the simple one dimensional example, the test function in Equation

(2.10) can now be chosen to be one of the basis functions φi(x) ∈ V h. Testing against

all vh ∈ V h is equivalent to testing each basis function φi. Now the discrete weak prob-

lem (DWP) can be defined in terms of the basis functions given in Figure 2.3, yielding
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Figure 2.3: A linear piecewise polynomial defined on two intervals. The function is
centered at xi and is 1 at that node, while having 0 value at all other nodes. As each
of the basis functions are defined, the linear functions will overlap across each interval.
Each interior interval will have one linear function with negative slope and one positive

linear function with positive slope defined on it.

the sequence of equations ∫ x1

a
uh′φ′0(x) dx =

∫ x1

a
fφ0(x) dx∫ x2

a
uh′φ′1(x) dx =

∫ x2

a
fφ1(x) dx

...∫ xi+1

xi−1

uh′φ′i(x) dx =

∫ xi+1

xi−1

fφi(x) dx

...∫ b

xn−1

uh′φ′n(x) dx =

∫ b

xn−1

fφn(x) dx

(2.12)

where the limits of the integrals represent where the test functions are nonzero at. Now

that the weak form has be specified with a specific set of functions, the solution u can

be expanded in the discrete space V h as follows,

uh =
n∑
j=0

cjφj(x) (2.13)
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and the sequence of equations in Equation 2.12 can be expanded as,

n∑
j=1

∫ x1

a
cjφ
′
j(x)φ′0(x) dx =

∫ x1

a
fφ0(x) dx

n∑
j=1

∫ x2

a
cjφ
′
j(x)φ′2(x) dx =

∫ x2

a
fφ2(x) dx

...

n∑
j=1

∫ xi+1

xi−1

cjφ
′
j(x)φ′2(x) dx =

∫ xi+1

xi−1

fφ2(x) dx

...

n∑
j=1

∫ b

xn−1

cjφ
′
j(x)φ′n(x) dx =

∫ b

xn−1

fφnn(x) dx

(2.14)

This system can be formed into a matrix equation, with a matrix of of (n+ 1× n+ 1)

entries. Since many of the φj basis functions will be zero on many of the intervals for

φi, due to the relation given in Equation (2.11), the matrix will be sparse. The intervals

where φi is non zero is known as the support for basis function, φi. In this case with

linear piecewise polynomials, the matrix is tridiagonal. Also for the simple example of

Poisson’s equation, the resulting matrix is symmetric (AT = A) and positive definite

(xTAx > 0 ∀x). The resulting matrix, A, can be expressed as,

∫ x1
a φ′0(x)φ′0(x) dx

∫ x1
a φ′1(x)φ′0(x) dx 0 · · · 0∫ x2

a φ′0(x)φ′1(x) dx
∫ x2
a φ′1(x)φ′1(x) dx

∫ x2
a φ′3(x)φ′2(x) dx · · · 0

0
...

. . .
...

...

0 · · ·
∫ b
xn−1

φ′n−1(x)φ′n(x) dx
∫ b
xn−1

φ′n(x)φ′n(x) dx


(2.15)

and the system can be expressed as,

A


c1

c2

...

cn

 =


∫ x1
a f(x)φ1(x)dx∫ a
x2
f(x)φ2(x)dx

...∫ b
xn−1

f(x)φn(x)dx

 (2.16)

and the essential homogeneous Dirichlet boundary conditions have been enforced by V h.

u(a) = u(b) = 0 (2.17)

Now the coefficients, ci can be solved for using a linear solver. The solution can be found
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at any point using Equation (2.13). Since linear piecewise polynomials were used as the

basis for the space V h, the solution has non continuous first derivatives.

2.2 FEM in Two Dimensions and Higher order Basis Func-

tions

In the last subsection the Finite Element Method was demonstrated using the one di-

mensional Poisson’s equation. Now the method is generalized to 2 dimensions, as well

as higher order polynomials. The two dimensional elliptical equation is now used for

generality. Consider the following problem on (0 < x < 1, 0 < y < 1) ∈ Ω:

−∆u(x, y) + u(x, y) = f(x, y) in Ω

u(x, 0) = u(x, 1) = 0

u(0, y) = 0

u′(1, y) = g(y)

(2.18)

Now the weak must be found and the weak problem stated. Chose a space vector space

V . Integrating and multiplying by a test function v(x, y) ∈ V ,∫
Ω
−v∆u+ uv dΩ =

∫
Ω
fv dΩ (2.19)

Now the Laplacian operator is formed into two gradient operators using integration by

parts ( in higher dimensions is called Green’s first identity). The following identity

exemplifies this: ∫
Ω
∇ · (v∇u) dΩ =

∮
∂Ω
v∇u · dS (2.20)

where the divergence theorem has been used to derive the relation and dS = ndS.

Distributing the divergence operator,∫
Ω

(v∆u+∇v · ∇u) dΩ =

∮
∂Ω
v∇u · dS (2.21)

Finally, the following relation can used to pose the problem in the weak form,

−
∫

Ω
(v∆u) dΩ =

∫
Ω

(∇v · ∇u) dΩ−
∮
∂Ω
v∇u · dS . (2.22)

Yielding ∫
Ω

(∇v · ∇u) + uv dΩ =

∫
Ω
fv dΩ +

∮
∂Ω
v
∂u

∂n
dS (2.23)

where
∂u

∂n
= ∇u · n (2.24)
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Now the natural Neumann boundary conditions can be implemented. The Dirichlet

Boundary conditions place a constraint on the space V . The weak from is show below

and the weak problem is stated as seek u ∈ V such that∫
Ω

(∇v · ∇u) + uv dΩ =

∫
Ω
fv dΩ +

∫ 1

0
vg(y)dy ∀v ∈ V (2.25)

The discretized weak problem found by choosing a discrete space V h ∈ V . The dis-

cretized weak problem is stated as seek uh ∈ V h, such that∫
Ω

(∇vh · ∇uh) + uhvh dΩ =

∫
Ω
fvh dΩ +

∫ 1

0
vhg(y)dy ∀vh ∈ V h (2.26)

Now the geometry can discretized and the discrete space V h chosen

Now that the problem is stated in two dimensions, the geometry becomes more

complicated. There are several choices in how to discretize the domain instead of sim-

ple intervals as in the last example. The most reasonable choices for discretization of

the square domain Ω are rectangles or triangles. The discretization using squares is

intuitive, while the triangles are arranged in opposite orientations to make squares to

cover to domain. Figure 2.4 show the simple discretization of Ω using triangles. More

complicated domains can be covered with an arrangement of different sized and oriented

triangles to ensure the domain is completely covered.

Now the domain has been discretized into smaller domains called elements, the

discrete space V h is chosen. We can choose it to be a space of piecewise polynomials

defined on the elements by basis functions.Typically when the domain is discretized, it

is done by choosing a set of finite elements. The specific basis functions chosen dictates

how many nodes each element will have. For instance, when using linear basis functions

on triangular elements, each triangle will have three nodes, because a linear function on

a triangle is uniquely determined by the value at three nodes. The linear basis functions

have the form,

φ(x, y) = m1y +m2x+ c0 (2.27)

This gives matrix entries of the form∫
Eij

(∇φi · ∇φj + φiφj) dEij =

∫
Eij

fφi dEij +

∫
Lij

φig(y)dy (2.28)

where each integral spans the domain of support, E for each basis functions, and L

the interval of support for the boundary. As before we require φi(xj , yj) = δi,j .Now

each basis function is defined at one node and goes to zero at the other two nodes. In
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Figure 2.4: A square domain made into a grid and triangulated. This grid is for
quadratic basis functions as opposed to linear. This is why each triangle has six
nodes.The blue numbers are node numbers and the red numbers are the element num-

ber.

the situation where square elements are used, there are four nodes and bilinear basis

functions are used to accommodate the fourth node. The bilinear basis functions are

products on the one dimensional basis function and are of the form.

φ(x, y) = m1y +m2x+m3xy + c0 (2.29)

For the discretized weak form of Equation (2.18) is shown in (2.26), triangular elements

with quadratic basis function will be used. The quadratic basis functions require that

the each element has six nodes, three on each side of the triangle. A pattern can be

seen as the basis function order grows. There must be enough points on triangle to

uniquely determine the basis functions in each direction. Thus for cubic polynomials

there must be ten nodes and ten basis functions for completeness. However, this does

not put a limit on the number of nodes used. More exotic elements can used that have

extra nodes that place constraints on the derivatives. The basis functions used for the

current example are of the form:

φi(x, y) = m1x
2 +m2y

2 +m3xy +m4x+m5y + c0 (2.30)

where φi is one at is 1 at node i corresponding to (xi, yi). The quadratic basis functions

can be seen in Figures 2.5,2.6, and all together in Figure 2.6. They are defined on the
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unit triangle as,

φ1(ξ, η) = 2(1− ξ − η)(
1

2
− ξ − η)

φ2(ξ, η) = 2ξ(ξ − 1

2
)

φ3(ξ, η) = 2η(η − 1

2
)

φ4(ξ, η) = 4ξ(1− ξ − η)

φ5(ξ, η) = 4ξη

φ6(ξ, η) = 4η(1− ξ − η)

(2.31)

Figure 2.5: These are the three basis functions defined on the vertices nodes of the
unit triangle

Figure 2.6: These are the three basis functions defined on the midpoint nodes of the
unit triangle

2.2.1 Implementing FEM in two dimensions

Now that the general overview for the two dimensional FEM has been seen, some specific

implementations can be shown. For the example shown in Equation (2.26), the discrete

space V h is chosen to be the space of piecewise quadratic functions P2
h. Previously the

accuracy of the FEM has not been mentioned. To increases the accuracy the element

size is reduced, giving a finer mesh, or the order of polynomial is increased to increase

the resolution. The first method is known as the h-method and the second is known
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ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

Figure 2.7: These are three views of all the basis functions defined on the unit triangle.

as the p-method. A third method that increases the polynomial power and reduces the

mesh size is the hp-method. The accuracy is examined more closely later in the Errors

Section. Once a sufficient mesh discretization has been chosen, Equation 2.32 can be

used to produce a matrix equation. In standard FEM terms, the matrix containing the

gradient terms is know as the stiffness matrix K, the matrix containing the φiφj terms

is known as the mass matrix,M, and the right hand side is known at the load vector, L.∫
Eij

[(∇φi · ∇φj) + φiφj ] dEij =

∫
Eij

fφi dEij +

∫
Lij

φig(y)dy

m

K + M = L

(2.32)

These structural terms are from the engineering background the FEM comes from.

As previously mentioned each matrix entries’ integrals are evaluated in the domain of

support. Each integral can be evaluated using an appropriate quadrature rule. Now

the basis functions need to be defined within each element. They can be defined using

Lagrange interpolating polynomials as in the one dimensional case, but this is rather

cumbersome for a large domain and alternating triangles. Instead a symmetry can be

seen amongst the basis functions belonging to each element. This symmetry can be

exemplified using a standard reference triangle with standard basis functions defined on

(0 < ξ < 1, 0 < η < 1), as seen in Figure 2.8.

Now the basis functions can derived on the reference element in a simple manner

and mapped, using barycentric coordinates, to the physical element shown in Figure 2.9.
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Figure 2.8: The reference triangle defined on 0 < x < 1,0 < y < 1

Figure 2.9: An example of a general triangle from which the basis functions will be
mapped too.
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The six quadratic basis functions on the reference triangle are defined as:

φ1(ξ, η) = 2(1− ξ − η)(
1

2
− ξ − η)

φ2(ξ, η) = 2ξ(ξ − 1

2
)

φ3(ξ, η) = 2η(η − 1

2
)

φ4(ξ, η) = 4ξ(1− ξ − η)

φ5(ξ, η) = 4ξη

φ6(ξ, η) = 4η(1− ξ − η)

(2.33)

Using barycentric coordinates, the physical point (x,y) can be mapped on the reference

element by solving the following system:(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)(
ξ

η

)
=

(
(x− x1)

(y − y1)

)
(2.34)

where {(x1, y1), (x2, y2), (x3, y3)} are the vertice positions of the triangles and (x, y) is

the physical position. The coefficient matrix is the Jacobian matrix, J, of the element.

The reference coordinates can be found to be:(
ξ

η

)
=

1

Det(J)

(
y3 − y1 x1 − x3

y1 − y2− x2 − x1

)(
x− x1

y − y1

)
(2.35)

or more compactly, (ξ, η) : F (x, y)→ (ξ, η). Now the value of the basis functions at the

mapped point (x, y)→ (ξ, η) can trivially mapped back to the physical element since the

height of basis function at a point is the same regardless of the size or orientation of the

element. The situation is slightly different for the derivatives. The reference element is

essentially a scaled physical element ( in the case where the two elements are concentric).

This means the derivatives of the basis functions will vary based on the relative size of

the of reference element to the physical element. Once again a mapping can be used to

solve this problem.

∂φi(ξ(x, y), η(x, y))

∂x
=
∂φi
∂ξ

∂ξ

∂x
+
∂φi
∂η

∂η

∂x

∂φi(ξ(x, y), η(x, y))

∂y
=
∂φi
∂ξ

∂ξ

∂y
+
∂φi
∂η

∂η

∂y

(2.36)

Now that the basis functions have been found on the reference triangle and mapped

to the physical triangle, the system can be solved. The next step is to integrate each

term in the system. A numerical quadrature rule will be needed for this. An ideal
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choice for the quadratic basis functions is the three point quadrature rule for triangles,

also known as the mid point rule for triangles. This rule integrates quadratic functions

exactly. The quadrature points and weights for a standard reference triangle are given

below.

(x1, y1) = (
1

2
, 0)

(x2, y2) = (
1

2
,
1

2
)

(x3, y3) = (0,
1

2
)

w(1,2,3) =
1

3

(2.37)

When a triangle is scaled or reoriented, the midpoint of each edge is used while the

weights remain the same. To exemplify the quadrature rule, consider an entry of the

mass matrix, M from Equation (2.32)

∫
E
φiφj dE =

me∑
k

∫
ek

φiφj dek =

me∑
k

3∑
n

wnφi(xn, yn)φj(xn, yn) (2.38)

where the first sum is the sum over the elements that create the domain of support for

the basis functions. The second sum is the quadrature rule that sums over each pair of

points and the associated weights.

Each entry in the matrix can now be evaluated numerally through the several

previous steps.∫
Eij

(∇φi · ∇φj) + φiφj dEij =

∫
E
fφi dEij +

∫
L
φig(y)dy

m
me∑
k

∫
ek

(∇φi · ∇φj) + φiφj dek =

me∑
k

∫
ek

fφi dek +

ml∑
k

∫
lk

φig(y) dlk

m
me∑
k

3∑
n

wn{∇φi(xn, yn) · ∇φj(xn, yn) + φi(xn, yn)φj(xn, yn)} =

me∑
k

3∑
n

wnf(xn, yn)φi(xn, yn) dek +

ml∑
k

2∑
m

wmφi(1, ym)g(ym)

(2.39)

where the line integral containing g(y) has been evaluated using a two point, one dimen-

sional, Gaussian quadrature rule. To summarize, once the matrix system is formed, the

basis functions were evaluated in a reference triangle to expose the symmetry between

each basis function on nodes in the physical element. Then the function values and



Chapter 2. The Finite Element Method 25

derivatives were mapped back into the physical element. Next the integrals are broken

down into sums across each element in the respective domain of support. Finally each

integral is approximated as a sum using Gaussian quadrature. The resulting system is

completely numerical and can easily be solved by a general linear solver.

2.2.2 Time Discretization

Because we want to consider the time dependent GL equations we now turn to a simple

problem which is time dependent. As an example, we add time dependence to the

Helmholtz equation to get

ut(x, t)−∆u(x, t) + u(x, t) = f(x, t) (2.40)

u(x, tn)− u(x, tn−1)

δt
−∆u(x, tn) + u(x, tn) = f(x, tn) . (2.41)

There is no advantage to approximating in time with FEM so we use a finite difference

approximation to the time derivative. For stability reasons, we choose an implicit method

and for the numerical results presented here we choose the backward Euler method.

u(x, tn) ≈ u(x, tn)− u(x, tn−1)

∆t
(2.42)

The weak form can then be made by choosing a space V and some set of boundary

conditions to go with Equation 2.18. The weak problem is stated as seek u ∈ V that

satisfies.∫
Ω
{u(x, tn)− u(x, tn−1)

∆t
+(∇v·∇u)+uv} dΩ =

∫
Ω
fv dΩ+

∮
∂Ω
v
∂u

∂n
dS ∀v ∈ V (2.43)

This gives first order accuracy in time if the time.

2.2.3 Non-Linearities and the Newton-Raphson Method

Nonlinear algebraic equations can be solved by a method such as the Newton Rahpson

method. As a simple example consider a one dimensional non linear function f(x). The

Newton-Raphson Method, also known as Newton’s method can be formed as:

xn+1 = xn −
f(xn)

f ′(xn)
(2.44)
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An initial value x0 must be chosen and this choice is critical in the methods convergence.

If an xo value is chosen too far away from the root, the method may convergence to an

undesired root or diverge completely. Thankfully since Newton’s method will be used on

an IVBP, the time dependence helps avoid these problems, if the time step if sufficiently

small. The initial value at t = 0 and solution at previous time steps gives a good choice

of x0 to guarantee convergence. If the IVBP has a global attractor, as is the case for

the Ginzburg Landau equations[Du], the correct root will always be found based on the

initial conditions.

Newton’s method can also be generalized to systems of equations. Consider the

matrix equation Cx = b, with C is k× k. To form Newton’s method the residual must

first be formed,

R = Cx− b (2.45)

as well the Jacobian of the residual

J[R] =


∂R1
∂x1

∂R1
∂x2

· · · ∂R1
∂xk

∂R2
∂x1

∂R2
∂x2

· · · ∂R2
∂xk

... · · · . . .
...

∂Rk
∂x1

∂Rk
∂x2

· · · ∂Rk
∂xk

 (2.46)

Each column in the Jacobian is formed by taking the derivative of each row with respect

to the variable xi from the vector x ( not to be confused with the iterates xn), then

evaluating the derivatives at xn. Putting all this together in a similar fashion as Equation

(2.44)

J[R(xn)](xn+1 − xn) = −R(xn) (2.47)

2.3 Errors and Numerical Tests

Now the errors from the finite element method are reviewed to get a feeling of accuracy

of the solutions of Ginzburg Landau model. Discrete errors are usually calculated using

lp norms, shown below,

lp = (
1

m

m∑
i

(uhi − ui)p)
1
p (2.48)

where uhi is the approximated solution at the points and u is the true solution at the

points. The l2 norm, or the Euclidean norm, is the most common due to its effectiveness

its simplicity. FEM provides a continuous solution on the domain using a linear combi-

nation of basis functions. This allows one to define the error across the whole domain,
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known as the L2 norm.

L2 = (

∫
(uh − u)2 dΩ)

1
2 (2.49)

Now uh is defined continuously across Ω, as well as u. Once again the L2 is the most

common. The integral is evaluated much like the assembly of the FEM system, shown

in Section 2.2.1 . The integral is broken down into a sum of integrals over each area of

support for the respective basis functions. The error on the derivative of interest too.

This is calculated using the semi-norm, which roots from Sobolev Spaces. Following [28]

the L2 norm can be notated as |u|0, the L2 first order semi norm can be notated as |u|1.

More generally any order semi norm can notated as |u|k, where k is the order of the

derivative. Now the L2 errors can be found in ∇uh,

L2 = (

∫
(∇uh −∇u)2 dΩ)

1
2 (2.50)

Now that the errors have been defined, the convergence of the h-method and

p-method an be demonstrated numerically. Comparing two solutions with errors E1 and

E2 defined on two different meshes with max mesh (element) sizes h1 and h2,

E1

E2
= (

h1

h2
)r (2.51)

where r is the rate of convergence. Rearranging, the convergence rate can shown to be,

r =
log(E1

E2
)

log(h1h2 )
(2.52)

The optimal convergence rate r is essentially dictated by the power of the polynomial

used for the basis functions. Analytically it can be shown for polynomial basis function

of power n, the optimal convergence rate is r = n+ 1 for the L2 norm error. In a similar

fashion the convergence rate of ∇u is r = n. This lower semi-norm is due to the lower

constraints on the derivatives produced by the weak form.

The convergence rates for decreasing element size h and increasing polynomial

powers p can show numerically using Poisson’s equation in two dimensions.

−∆u(x, y) = 2π2sin(πx)sin(πy)

Ω = (0, 1)× (0, 1)

u(0, y) = 0

u(1, y) = 0

u(x, 0) = u(x, 1) = x

u(x, y) = sin(πx)sin(πy) + x

(2.53)
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Now the Finite Element Method can be applied to the problem above for various elements

sizes and linear and quadratic polynomials. The results are tabulated below. As can

Table 2.1
Pn h |uh − u|0 |∇uh −∇u|1 Conv. rate of L2 Conv. rate of SN

Linear 0.125 0.050737 0.852356

Linear 0.625 0.011278 0.401787 2.169510 1.085026

Linear 0.03125 0.002652 0.194834 2.088153 1.044182

Linear 0.015625 0.000643 0.095919 2.044661 1.022358

Linear 0.0078125 0.000158 0.047588 2.022446 1.011230

quadratic 0.125 0.000827 0.044114

quadratic 0.625 0.000084 0.009608 3.306119 2.198935

quadratic 0.03125 0.000009 0.002250 3.143553 2.094589

quadratic 0.015625 0.000001 0.000545 3.069631 2.046162

quadratic 0.0078125 1.2×10−7 0.000134 3.034306 2.022808

Table 2.1: The table shows the convergence of the FEM with linear and quadratic
basis functions. The convergence of the method for a n power polynomial are shown to

be n+ 1 for u and n for ∇u.

be seen in Table 2.1 the linear polynomial basis function yields quadratic convergence

on uh and linear convergence on ∇uh. The quadratic provide cubic convergence for u

and quadratic convergence for ∇uh. Now that the computational methods have been

reviewed, it can be applied to the Ginzburg Landau equations and variants. Throughout

the following sections the Ginzburg Landau theory is investigated more deeply and Finite

Element approximations are used to make predictions for superconducting materials

using the Ginzburg Landau theory.
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The Ginzburg-Landau Theory

3.1 Ginzburg Landau Theory Overview

The Ginzburg-Landau theory shown in Chapter 1 is a powerful formalism to describe

superconductors, while avoiding the complicated quantum effects described by BCS

theory. This makes Ginzburg-Landau theory ideal for computations. The Ginzbrug

Landau theory is mesoscopically scaled theory. The theory was derived using Landau’s

theory of second order (continuous) phase transpositions. The simplest case is when a

bulk superconducting sample is near Tc, there is no superconducting current, and since

the sample is large, the change in the complex order parameter ψ can be ignored [29].

The free energy of the system can then be expanded in ψ to the second power. If F is

the free energy, Fn is the constant free energy of the normal state, and Ω is domain of

the sample then,

F = Fn +

∫
Ω
α(T )|ψ|2 +

1

2
β(T )|ψ|4 dΩ (3.1)

where α and β are temperature dependent material constants, that serve as expansion

coefficients. α(T ) is negative when the sample is in the superconducting state (T < Tc)

and positive when the sample is in the normal state (T > Tc). For the entire temperature

regime, β > 0. The free energy should always be minimized in a system, so the function

ψ that minimizes F can be found using calculus of variations. The minimizer or the

Euler Lagrange equation can be found by varying the path of ψ by adding εφ, φ begin

the test function. Now a functional derivative can be applied and the Euler Lagrange

Equations found.

lim
ε→0

F (ψ + εφ)− F (ψ)

ε
= 0 (3.2)

yielding, ∫
Ω
α(T )ψφ+

1

2
β(T )|ψ|2ψφ dΩ = 0 (3.3)

29
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Inspecting Equation (3.3), notice it that has the same structure as the weak form for

the finite elements method, with φ being a test function in the vector space Vh. In

this way variational methods and FEM are related and FEM can even be derived using

variational methods as will be seen for the Ginzburg-Landau Equations. If the integral

for all φ in some space V is 0, then the integrand can shown to be 0 also. Setting the

integrand equal to zero and dividing off the test function, the Euler Lagrange equation

for the simplified free energy is obtained.

α(T )ψ +
1

2
β(T )|ψ|2ψ = 0 (3.4)

Now the influence of the expansion coefficients comes into play. α and β in the Ginzburg-

Landau can be rigorously obtained using the Quasi-classical approximation of the BCS

theory [30],[14].

α(T ) = ν(0)ln(
T

Tc
)

β(T ) =
7ζ(3)ν(0)

8π2T 2

(3.5)

where ν(0) is the density of states at the Fermi level, ζ() is Riemann Zeta function, and

the units are such that the Boltzmann constant kb is equal to 1. For T ≈ Tc, α and β

can be approximated as in Equation (1.12) [30],[14].

α(T ) ≈ −α(0)(1− T

Tc
) = α(1− T

Tc
)

β(T ) ≈ 7ζ(3)ν(0)

8π2T 2
c )

= β(0) = β

(3.6)

Where α(0) and β(0) are constant throughout the temperature range. Plugging the

values into Equation (3.4) and solving for ψ,

|ψ|2 = |ψ∞|2 =
−α
β

= ns (3.7)

Since the squared modulus is semi-positive definite, then −α
β ≥ 0. Thus in order to

minimize the free energy, the order parameter is zero when α is positive and non zero

when α is negative. Physically the order parameter represents quasi-classical wave func-

tion for the superconducting electron pairs. The squared modulus is proportional to

the probability density of the superconducting electrons, ns[16]. When T > Tc, α is

positive and the sample is in the normal state. Here no superconducting effects exists

and thus the density of superconducting electrons is zero. While if T < Tc, α is negative

and ψ becomes

√
α(0)(1− T

Tc
)

β . ψ∞ is known as the solution in the bulk, and serves as

the maximum value for ψ in most cases. This is the value of ψ deep inside of a large
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superconducting sample, being shielded from any fields or currents.This makes the bulk

value ideal for non-dimensionalizing the Ginzburg-Landau theory. Another value use-

ful for non-dimensionalization is the thermodynamic critical field, Hc. From [16] the

thermodynamic critical field can be shown to be

fs − fn =
−H2

c

8π
=
−α2

β
(3.8)

fn and fs are the free energy densities of the normal and superconducting states respec-

tively. −H
2
c

8π represents the energy needed to repel a magnetic field from the interior of a

superconductor that is exhibiting the Meissner effect. The Thermodynamic critical field

has the temperature dependence[16],

Hc(T ) = Hc(0)(1− (
T

Tc
)2) (3.9)

The free energy in Equation (3.1) can expanded further, including terms to capture

spatial changes in ψ along with the accompanying super current density Js, and an

applied magnetic field.

3.1.1 Spatial Variations in ψ, Super-Currents, Applied Magnetic Fields,

and Characteristic Lengths

Similar to the London theory, the kinetic energy of the superconductor and the energy

from the magnetic field are described in the Ginzburg-Landau free energy.

G = Fn +

∫
Ω
α(T )|ψ|2 +

1

2
β(T )|ψ|4 +

1

2m∗
|(−i~∇− e∗

c
A)ψ|2 +

|h|2

8π
dΩ (3.10)

A is the magnetic vector potential, e∗ and m∗ are the effective charge and mass of a

superconducting electron pair and B is the magnetic field produced by the system,

h = ∇×A (3.11)

h2 is a abbreviated for µH2. The first term in the functional G is the free energy

of the normal state. The terms containing α and β give the energy from the phase

transition. The term containing the gradient is the kinetic energy of the electrons,

where guage invariant derivative is used. The last term is the energy from the induced

and external magnetic fields. The energy density for a magnetic field is of the form
B2

2µ and for the case of diamagnetism (which is the case for superconductors) it can be

shown that B = µH. Thus the energy density can shown to be of the form µH2 = H2,

by dimensional analysis. The gradient/ kinetic energy term can be included as follows.
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Consider the kinetic energy of a particle, classically and quantum mechanically

p2

2m
=

(i~∇)2

2m
(3.12)

This can be generalized for an electromagnetic field using the canonical momentum

( also known as the gauge invariant derivative for the fields).

mv = Π = p− e

c
A (3.13)

Then the kinetic energy for the electrons is

mv2

2
=

(i~∇− e∗

c A)2

2m
(3.14)

From the kinetic movement of the electrons, a super current Js will be induced and can

be found using the quantum continuity equation,

−∇ · j = e
∂|ψ|2

∂t
(3.15)

noting that |ψ|2 = ψψ∗ and using Schrödinger’s equation for ψ and ψ∗.

e
∂|ψ|2

∂t
= e(

∂ψ

∂t
+
∂ψ

∂t
) =

e

−i~2m
(ψ∗Π2ψ) +

e

i~
(ψΠ2∗ψ∗) (3.16)

The A2 terms cancel on the right hand side and the divergence operator can pulled out

of the terms to form,

e
∂|ψ|2

∂t
= −∇ · j = ∇ · ( ie~

2m
(ψ∗∇ψ − ψ∇ψ∗) +

e2

mc
|ψ2|A) (3.17)

Which leads to the super current being

Js = −(
ie∗~
2m∗

(ψ∗∇ψ − ψ∇ψ∗) +
e∗2

m∗c
|ψ2|A) (3.18)

Now that the super current has been derived, the effects of an applied magnetic field

on a superconductor using the Ginzburg-Landau theory can be investigated. To begin

with, the Meissner effect can be explained using the super current and Maxwell’s laws.

First the order parameter is made into a modulus and a phase, ψ = |ψ|eiφ(r, where φ(r)

is the phase of the wave at position r. Then super current becomes,

Js =
e∗|ψ|2

m∗
(~∇φ− e∗

c
A) (3.19)
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and taking the curl of the super current reduces to

∇× Js = −e
∗|ψ|2

m∗
e∗

c
∇×A) = −e

∗|ψ|2

m∗
e∗

c
B (3.20)

using Ampere’s Equation and forming the Laplacian of B

∇×B =
4

π
Js (3.21)

−∇×∇×B = −∆B =
4π

c

e∗|ψ|2

m∗
e∗

c
B =

1

λ2
B (3.22)

Solving this leads to the exponential decaying magnetic field seen in the Meissner ef-

fect. The penetration depth λ has also been derived, which dictates how far the field

penetrates the sample. Using |ψ|2 = −α
β , λ becomes,

λ(T ) =

√
− m∗βc2

4πα(T )e2∗ (3.23)

λ is also an important constant for nondimensionalizion that will be used later.

To include an applied magnetic field, He, the free energy in Equation (3.10) is

modified by the term −He·h
4π . To simplify things the new magnetic field terms with

B and He become |h−He|2
8π . This modification does not change the minimizers of the

functional[14]. The free energy becomes,

G = Fn +

∫
Ω
α(T )|ψ|2 +

1

2
β(T )|ψ|4 +

1

2m∗
|(−i~∇− e∗

c
A)ψ|2 +

|h−He|2

8π
dΩ (3.24)

Now a similar method of calculus of variations is used as was used for Equation (3.4),

to minimize the modified free energy. The variation is done in ψ∗ (equivalent to varying

ψ) and a second variation is done in A, yielding two Euler Lagrange Equations. The

Ginzburg-Landau Equations are,

α(1− T

Tc
)ψ + β|ψ|2ψ +

1

2m∗
(−i~∇− e∗A

c
)2ψ = 0, in Ω (3.25)

1

4π
∇× (∇×A−H) =

−ie∗~
2m∗

(ψ∗∇ψ − ψ∇ψ∗)− e2∗

m∗c
|ψ|2A = Js, in Ω (3.26)

with boundary conditions:

(−i~∇− e∗

c
A)ψ · n = 0, on ∂Ω

(∇×A−He)× n = 0, on ∂Ω

(3.27)
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The first equation describes the order parameter and the second describes the magnetic

vector potential. The boundary conditions are such that the surface terms from the

calculus of variations are zero. The boundary conditions also have physical implications

too. The first one assures that no super current crosses the boundary, indicative of

a Insulator-Superconductor interface[14]. However for a Normal Metal-Superconductor

interface, the proximity effect must be accounted for. The proximity effect is where some

of super current leaks into the normal metal surrounding it, as is the case for a sample

with metal leads carrying a applied current. The corresponding boundary condition is

(−i~∇− e∗

c
A)ψ · n = i~ζψ on ∂Ω (3.28)

where the super current still does not leave the sample, implying Js · n = 0 on ∂Ω.

This boundary condition becomes the natural boundary condition of the the free energy

functional if the term
∫
∂Ω ζ̄|ψ|

2 is added.

Now in a similar manner as [16], the characteristic length of ψ can be found.

This is the length over which any appreciable change in ψ exists[8]. Simplifying the ψ

equation to one dimension, setting A = 0 (absence of fields) and normalizing ψ by the

bulk solution ψ∞ =
√
−α
β to produce f = ψ

ψ∞
, we find the ψ becomes,

~2

2m∗|α|
d2f

dx2
+ f − f3 = 0 (3.29)

From this it can seen that the scale over which ψ changes is the coherence length, defined

as

ξ(T ) =

√
− ~2

2m∗α(T )
(3.30)

This can be shown further by assuming f is small, signifying a small change in ψ from

the equilibrium value ψ∞. Thus solving a linearized differential equation, yielding an

exponential solution scaled by ξ(T ), similar to the derivation of λ.

In this section the G.L. theory was derived as well as several characteristic pa-

rameters. These parameters provide a very natural way to non-dimensionalize the G.L.

equations, while including empirical parameters. α(T ), β(T ),|ψ∞|2 can be redefined
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using λ and Hc.

|ψ∞(T )|2 = ns =
m∗c2

4πe2∗λ2(T )

α(T ) = − e2∗

m∗c2
H2
c (T )λ2(T )

β(T ) =
4πe4∗

m2∗c4
H2
c (T )λ4(T )

(3.31)

Now ξ can be related to magnetic effects inside the superconductor by using the new

value for α(T ).

ξ(T ) =
Φ0

2
√

2πHc(T )λ(T )
(3.32)

and similarly we can defined Hc(T ) as

Hc(T ) =
Φ0

2
√

2πξ(T )λ(T )
(3.33)

where Φ0 = hc
e∗ is the quantum fluxoid, which is related to magnetic vortices in Type-II

superconductors.

So far all these values have been defined with their temperature dependences.

To further simplify things the temperature dependence can be separated from these

parameters and their constant temperature independent values are used. Then the tem-

perature dependence is captured in the GL equations by the (1 − T
Tc

) = τ term. The

temperature dependence near T = Tc lies only in α(T ), inspecting ξ(T ),λ(T ), and ψ∞

for their α dependence, it is found that

ξ(T ) ≈ ξ(0)τ−
1
2

λ(T ) ≈ λ(0)τ−
1
2

ψ∞(T ) ≈ ψ∞(0)τ
1
2

(3.34)

The T=0 values are those used for non dimensionalizaion. Finally another important

parameter is the Ginzbrug Landau parameter κ,

κ =
λ(0)

ξ(0)
(3.35)

The value of κ for a material dictates if a material is a Type I or Type II superconduc-

tor. If κ < 1√
2
, then the material is Type I material and experience the full Meissner

effect until the superconductivity is destroyed by a magnetic field of strength Hc. For

κ > 1√
2

the material is a Type II superconductor, where a semi Meissner effect is ex-

hibited between for a field strength H of Hc1 < H < Hc2. This is due to the fact that

when κ > 1√
2
, it is energetically favorable to create normal states inside the sample to
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maintain a mixed state state [14] .In this mixed state, the magnetic field penetrates the

sample with magnetic flux quantum Φ0, that generates magnetic vortices in the sample.

The super current density Js is current produced by the vortices that encircles them.

Below Hc1, Type II superconductors experience the full Meissner effect, and above Hc2

superconductivity ceases. Hc1 and Hc1 can be found to be [14],

Hc1(T ) =
Hc(T )lnκ√

2κ
Hc2(T ) =

√
2Hc(T ) (3.36)

withHc1(T ) < Hc(T ) < Hc2(T ). The magnetic vortices associated with Type II super-

conductors can be seen in the order parameter ψ. The sites where the magnetic field

penetrates the sample in vortices creates destroys the superconductivity and creates

normal sites. This can be seen in ψ where the value goes to 0 but only in a local radial

manner. This represents the absence of superconducting electrons in the normal sites

created by the vortices.

3.1.2 Time dependence and Non dimensionalization

Now that the Ginzburg-Landau theory has been reviewed, extensions of the model can

be derived. As shown in Chapter 1, the Time Dependent Ginzburg-Landau model was

discovered by Gor’kov and Eliashberg in 1968. Viewing the Ginburg Landau equations

from (3.25) and (3.26) as variations in the free energy in Equation (3.24), the variation

in ψ∗ can be equated to a small disturbance in equilibrium of the superconductor.

Γ(
∂ψ

∂t
+
ie

~
Φψ) = − δG

δψ∗
, (3.37)

where Γ is a positive relaxation constant. The time dependence of A can be captured by

inspecting the normal current density generated by a disturbance in the superconductor.

Jn = σnE = −(
1

c

∂A

∂t
+∇Φ) (3.38)

where σn is the conductivity of the material, E is the electric field, and Φ is the scalar

electric potential. Now the total current density, J = Jn+Js, with Js = −c∂Fs
∂A , becomes

j = jn + js = σn(−1

c

∂A

∂t
−∇φ)− c∂Fs

∂A
, (3.39)

This generates the Time Dependent Ginzburg-Landau Equations,

Γ(
∂ψ

∂t
+
ie

~
φψ) + α(1− T

Tc
)ψ + β|ψ|2ψ +

1

2m∗
(−i~∇− e∗A

c
)2ψ = 0, in Ω (3.40)
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1

4π
∇×(∇×A−H) = σn(−1

c

∂A

∂t
−∇Φ)+

−ie∗~
2m∗

(ψ∗∇ψ−ψ∇ψ∗)− e2∗

m∗c
|ψ|2A = Js, textin Ω

(3.41)

with initial and boundary conditions:

(−i~∇− es
c

A)ψ · n = 0, on ∂Ω and ∀t

(∇×A−He)× n = 0, on ∂Ω and ∀t

ψ(x, 0) = ψ0(x), inΩ

A(x, 0) = A0(x), inΩ

(3.42)

The time evolution of the superconducting sample can now be captured by the model.

This is useful for modeling the vortex dynamics of Type II superconductors as well as ap-

plied current. To improve the numerics of a computational simulation, the equations can

be non-dimensionlied. The non-dimensionalization improves the scaling and introduces

new parameters, typically more convenient in some manner than the dimensionalized

ones . ξ(0), λ(0), κ, ψ∞, and Hc are used to help form the non dimensional variables.

This removes α and β from the GL equations and replaces them with ξ(0), λ(0), κ, as

the material input parameters. The following non-dimensional parameters (with bars

over them) are used to make the TDGL equations non dimensionalized.

x = x0x̄, t = t̄
(−α)

Γ~

Hc =

√
8πα2

β
, A = Hcx0Ā

H =
√

2HcH̄ ψ =

√
−α
β
ψ̄

λ =

√
− c

2m∗β

4πe∗2α
, ξ =

√
− ~2

2m∗α

σn =
Γc2

2π~
σ, Φ =

−α
Γ

Φ̄

(3.43)

These values can be inserted into Equations (3.39)-(3.40) and simplified, yielding the

non-dimensionalized TDGL equations.

(
∂ψ

∂t
+ iΦψ) + (|ψ|2 − τ)ψ + (−i ξ

x0
∇− x0

λ
A)2ψ = 0 (3.44)

σ(
1

λ2

∂A

∂t
+

1

κ
∇Φ) +∇×∇×A +

i

2κ
(ψ∇ψ∗ − ψ∗∇ψ) +

1

λ2
|ψ|2A = ∇×He (3.45)



Chapter 3. The Ginzburg-Landau Theory 38

(−i ξ
x0
∇− x0

λ
A)ψ · n = 0, on ∂Ω and ∀t

(∇×A−He)× n = 0, on ∂Ω and ∀t

ψ(x, 0) = ψ0(x), in Ω

A(x, 0) = A0(x), in Ω

(3.46)

and with

τ = 1− T

Tc

Now the TDGL equations are a two equations system with three variables. This system

is not suited for computations and must be closed using a gauge transformation. In

electrodynamics, there may be several arrangements of potentials Φ and A that produce

an electrodynamic field. The transformation from one set of potential to another is

known as a gauge transformation.

Gχ(ψ,A,Φ)→ (ψeiχ,A +
~c
e∗
∇χ,Φ− ~

e∗
∂χ

∂t
) (3.47)

The TDGL are invariant under one of these transformation. Typically the gauge trans-

formation is used to replace Φ by a function of A. Now some of the typical gauge choices

are reviewed.

The first gauge choice is the Coulumb gauge, which assumes A is divergence free.

The gauge transformation can be satisfied by

∆χ = −∇ ·A = 0 in Ω

∇χ · n = −A · n on Γ
(3.48)

where Γ is the boundary of Ω. This gauge is very useful for steady state equations such

as the elliptical GL equations but it is not suited for quadratic problems due the the

divergence free magnetic vector potential. The next gauge is the Lorenz gauge, which is

obtained by,
∂χ

∂t
−∆χ = Φ±∇ ·A on Ω (3.49)

and boundary condition

∇χ · n = ±A · n on Γ (3.50)

This gauge can be used to replace Φ by ±∇ ·A. Then the curl term and the divergence

term can be made into the vector Laplacian. The TDGL equations in the Lorenz gauge

have the additional boundary condition,

A · n = 0 (3.51)
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and the initial condition

∇ ·A = 0 in Ω (3.52)

Finally we have the simplest and most common gauge, the zero potential gauge, or the

Φ = 0 gauge. The gauge transformation becomes

∂χ

∂t
= Φ (3.53)

with initial conditions (at t = 0),

∆χ = −∇ ·A in Ω

∇χ · n = −A · n on Γ
(3.54)

This is the gauge choosen for the numerical studies below ( in the case of applied current

the gauge is modified). In the zero potential gauge the TDGL equations become,

(
∂ψ

∂t
) + (|ψ|2 − τ)ψ + (−i ξ

x0
∇− x0

λ
A)2ψ = 0 (3.55)

σ(
1

λ2

∂A

∂t
) +∇×∇×A +

i

2κ
(ψ∇ψ∗ − ψ∗∇ψ) +

1

λ2
|ψ|2A = ∇×He (3.56)

∇ψ · n = 0, on ∂Ω and ∀t

(∇×A−He)× n = 0, on ∂Ω and ∀t

A · n = 0, on ∂Ω and ∀t

∇ ·A(x, 0) = 0 in Ω

ψ(x, 0) = ψ0(x), in Ω

A(x, 0) = A0(x), in Ω

(3.57)

Now that the TDGL system has been closed by the zero potential gauge, the system can

be put in the weak form to make it applicable to FEM. Defining the inner product as,

(f, g) =

∫
Ω
f∗ · g dΩ (3.58)

where f and g can be scalars or vectors and * represents the complex conjugate. As-

suming the solution variables, ψ and A, can be well approximated in some vector space

V ×V. Then we can choose the test functions to be, (ψ̃, Ã) ∈ V ×V. The weak from

can derived either by multiplying the TDGL equations by the appropriate test function

and integrating by parts or the variations in the free energy can be found using (ψ̃, Ã)

to vary the path of ψ and A. After applying one of the methods the weak form for the
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TDGL equations in the zero potential gauge is,

(
∂ψ

∂t
, ψ̃) + ([|ψ|2 − τ)ψ], ψ̃) + (−i ξ

x0
∇ψ − x0

λ
Aψ,−i ξ

x0
∇ψ̃ − x0

λ
Aψ̃) = 0 (3.59)

σ(
1

λ2

∂A

∂t
, Ã)+(∇×A,∇×Ã)+(

i

2κ
[ψ∇ψ∗−ψ∗∇ψ], Ã)+(

1

λ2
|ψ|2A, Ã) = (He,∇×Ã)

(3.60)

∇ ·A(x, 0) = 0 Ω

ψ(x, 0) = ψ0(x), Ω

A(x, 0) = A0(x), Ω

(3.61)

Since all the boundary conditions are Neumann they are naturally included in the weak

form. Now the Jacobian for the Newton system can formed and the Nonlinear problem

solved. As in [4][6][7], and [14], the following modified problem is solved using FEM.

(
∂ψ

∂t
, ψ̃) + ([|ψ|2 − τ)ψ], ψ̃) + (−i ξ

x0
∇ψ − x0

λ
Aψ,−i ξ

x0
∇ψ̃ − x0

λ
Aψ̃) = 0 (3.62)

σ(
1

λ2

∂A

∂t
, Ã) + (∇×A,∇× Ã) + ε(∇ ·A,∇ · Ã)

+(
i

2κ
[ψ∇ψ∗ − ψ∗∇ψ], Ã) + (

1

λ2
|ψ|2A, Ã) = (He,∇× Ã)

(3.63)

∇ ·A(x, 0) = 0 in Ω

ψ(x, 0) = ψ0(x), in Ω

A(x, 0) = A0(x), in Ω

(3.64)

The ε(∇·A,∇·Ã) term is used to improve the convergence of the finite element method,

and in [6], the modified problem above is proved to produces the correct steady solution

as ε→ 0.

In Figure 3.1 is an example of the order parameter ψ for λ = 60nm, ξ = 5nm,

(1 − T
Tc

) = 0.7, T
Tc

=0.3, He = 1.5 = 1.5
√

2Hc. The vortices can seen in the areas

where |ψ| goes to 0. The magnetic flux vortices induced by the external field destroy

superconductivity where they penetrate the sample. This sample is 20nm×20nm
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Figure 3.1: This figure shows the order parameter ψ in the steady state. The results
are from the Time Dependent Ginzburg-Landau using finite element approximations.

3.2 Ginzburg Landau variants and modifications.

The Finite Element approximations of TDGL model are useful for examining the vortex

dynamics of a Type II superconductor but the model is limited in some ways. The

domain of validity for the temperature range is approximately 0.6Tc < T < Tc, which

can be shown by deriving the GL model from a pertubative calculation of the BCS

theory [31]. The model is also limited to conventional isotropic materials with no applied

currents. The model can modified to alleviate some of these limitations. The effective

mass model was investigated by [8],[9], which uses an effective mass tensor to create

anisotropy. Some new high temperature superconductors have multi-band behavior, as

is the case for Magnesium Diboride [32]. Microscopically, there are multiple energy gaps

with different band structures that give rise to superconductivity. A two-band model was

derived by [33] and investigated [14]. Applying current to a superconducting sample is

also of interest, since efficient movement of the electrical current is the defining property

of superconductivity. Applied current for the one band case was investigated by [8] and

for the two band case by [14]. Another interesting application for superconductors is

the possibility of a powerful superconducting magnet. This can only be exhibited in

Type II materials since the magnetic field penetrates them in the mixed state. Making a
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superconductor a magnet is somewhat of a balancing act in practice. The applied current

creates a (changing) magnetic field and with the magnetic field from neighboring metals

or wires (essentially an external magnetic field) can destroy the superconductivity in

the sample. This occurs when the changing magnetic field moves the vortices in the

material. This creates Lorentz force that produces resistivity in the sample. However

if the vortices can kept stationary, the superconductivity can persist throughout the

sample. This is known as vortex pinning. In [8] the pinning effects for grain boundaries

and normal sites were investigated using the one-band TDGL model. Grain boundaries

are boundaries between cells where the material reorients and the anisotropy switches

directions. Normal sites are where impurities have been placed in the sample. In the

next few subsections, these various models are shown, and combined to try and model

new high temperature materials such as Magnesium diboride.

3.2.1 The Effective Mass Model, Anisotropies, and Grains Boundaries

Many high temperature superconductors come with anisotropic properties such as di-

rectional dependent values for Hc2. This can captured by assuming the effective mass

of the electron pairs is directional dependent. Following the methods of [8],[9], a mass

tensor, M is used to replace m in the Ginzburg-Landau free energy. This variable mass

also affects the characteristic lengths of the superconductor, ξ,λ. For the 3 dimensional

case, M is,

M =


m‖ 0 0

0 m‖ 0

0 0 m⊥

 (3.65)

Where m‖ corresponds to the ab plane where the sample is isotropic in this plane. m⊥

corresponds the the c plane where effective mass if different in this direction. In the two

dimensional xy plane M reduces to,

M =

(
mx 0

0 my

)
(3.66)

Using the definitions of ξ and λ from Equations (3.27) and (3.29) for mx and my respec-

tively, we know how have 4 characteristic lengths: . The Ginzburg-Landau parameter κ

is now defined as

κ =
λx
ξx

(3.67)
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The anisotropy of the model is characterized by the anisotropic parameters γx and γy

which is the inverses of the effective mass in that direction

γ =
mx

my
= (

λx
λy

)2 = (
ξy
ξx

)2 (3.68)

The anisotropic mass tensor can be inserted into the dimensional Free energy from

Equation (3.24), it becomes,

G = Fn +

∫
Ω
α(T )|ψ|2 +

1

2
β(T )|ψ|4 +

1

2
(−i~∇− e∗

c
A)∗ψ∗ ·M−1 · (−i~∇− e∗

c
A)ψ

+
|h−He|2

8π
dΩ

(3.69)

Non-dimensionalizing the free energy using the relations in (3.42) and ξx for ξ, λx for λ,

yielding

G = Fn +

∫
Ω

1

2
(|ψ|2− τ)2 + |( ξx

x0

∂

∂x
− x0

λx
Ay)ψ|2 + γ|( ξx

x0

∂

∂x
− x0

λx
Ay)ψ|2 +

|h−He|2

8π
dΩ

(3.70)

Applying the variational method to find the minimizers, the anisotropic Ginzburg-

Landau Equations (in the zero potential gauge) are

(
∂ψ

∂t
) + (|ψ|2 − τ)ψ + (−i ξx

x0

∂

∂x
− x0

λx
Ax)2ψ + γ(−i ξx

x0

∂

∂y
− x0

λx
Ay)

2ψ = 0 (3.71)

σ(
1

λ2
x

∂A

∂t
) +∇×∇×A + { i

2κ
(ψ

∂

∂x
ψ∗ − ψ∗ ∂

∂x
ψ) +

x2
0

λ2
x

|ψ|2Ax}+

γ{ i
2κ

(ψ
∂

∂y
ψ∗ − ψ∗ ∂

∂y
ψ) +

x2
0

λ2
x

|ψ|2Ay} = ∇×He

(3.72)

∇ψ · n = 0, on ∂Ω and ∀t

(∇×A−He)× n = 0, on ∂Ω and ∀t

A · n = 0, on ∂Ω and ∀t

∇ ·A(x, 0) = 0 Ω

ψ(x, 0) = ψ0(x), Ω

A(x, 0) = A0(x), Ω

(3.73)
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Assuming the anisotropy is only in the y direction then ,γx = 1 and the the

characteristic lengths are related by

λ2
y =

γ

λ2
x

ξ2
y = γξ2

x

(3.74)

The anisotropy in the superconductor is most evident in the vortices seen in the order

parameter. As previously mentioned at the end of Subsection 3.1.1 the vortices can be

seen where ψ goes to zero in a radial manner in the superconductor . In the case of the

anisotropic model the vortcies are now elliptical in shape, with ellipticity depending the

values of γx and γy. The ratio of the x and y vortex lengths, lx and ly respectively, of

the vortices is equal the square root of the ratio of the effective masses [8].

lx
ly

=

√
mx

my
(3.75)

In Figure 3.2 is an example of the order parameter ψ for λ = 60nm, ξ = 5nm,

(1 − T
Tc

) = 0.7, T
Tc

=0.3, He = 1.5 = 1.5
√

2Hc and γ = 1
4 . The vortices can seen in the

areas where |ψ| goes to 0. The vortices’s are contracted in the y direction due to the

anisotropy in the superconductor. This sample is 10nm× 10nm

Figure 3.2: This figure shows the order parameter ψ in the steady steady state. There
results are from the Anisotropic Time Dependent Ginzburg-Landau model using finite

element approximations.
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In materials with domain cells, there are boundaries where the anisotropy changes

direction or value. There’s are known as grain boundary and exist where a crystal

structure reorients itself or where layers connect [8]. Grain boundaries can be easily

included into the anisotropic Ginzburg-Landau by turning the constants γx and γy into

functions of (x, y). In a numerical setting such as the Finite Element approximations,

the effect of the grain boundary can be captured by deciding how the anisotropy will

change from element to element. As a simple example, consider the functions γx(x, y)

and γy(x, y) on a square domain, seen in Figure 3.3 . γx(x, y) = 1
γ for x < y and 1 for

x > y. Conversely γy(x, y) = 1
γ for x > y and 1 for x < y. The anisotropy value changes

as the x = y line is crossed. When a magnetic vortcies crosses this grain boundary,

it must shift its orientation. The process shifting of orientation creates a higher free

energy than remaining on the boundary, depending on the specific magnetic field and

current. This creates a pinning ”force” on the vortices pins them to this boundary.

These same pinning effects can be seen by introducing thin areas and normal sites into

the sample[8],[10]. The normal site are introduced by locally setting α < 0 on the site.

Using the S-N boundary interfaces ( the boundary condition in (3.28) ), some of the

superconducting electrons can leak into the normal site.

Figure 3.3: This figure shows a grain boundary across the diagonal of the sample.
The anisotropy of the sample changes orientation across the grain boundary.
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3.2.2 The Two Band TDGL model

Some superconducting materials contain multiple energy gaps responsible for the su-

perconducting properties. This is somewhat typical in high temperature materials. In

some materials such as MgB2, the two band effects are very pronounced for lower tem-

peratures while strong single band effects are seen near Tc[34]. This is because one of

the bands in MgB2 has weak second superconducting band that loses it’s contribution

as T → Tc. Some of these two band materials areNbSe2 and NbS2 (with Tc of 7K

and 6K respectively), some iron based superconductors such as LaFeAsO, and some

cuprate based superconductors such as Y Ba2Cu3O6 and HgBa2Ca2Cu2O8 (which has

the highest Tc of 135K as of 2014) [35]. Many of these materials are also layered or

highly anisotropic.

The Two band model captures the effects of two energy gaps by including a sec-

ond order parameter ψ2. Theses two bands are then coupled with Josephson coupling

terms and coupling in the magnetic vector potential. The two band model was studied

numerally using FEM were done by[14]. The model can be formed by including a second

order parameter and necessary terms into the free energy.

G(ψ1, ψ2,A) =

∫
Ω

(f1 + f2 + f12 + fm) dΩ (3.76)

with , for µ = 1, 2

(3.77)

fµ = αµ(T )|ψµ|2 +
1

2
βµ(T )|ψµ|4 +

1

2m∗µ
|(−i~∇µ −

e∗

c
A)ψµ|2 (3.78)

f12 = ε[ψ∗1ψ2 + ψ1ψ
∗
2] + ε1[(i~∇µ −

e∗

c
A)ψ∗1(−i~∇µ −

e∗

c
A)ψ2 + c.c.] (3.79)

fm =
|h−He|2

8π
(3.80)

Where c.c is the complex conjugate of the accompanying term in the brackets. Like the

one band model, the time dependence is captured by relating the variation in the free

energy to the rate of return to equilibrium.

Γ(
∂ψ1

∂t
+
ie

~
φψ1) = − δF

δψ1∗
(3.81)

Γ(
∂ψ2

∂t
+
ie

~
φψ2) = − δF

δψ2∗
(3.82)

(
1

c

∂A

∂t
+∇Φ) = −c δF

δψ∗
(3.83)
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Solving this variational problem give the Two Band Ginzburg-Landau Equations (sep-

arating the temperature dependence from α).

Γ1(
∂ψ1

∂t
+
ie

~
Φψ1) + α(1− T1

Tc1
)ψ1 + β|ψ1|2ψ1 +

1

2m∗1
(−i~∇− e∗A

c
)2ψ1

+εψ2 + ε1(−i~∇− e∗A

c
)2ψ2 = 0

Γ2(
∂ψ2

∂t
+
ie

~
Φψ2) + α(1− T2

Tc2
)ψ2 + β|ψ2|2ψ2 +

1

2m∗2
(−i~∇− e∗A

c
)2ψ2

+εψ1 + ε1(−i~∇− e∗A

c
)2ψ1 = 0

1

4π
∇× (∇×A−H) = σn(−1

c

∂A

∂t
−∇Φ) +

ie∗~
2m∗1

(ψ1∇ψ∗1 − ψ∗1∇ψ1)− e2∗

m∗1c
|ψ1|2A

+
−ie∗~
2m∗2

(ψ2∇ψ∗2 − ψ∗2∇ψ2)− e2∗

m∗2c
|ψ2|2A

+ε1i~e∗(ψ2∇ψ∗1 − ψ∗2∇ψ1 + ψ1∇ψ∗2 − ψ∗1∇ψ2)

−ε1
2e∗2

c
A(ψ1ψ

∗
2 + ψ2ψ

∗
1)

(3.84)

with boundary and initial conditions

(
1

2m∗1
(−i~∇− e∗A

c
)ψ1 + ε1(−i~∇− e∗A

c
)ψ2) · n = 0 on ∂Ω× (0, t′)

(
1

2m∗2
(−i~∇− e∗A

c
)ψ2 + ε1(−i~∇− e∗A

c
)ψ1) · n] = 0 on ∂Ω× (0, t′)

(∇×A)× n = He × n on ∂Ω× (0, t′)

ψ1(x, y, 0) = ψ1,0(x, y) on Ω

ψ2(x, y, 0) = ψ2,0(x, y) on Ω

A(x, y, 0) = A0(x, y) on Ω

(3.85)

The above boundary conditions are the natural boundary conditions for the two band

free energy functional. For a Normal Metal-Superconductor interface the boundary
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conditions must be modified to be the De Gennes’s boundary conditions,

(
1

2m∗1
(−i~∇− e∗A

c
)ψ1

+ε1(−i~∇− e∗A

c
)ψ2) · n = (ζ1i

~
2m∗1

ψ1 + ζ2η1i~ψ1) on (∂Ω× (0, t′)

1

2m∗2
(−i~∇− e∗A

c
)ψ2

+ε1(−i~∇− e∗A

c
)ψ1) · n = (ζ1i

~
2m∗1

ψ2 + ζ2η1i~ψ1) on ∂Ω× (0, t′)

(3.86)

where ζ1, ζ2 < 0 and ζ1 = ζ2 to satisfy Js ·n = 0 on ∂Ω. These can made into the natural

boundary conditions of the free energy functional by adding the additional term,∫
∂Ω

(
~2

2m∗1
ζ1|ψ1|2 +

~2

2m∗1
ζ2|ψ2|2) + η1(~2ζ1ψ1ψ

∗
2 + ~2ζ1ψ

∗
1ψ2 + ~2ζ2ψ1ψ

∗
2 + ~2ζ2ψ

∗
1ψ2) dS

(3.87)

Another possible set of S-N boundary conditions are

(
1

2m∗1
(−i~∇− e∗A

c
)ψ1

+ε1(−i~∇− e∗A

c
)2ψ2) · n = (ζ1i

~
2m∗1

ψ1 on ∂Ω× (0, t′)

(
1

2m∗2
(−i~∇− e∗A

c
)ψ2

+ε1(−i~∇− e∗A

c
)2ψ1) · n = (ζ1i

~
2m∗1

ψ2) on ∂Ω× (0, t′)

(3.88)

which are obtained by adding the additional term to the free energy,∫
∂Ω

(
~2

2m∗1
ζ1|ψ1|2 +

~2

2m∗1
ζ2|ψ2|2) dS (3.89)

The initial conditions are such that the superconducting sample is in near equilibrium,

where ψi = ψ∞,i and A0 = 0, when ε = 0. In the case of inter-band interactions the

interaction terms must be minimized. The Josephson interaction term can rewritten as∫
Ω
η(ψ∗1ψ2 + ψ1ψ

∗
2) dΩ =

∫
Ω
η|ψ1|2|ψ2|2cos(θ1 − θ2) dΩ (3.90)

where θi is the respective phase of the complex order parameter. For ε > 0 the phase

difference must be π and for ε < 0 the phase difference must be 0. To accommodate this

as well as the relative change in ψi with temperature, the initial values for the real and
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imaginary parts are chosen to be,

ψ1,R(x, y, 0) = 0.8sign(ε)|(1− T

Tc,1
)

ψ1,R(x, y, 0) = 0.6sign(ε)|(1− T

Tc,1
)

ψ1,R(x, y, 0) = −0.8sign(ε)|(1− T

Tc,2
)

ψ1,R(x, y, 0) = −0.6sign(ε)|(1− T

Tc,2
)

(3.91)

The inter-band interactions are captured by the ε and ε1 terms as well as the

coupling the magnetic vector potential equation. The ε term is responsible for the

Josephson like interactions, while the ε1 term is responsible for the gradient coupling.

There even more exotic coupling terms such as density-density coupling that couple the

order parameters at higher powers [36]. Though this coupling may exist in some cases,

the density-density term maybe incomplete and have accompanying terms when one de-

rives the Extended Two Band equations from the perturbation theory of the BCS model

[37].

The addition of a second superconducting band allows for some rather peculiar situ-

ations. The presence of two different critical temperatures, Tc1 and Tc2 allows for the

possibility the operating the temperature to be below one bands critical temperature

while being above the second critical temperature. Due to the Josephson like inter-band

coupling, superconductivity is not destroyed in the second band. The effect is much like

the proximity effect leaking superconducting electrons into normal sites (where α > 0).

Another new feature is the possibility of one band having Type I properties while the

other has Type II properties. This is characterized by the band’s Ginzburg-Landau

parameter κ. Once again the inter-band interactions play strong role in the composite

behavior of the two different bands. Strong enough coupling will induce weak vortices

in the Type I band, even though this behavior is absent in the two band model. This

also gives rise to the possibility of an intermediate type of superconductivity, fittingly

named “Type 1.5” superconductivity. This type is characterized by hexagonal vortex

patters that posses long range mutual attraction and short range repulsion[38]. This

existence of this behavior is an ongoing debated and is not investigated in this research.
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For computations the 2B-TDGL can non-dimensionalized using the following relations:

x = x0x̄, t = t̄
(−α)

Γ1~

Hc =

√
8πα2

1

β1
, A = Hcx0Ā

Φ =
~(−α1)

2Γ1e∗
Φ̄, Γ =

Γ1(−α1)

Γ2(−α2)

H =
√

2HcH̄ ψi =

√
−αi
βi

ψ̄i

λi =

√
−
c2m∗iβi
4πe∗2αi

, ξi =

√
− ~2

2m∗iαi

κi =

√
c2m∗iβi
2πe∗2~2

ν =
λ2ξ2

λ1ξ1

η = η

√
β1α2

β2α1

1

α1
η1 = ε12

√
m∗1m

∗
2

σ =
σnm

∗
1β!

Γ1e∗2

(3.92)

The non-dimensionlized 2B-TDGL Equations are (with the bars dropped),

(
∂ψ1

∂t
+ iΦψ1) + (|ψ1|2 − τ1)ψ1 + (−i ξ1

x0
∇− xo

λ1
A)2ψ1

+ηψ2 + η1
ξ1

νξ2
(−i ξ2

x0
∇− ν xo

λ2
A)2ψ2 = 0

Γ(
∂ψ2

∂t
+ iΦψ2) + (|ψ2|2 − τ2)ψ2 + (−i ξ1

x0
∇− ν xo

λ1
A)2ψ2

+ηψ1 + η1ν
ξ2

ξ1
(−i ξ1

x0
∇− xo

λ1
A)2ψ1 = 0

∇× (∇×A−H) = σ(−x
2
o

λ2
1

∂A

∂t
− 1

κ1
∇Φ) + i

1

κ1
(ψ1∇ψ∗1 − ψ∗1∇ψ1)− x2

0

λ1
|ψ1|2A

+i
1

2κ2ν
(ψ2∇ψ∗2 − ψ∗2∇ψ2)− x2

0

λ2
|ψ2|2A

+iη1
ξ1

2λ2
(ψ2∇ψ∗1 − ψ∗2∇ψ1 + ψ1∇ψ∗2 − ψ∗1∇ψ2)

−η1
x2

0

λ1λ2
A(ψ1ψ

∗
2 + ψ2ψ

∗
1)

(3.93)
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and non-dimensionalized boundary and initial conditions,

((−i ξ1

x0
∇− xo

λ1
A)ψ1 + η1

1

ν
(−i ξ1

x0
∇− ν xo

λ1
A)ψ2) · n = iζ1

ξ1

x0
ψ1 on ∂Ω× (0, t′)

((−i ξ1

x0
∇− ν xo

λ1
A)ψ2 + η1ν(−i ξ1

x0
∇− xo

λ1
A)ψ1) · n = iζ2

ξ2

x0
ψ2 on ∂Ω× (0, t′)

(∇×A)× n = He × n on ∂Ω× (0, t′)

ψ1(x, y, 0) = ψ1,0(x, y) on Ω

ψ2(x, y, 0) = ψ2,0(x, y) on Ω

A(x, y, 0) = A0(x, y) on Ω

(3.94)

3.2.3 Applied Current in the 2B-TDGL

One of a superconductors defining features is zero electrical resistance, along with Meiss-

ner effect. The property of zero resistance can taken advantage of by applying a current

to the superconductor for efficient transportation. In type two superconductors, efficient

superconducting magnetics can be made [39]. The applied current variant was shown

for the one band case in [8] and derived for the two band model in [14]. Here we limit

ourselves to the two band version, which analogous to the one band version. The effects

of the applied current density Ja can be captured by gauging the system in this way to

include the current. This can be done by modifying the zero electric potential gauge.

Consider the gauge transformation,

(ψ1, ψ2, Ā,Φ) = Gχ(ψ1e
iκ1χ, ψ2e

iκ2χ,B, φ) (3.95)

with Ā = B +
λ21
x20
∇χ and Φ = φ− κ1 − ∂χ

∂t , and χ solves the following problem.

∂χ

∂t
= φ− Φ on Ω

∇ · n = −B · n on ∂Ω

−∆χ = ∇ ·B on Ω and t = 0

(3.96)

This produces the same boundary and initial conditions as the zero potential gauge, but

now Φ = Φa. Looking at the electrical field, Ea, produced by the applied current on the

boundary ,

Ja = σEa = −σ(
x2
o

λ2
1

∂Aa

∂t
+

1

κ1
∇Φa) (3.97)
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Using the Helmholtz decomposition on the applied current density [14], Laplace’s equa-

tion is made with boundary conditions.

∆Φa(t) = 0 on Ω

∂φa(t)

∂n
= −κ1

σ
Ja · n on ∂Ω

(3.98)

From the gauge transformation A now becomes Ā = A + Aa and the S-N boundary

conditions are required since the superconductor in now in electrical contact with a

normal metal carrying the current to the sample. The 2B-TDGL in the current gauge

become.

Γ1(
∂ψ1

∂t
+
ie

~
Φaψ1) + α(1− T1

Tc1
)ψ1 + β|ψ1|2ψ1 +

1

2m∗1
(−i~∇− e∗A

c
)2ψ1

+εψ2 + ε1(−i~∇− e∗A

c
)2ψ2 = 0

Γ2(
∂ψ2

∂t
+
ie

~
Φaψ2) + α(1− T2

Tc2
)ψ2 + β|ψ2|2ψ2 +

1

2m∗2
(−i~∇− e∗A

c
)2ψ2

+εψ1 + ε1(−i~∇− e∗A

c
)2ψ1 = 0

1

4π
∇× (∇×A−H) = σn(−1

c

∂A

∂t
−∇Φa) +

ie∗~
2m∗1

(ψ1∇ψ∗1 − ψ∗1∇ψ1)− e2∗

m∗1c
|ψ1|2A

+
−ie∗~
2m∗2

(ψ2∇ψ∗2 − ψ∗2∇ψ2)− e2∗

m∗2c
|ψ2|2A

(3.99)

If Ja is defined in the y direction, being applied on the x boundaries, Φa can be found

using,

Ja(t) = −σ
κ
∇Φa(t) (3.100)

Yielding,

Φa = −κ1

σ
Jay (3.101)

This value is inserted into the ψ equations as Type-A current. As for the magnetic

vector potential equation the current density Ja(t) is inserted in place of −σ
κ∇Φa(t). In

this equation the current can be related to the magnetic field induced by the current by,

Ja(t) = ∇×Ha (3.102)

yielding the field,

H = −Ja(x−
x0

2
)ẑ (3.103)
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Now the non-dimensionalized 2B-TDGL equations with the applied current become

(
∂ψ1

∂t
− iκ1

σ
(Jay)ψ1) + (|ψ1|2 − τ1)ψ1 + (−i ξ1

x0
∇− xo

λ1
A)2ψ1

+ηψ2 + η1
ξ1

νξ2
(−i ξ2

x0
∇− ν xo

λ2
A)2ψ2 = 0

Γ(
∂ψ2

∂t
− iκ1

σ
(Jay)ψ2) + (|ψ2|2 − τ2)ψ2 + (−i ξ1

x0
∇− ν xo

λ1
A)2ψ2

+ηψ1 + η1ν
ξ2

ξ1
(−i ξ1

x0
∇− xo

λ1
A)2ψ1 = 0

∇× (∇×A−H + (Ja[x−
x0

2
])) = σ(−x

2
o

λ2
1

∂A

∂t
) + i

1

κ1
(ψ1∇ψ∗1 − ψ∗1∇ψ1)− x2

0

λ1
|ψ1|2A

+i
1

2κ2ν
(ψ2∇ψ∗2 − ψ∗2∇ψ2)− x2

0

λ2
|ψ2|2A

+iη1i
ξ1

2λ2
(ψ2∇ψ∗1 − ψ∗2∇ψ1 + ψ1∇ψ∗2 − ψ∗1∇ψ2)

−η1
x2

0

λ1λ2
A(ψ1ψ

∗
2 + ψ2ψ

∗
1)

(3.104)

Where the Ja terms are applied on the boundary with current leads on the sample, in

this case the x boundaries.



Chapter 4

Modeling Magnesium Diboride

4.1 Magnesium Diboride

Magnesium diboride or MgB2 is a ceramic material that had been previously consid-

ered a bad conductor. However, in 2001 Japanese physicists discovered superconducting

properties in MgB2 below 39K. The discovery of superconducting properties led to a

large spike in interest of the material. By the end of 2001 highly clean samples were

developed [32] to give better insight into how exactly the superconductivity manifested

in MgB2. First some of structural properties of magnesium diboride are reviewed before

discussing the superconducting properties. MgB2 is a layered material that consists of

alternating layers of graphite type structures of boron and closely packed magnesium

layers [40]. As a result of this structure, calculations have shown that MgB2 has four

bands crossing the Fermi energy, producing four disconnected Fermi sheets. Two of

these bands are from from the boron’s pz orbitals, known as the π bands. The boron’s

px and py orbitals from the other two bands known as the σ bands.

Recent analysis of MgB2 has shown that this material posseses many odd properties

not seen with other conventional superconductors. The upper critical field, Hc2 has a

strong anisotropy, meaning the field strength necessary to destroy the superconducting

effects is dependent on which plane it is aligned with[34]. Hc2 in the ab plane also has

a very strong dependence on the inverse temperature as seen in [34]. Furthermore, the

anisotropic parameter γ =
Hab

c2
Hc

c2
, is highly temperature dependent, ranging from γ = 5

near T = 0 to γ = 2 near T = Tc. One would expect that this same anisotropic behavior

would persist in the lower critical field Hc1. However the anisotropy in the lower critical

field was found to increase with temperature while the upper critical fields anisotropy

decreased with increasing temperature[32]. This has led many authors to believe that

54
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MgB2 maybe better described by a multi-band theory such as the 2BTDGL. Some au-

thors, such as[34], have shown the two band model captures the upward curvature upper

critical field in a much larger temperature domain than the single band model.

Magnesium diboride comes with many novel properties that make it an ideal super-

conductor for practical applications. Its critical temperature is 39K which avoids the

use of expensive liquid helium to cool samples. It is a very inexpensive material com-

pared to optimally doped cuprate superconductors. It has a rather high critical current

and upper critical field. Futhermore, MgB2 possesses clean grain boundaries that do not

impede applied current while pinning vortices to keep the superconducting properties

from collapsing[31]. The upper critical field in MgB2 near T = 0K were found to be 14T

in the ab planes and 3T in the c plane[41]. The same author found the critical currents

to range from 105 A/m2 at 20T to 109 A/cm2 at 10K. The σ and π bands are the electron

bands responsible for the superconducting properties in MgB2. The main mechanism

of the superconductivity is conventional s-wave photon-electron interactions, stronger in

the σ band[38]. This gives rise to two energy gaps of ∆σ 7meV and ∆π 7meV. The π

band is the weak interacting band but its effects are very important. The π minimizes

impurity and inter-band scattering, and its coupling effects with the stronger σ band

produce many of the odd effects seen in it magnetic properties.

4.2 Modeling MgB2

Many authors have explored methods to increase the critical current. Some of these

include doping, tuning the magnetic field strength, and different preparation methods

to make the material [41]. Most of these methods are conducted experimentally or in-

volve lengthy analysis. No extensive numerical studies of the vortex dynamics in MgB2

using FEM have been done. Numerical studies are a good setting to make qualitative

and quantitative predictions about a material. Numerical studies are inexpensive and

easy to modify compared to their experimental counterparts. The validity of the nu-

merical studies depends on the validity of the model used. Even if the results are only

correct in an approximate sense, they can give the experimentalist a good sense of what

is going on in a material before a lengthy and costly experiment is done.

The 2BTDGL derived from the BCS (which coincides with the model in Chapter 3)

has been shown to accurately reproduce the odd behavior of the upper critical field [34].

Also, the same authors showed that the 2BTDGL has a temperature range of validity
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down to around 30K in MgB2. In this research a variant of the GL model is used for

numerical studies of Magnesium Diboride. The model parameters are those for a clean

sample of MgB2 gotten from the experimental data and fitted using the BCS model.

Using a GL variant is much simpler than modeling a full BCS type theory while still

producing reliable results.

4.2.1 The Anisotropic 2B-TDGL with applied current

To properly capture the properties of magnesium diboride, the parameters for each

band must be investigated. In [38] and [41], the parameters for each band can be found,

shown in Table 4.1. To accommodate these parameters, the anisotropic GL model can

Table 4.1
ξσ(0) = 13 nm λσ(0) = 47.81 nm κσ = 3.68

ξπ(0) = 51 nm λπ(0) = 33.6 nm κπ = 0.66

Tc=39 K Tc,σ=35.6 K Tc,π=11.8 K

γσ = 4.55 γπ = 1 T=30 K

Table 4.1: These are the parameters for a clean sample MgB2.

be combined with the two band model to capture the anisotropy in the σ band. An

effective mass tensor can be implemented for the ψ1 equation, representing the σ band.

The anisotropic 2BTDGL with applied current is:

(
∂ψ1

∂t
− iκ1

σ
(Jay)ψ1) + (|ψ1|2 − τ1)ψ1 + (−i ξ1

x0
∇− xo

λ1
A) · γ · (−i ξ1

x0
∇− xo

λ1
A)ψ1

+ηψ2 + η1
ξ1

νξ2
(−i ξ2

x0
∇− ν xo

λ2
A) · γ · (−i ξ2

x0
∇− ν xo

λ2
A)ψ2 = 0

Γ(
∂ψ2

∂t
− iκ1

σ
(Jay)ψ2) + (|ψ2|2 − τ2)ψ2 + (−i ξ1

x0
∇− ν xo

λ1
A)2ψ2

+ηψ1 + η1ν
ξ2

ξ1
(−i ξ1

x0
∇− xo

λ1
A)γ · (−i ξ1

x0
∇− xo

λ1
A)ψ1 = 0

∇× (∇×A−H + (Ja[x−
x0

2
])) = σ(−x

2
o

λ2
1

∂A

∂t
) + i

1

κ1
γ · (ψ1∇ψ∗1 − ψ∗1∇ψ1)− x2

0

λ1
|ψ1|2A

+i
1

2κ2ν
(ψ2∇ψ∗2 − ψ∗2∇ψ2)− x2

0

λ2
|ψ2|2A

+iη1i
ξ1

2λ2
γ · (ψ2∇ψ∗1 − ψ∗2∇ψ1 + ψ1∇ψ∗2 − ψ∗1∇ψ2)

−η1
x2

0

λ1λ2
γ ·A(ψ1ψ

∗
2 + ψ2ψ

∗
1)

(4.1)
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where the S-N boundary conditions are used since the superconducting sample is in

electrical contact with the normal metal carrying the applied current. To include the

natural boundary conditions, the method in Chapter 2 can applied to the system to

produce the weak from and thus a suitable model for FEM approximations. Some of

notation has been simplified by using Di as the gauge invariant derivative and using R

to extract the real part of a term. The weak problem of the model above is stated as

seek ψ1 ∈ V ,ψ2 ∈ V and A ∈ Z∫
Ω

∂ψ1

∂t
ψ̃ − iκ1

σ
Jayψ1ψ̃ + (|ψ1|2 − τ1)ψ1ψ̃ + D1ψ1 · γ ·D1ψ̃1 + ηψ2ψ̃

+η1
ξ1

νξ2
D2ψ2 · γ ·D2ψ̃ dΩ = −

∫
∂Ω
ζ1
ξ2

1

x0
ψ1ψ̃ dS ∀ψ̃1 ∈ V

(4.2)

∫
Ω

Γ
∂ψ2

∂t
ψ̃ − iκ1

σ
Jayψ1ψ̃2 + (|ψ2|2 − τ2)ψ2ψ̃ + D2ψ2 ·D2ψ̃ + ηψ1ψ̃

+η1
ξ2

ξ1
D1ψ1 · γ ·D1ψ̃ dΩ = −

∫
∂Ω
ζ2
ξ2

2

x0
ψ2ψ̃ dS ∀ψ̃2 ∈ V

(4.3)

∫
Ω
σ
x2
o

λ2
1

∂A

∂t
Ã + η(∇ ·A) · (∇ · Ã) + (∇×A) · (∇× Ã) + R{i 1

κ1
(γ · ∇ψ1) · ψ1 · Ã}+

x2
0

λ2
1

|ψ1|2γ ·A · Ã

+R{i 1

νκ1
(∇ψ2) · ψ2Ã}+

x2
0

λ2
2

|ψ2|2A · Ã + η1γ · (R{i
ξ1

λ2
(·∇ψ1) · ψ2Ã}+ R{i ξ1

λ2
(·∇ψ2) · ψ1Ã})

+η1
x0

λ1λ2
γ · {(ψ1ψ

∗
2 + ψ2ψ

∗
1)A · Ã} dΩ =

∫
Ω

(He − Ja(x−
x0

2
(̂z)) · (∇× Ã) dΩ

∀Ã ∈ Z

(4.4)

With

γ =

 1
γx(x,y) 0

0 1
γy(x,y)

 , τi = 1− T
Tc,i

, ν = (λ2(0)ξ1(0)
λ1(0)ξ2(0)), D1 = (−i ξ1x0∇−

x0
λ1

A),

D2 = (−i ξ2x0∇− ν
x0
λ2

A)

Some modifications from Chapters 2 and 3 can been seen. This is the weak form of

the two band model with Josephson coupling (η) and inter-gradient coupling (η1). An

effective mass is included by using the γ tensor for ψ1. This captures the anisotropy in

the σ band as shown in Table 4.1. The value of γ in the tensor is shown as a function

to represent grain boundaries where the γ value flips across the diagonal (x = y). An

artificial term η(∇ ·A) · (∇ · Ã) term is used to improve the stability of the numerical

method as in [14]. In these papers, it was shown that this additional term does not
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affect the evolution or steady state of the solution.

This is the model used in this research to study vortex dynamics and ways to

increase the critical current in MgB2. Specifically the effects of the relatively unknown

coupling parameter η on the critical current are investigated with grain boundaries.

Although the coupling parameters are not known well, they play a strong role in the

critical current value. In [42] the (relative) effective London penetration depth λL(T ),

for a two band superconductor is shown to have a non linear dependence on the coupling

parameters η and η1. Furthermore, in [36], the relative critical current was found to be

Jc =
λ2L(0)

λ2L(T )
(Hc2)

1
2 . This shows that the critical current is also dependent on the cou-

pling parameters η and η1. To avoid lengthly analysis of this non linear relations under

different parameters, numerical studies can be done to give insight into the effects of

the coupling parameters. These studies can be used to help pin the exact values of the

coupling parameters by comparing the numerical results to experiment. The numerical

studies can also be used to study improvements in the critical current. If a certain value

is seen to improve the critical current, experimentalists can look for a physical mecha-

nism to tune this parameter, such as doping or particular preparation methods.

Another feature to be studied is the effect of grain boundaries in addition to

the coupling parameters. Specifically clean grain boundaries where the crystal structure

reorients itself are included. These are contained in MgB2 and do not impede super

currents [39]. However grain boundaries do impede the movement of magnetic vortices,

which increases the critical current. When a current is applied to a superconductor, it

creates a non-uniform magnetic field in the sample that induces the movement of the

vortices. If the vortices move enough they will combine to make the sample into a large

normal site and destroy superconductivity. Impeding the movement of vortices can dra-

matically improve the critical current in a superconductor. From [41], the depinning

current, Jd needed to move a magnetic vortex is

Jd =
Φ0

3
√

3πλ2ξµ0

(4.5)

where Φ0 is the magnetic quantum flux and µ0 is the permeability of free space. The

coherence length and penetration can taken from the dominant band (the σ band for ψ1)

and the temperature dependences separated from them using (3.34). For characteristic

lengths and T = 30K this gives, Jd = 8.68× 108 A/m2. Conversely to pin the vortex, a

pinning force of Fp = J × µ0H, where H is magnetic field in the sample, is needed to

pin the vortices. In [43] this relation is reduced to

Fp = Hm
c2f(h) h =

H

Hc2
(4.6)
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with

f(h) ∝ hp(1− h)q (4.7)

and p = 1
2 , q = 2 for grain boundary pinning

In [43], [39] and[44] flux pinning and grain boundary pinning are investigated

experimentally or analytically. The lack of numerical studies leaves a gap between these

two efforts. The experimentalists have a very good insight into the effective properties

of the two bands as well as large scale vortex dynamics [38], but these experiments have

trouble resolving the effects from the individual bands as well as how the vortices evolve.

The theorists have great insight into the microscopic effects of each band and how they

produce macroscopic properties like Jc and Hc1,c2, but these relations used are too cum-

bersome to produce an efficient numeral model. The Ginzburg-Landau theory provides

a mesoscopic resolution that bridges the gap between these two extremes. Furthermore

numerical studies provide an illustrative insight into vortex dynamics while avoiding

lengthy analysis.

4.3 The Effects of Coupling Parameters and Grain Bound-

aries on Jc in MgB2

To investigate the effect of the coupling parameters and grain boundaries on the critical

current, a series of numerical studies was done with various parameter sets. The key to

these numerical studies is to find trends in the solutions while avoiding lengthy calcula-

tions. The non-dimensionalized values can be returned to the dimensionalied values and

tell experimentalists how to tune their experiments to investigate the desired phenomena

seen in the numeral studies. Below some numerical studies are done using FEM to find

the order parameter value ψ and thus study the vortex dynamics. The parameters are

chosen to be those of the magnesium diboride, givin in Table 4.1

For all the studies the operating temperature is taken to be 31K. This specific

temperature was chosen for several reasons. Firstly and most importantly, the temper-

ature must stay within the validity of the GL theory for a clean sample, given in [34].

Secondly to take advantage of practicality of the high Tc, results are found at a temper-

ature near Tc, where it is more inexpensive to maintain this temperature (as opposed to

0K). The applied field He is taken in the z direction and uniform. As shown in [45], Jc

grows sharply with a decrease in He below 3T for T = 30K. In these studies, the field

is kept relatively low to try and maximize Jc. The applied current is taken to be in the



Chapter 4. Modeling Magnesium Diboride 60

y direction with the leads on the x boundaries. The applied current is of the form

Ja = Jasin(ωt)ŷ on (∂Ω)x

Ja = 0 on (∂Ω)y
(4.8)

where ω is the angular frequency of the sine wave, (∂Ω)x is the x boundaries at y = 0

and y = L, where L is the length of square sample. Similarly (∂Ω)y is the y boundaries.

The relaxation constant Γ and the conductivity σ have been set to 1 since the only effect

the time domain of the sample. ξ, λ, κ, γ are taken to be their temperature independent

values given in Table 4.1, where the temperature dependencies have been extracted from

α and captured with τ1 and τ2 in Equation (4.4). The S-N boundary condition values,

ζ1 and ζ2 are taken to be both be 0.1 and ω to be 0.025 as in [14]. The only input

parameters that are varied are Ja, He, η, and η1.

4.4 Investigation of the Effects of the Coupling Parameters

on the Critical Current

For these studies non-dimensionalized units are used for all values, the non-dimensionalizations

are given in Chapter 3. The time scale is non-dimensionalized and highly dependent on

the relaxation parameter Γ. However, the sample size can given in terms of ξ1 and

thus has a dimensional value. The vortex evolutions are shown at various time steps to

show the behavior of magnesium diboride under the model given above in this chapter.

The material parameters for MgB2 are given in 4.1 For the first example, Example 1,

Ja is set rather high at 20 to see if this value exceed the critical current. The sample

contains a grain boundary across the diagonal (x = y line) where the anisotropy flips

from the y direction to the x directions. Also η = 0.8 (strong coupling) and He = 1.6

(moderate) for the 2st,50th,100th, and 400th time step. This same is approximately

15ξ1 × 15ξ1 or 200nm×200nm. The test functions are piecewise quadratic polynomials

shown in Chapter 2. The mesh is 159× 159 nodes. The non-material input parameters

for Example 1 are shown in Table 4.2. Example 1 can be seen in Figure 4.1-4.4. Late in

Table 4.2
Ja 20

He 1.6

η 0.8

η1 0

Table 4.2: these are the non-material input parameters for Example 1
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the evolution in Figure 4.4, most of sample is in the normal state. Due to this the sam-

ple has lost its superconducting properties, particularly for the applied current in the y

direction. The applied current now feel resistance and produce Joule heat. This model

is isothermal, but if the thermal effects were taken into account, the remaining non zero

order parameters would quickly drop to zero from the thermal heating of the sample

[11]. In Example 2, Ja = 7.0, while the external field and coupling constants remain

Figure 4.1: Example 1: ψ1, left and ψ2 right at the 2nd time step

Figure 4.2: Example 1: ψ1, left and ψ2 right at 50th time step

the same as Example 1. The non-material input parameters for Example 2 are shown in

Table 4.3. Example 2 can be seen in Figure 4.5-4.10. Late in the evolution, the sample

still possesses superconducting properties. Though some of the sample is in the normal

state, a superconducting pathway still exists for the applied current. On this pathway

the order parameter value is 1 in the first band greater than 1 in the second band. This

means the superconducting electron density is large in this region. This evolution was

ran further than the others to ensure that superconductivity was not destroyed late in

the evolution. The values that are greater than 1 in the second band occur from the
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Figure 4.3: Example 1: ψ1, left and ψ2 right at the 100th time step

Figure 4.4: Example 1: ψ1, left and ψ2 right at the 400th time step

Table 4.3
Ja 7

He 1.6

η 0.8

η1 0

Table 4.3: these are the non-material input parameters for Example 2

large coupling and the large magnitude of the reduced temperature τ2 −1.5 for T = 31k.

In [14], |ψi|max ≤
√

4max{η, ν2η}+ max{τ1, τ2}, i = 1, 2.

In Example 3 the applied current is reduced to Ja = 2 and the coupling constant

η = 0.2 (weak coupling). The non-material input parameters for Example 3 are shown

in Table 4.4. Example 3 can be seen in Figure 4.11-4.13. We see that late in evolution

superconductivity of the applied current has not been completely destroyed in the sam-

ple. The grain boundary is impeding the movement of the vorcties and normal sites,

but the superconductivity is severely diminished, as most of the order parameter values
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Figure 4.5: Example 2: ψ1, left and ψ2 right at the 20th time step

Figure 4.6: Example 2: ψ1, left and ψ2 right at the 60th time step

Figure 4.7: Example 2: ψ1, left and ψ2 right at the 62nd time step
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Figure 4.8: Example 2: ψ1, left and ψ2 right at 64th time step

Figure 4.9: Example 2: ψ1, left and ψ2 right at the 66th time step

Figure 4.10: Example 2: ψ1, left and ψ2 right at the 100th time step
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Table 4.4
Ja 2

He 1.6

η 0.2

η1 0

Table 4.4: these are the non-material input parameters for Example 3

are near 0. Still under weaker coupling, the superconductivity is destroyed faster than

in Example 1.

Figure 4.11: Example 3: ψ1, left and ψ2 right at the 200th time step

Figure 4.12: Example 3: ψ1, left and ψ2 right at the 400th time step

In Example 4, the applied current and η are kept the same as in Example 3.

Now the external field is non existent He = 0 and η1 = 0.2. The non-material input

parameters for Example 4 are shown in Table 4.5. Example 4 can be seen in Figure 4.14-

4.20. The superconductivity is much more prevalent with the lower field. Furthermore,

the inter-band coupling has increased the influence from the normally weakly interacting,
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Figure 4.13: Example 3: ψ1, left and ψ2 right at the 500th time step

Table 4.5
Ja 2

He 0

η 0.2

η1 0.2

Table 4.5: these are the non-material input parameters for Example 4

isotropic π band. If no coupling was present, the second band would contain no vortices.

This Example also demonstrates how the grain boundaries impede the movement of

vortices. Shown in the 60th-66th time steps, Figures 4.15-4.18, a vortex-antivortex pair

can be seen moving across the sample. One of pair crosses the grain boundary, where it

meets it counter part and annihilates. Even late in the evolution the superconductivity

is not destroyed, the lower magnetic field and stronger contribution from the second

band have kept the vortices from combing into a large normal site on the sample.

Figure 4.14: Example 4: ψ1, left and ψ2 right at the 20th time step

In Example 5 the field is He = 0.5, Ja = 2,η = 0.2 and η1 = 0. The non-material input
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Figure 4.15: Example 4: ψ1, left and ψ2 right at the 60th time step

Figure 4.16: Example 4: ψ1, left and ψ2 right at the 62nd time step

Figure 4.17: Example 4: ψ1, left and ψ2 right at 64th time step
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Figure 4.18: Example 4: ψ1, left and ψ2 right at the 66th time step

Figure 4.19: Example 4: ψ1, left and ψ2 right at the 100th time step

Figure 4.20: Example 4: ψ1, left and ψ2 right at the 174th time step
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parameters for Example 2 are shown in Table 4.6. Example 5 can be seen in Figure

Table 4.6
Ja 2

He 0.5

η 0.2

η1 0

Table 4.6: these are the non-material input parameters for Example 5

4.21-4.24. In this example we see that the superconductivity is prevalent when the field

is weak, given by the high values of the order parameters which are proportional the

number of superconducting electrons. Furthermore, the vortices are easier to impede

and pin as seen at time step 200. In 4.23 a vortex seen to be impeded by the grain

boundary. Though at later times the vortex is not longer pinned to the grain boundary.

Figure 4.21: Example 5: ψ1, left and ψ2 right at the 20th time step

Figure 4.22: Example 5: ψ1, left and ψ2 right at the 100th time step
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Figure 4.23: Example 5: ψ1, left and ψ2 right at the 200th time step

Figure 4.24: Example 5.4: ψ1, left and ψ2 right at the 328th time step

From our five numerical examples we can make some predictions about how the

coupling constants effect the superconductivity in a sample with an applied current. In

Example 1 with high current and high coupling, the superconductivity was completely

destroyed after the sample evolved long enough. However at the same field and cou-

pling the sample showed strong superconducting effects at Ja=7. Though the sample

did have a large normal site on it, the strong coupling gave large ψ values where the su-

perconducting properties persisted. With the ψ values near their maximum, this means

that most of the electrons in this region are experiencing very little to no resistance.

In Example 3 the coupling constant η = 0.2 and Ja = 2.0. Even though the current

severely reduced, the sample was almost completely covered with a normal site (ψ = 0).

The area that still experienced superconducting effects had lower order parameter values

(< 0.5 for the σ band and < .18 in the π band.) In Example 4 the field was reduced

to He = 0 and η1 = 0.2. This example shows how the vortex motion is impeded by the

grain boundary, the field was lowered to weak the pinning force needed, but the vortex



Chapter 4. Modeling Magnesium Diboride 71

was still unpinned late in the evolution. Normally when η1 = 0, larger η values are

need to create this vortex-antivortex behavior seen [14]. However only small η values

combined with small η1 values are needed to create this behavior. In Example 5, the

field is low He = 0.5 as well as thee coupling η = 0.2 and η1 = 0. The lowered field has

increased the superconductivity in the sample when compared to larger fields. However

the superconducting regions are still weak with order parameter values less than 0.5.

Though this sample shows superconducting properties, the applied current would expe-

rience a large resistance.

From Example 2, we see that the large coupling increases the superconductiv-

ity in the sample, though the strong field creates large normal sites. In Examples 4 and

5 where the field is reduced, the large normal sites do not appear, but the superconduc-

tivity is still weak, shown by small order parameter values. The effects of pinning can

also be seen in Examples 4 and 5 where the field is weaker. This is due to the smaller

pinning force Jp = Ja×He need to pin the vortex. From these results, a prediction can

be made on how the coupling parameter, η effects the critical current. If the Josephson-

like coupling can be increased between the bands in MgB2, the critical current can be

increased. This is due to the stronger influence of the π band. If the coupling was weak

or non existent, the second band would be a strictly Type I superconductor and no vor-

tices would be seen in the samples. However the coupling keeps the band from loosing its

superconducting effects, even past it’s critical field (He κ2), and above its critical tem-

perature. Thus the optimized critical current for a clean sample of magnesium diboride

in this model can be found for strong Josephson coupling effects and small external fields.

To summarize, a model was derived to describe magnesium diboride. The ma-

terial parameters are given in 4.1. These and the parameters used for Examples 1-5

were the input parameters of the model. In Example 1, the destruction of supercon-

ductivity was shown with a large normal site (|ψ1|2 and |ψ2|2 → 0) for a high applied

current. Comparing Example 2 to Example 3, the increase in the coupling parameter η is

seen to improve superconductivity, by the higher |ψ1|2 and |ψ1|2 values. This shows the

Josephson-like coupling and the π band play an important role in increasing the critical

current. In Example 4 a vortex-antivortex pair can be seen to annihilating each other.

This example also shows the grain boundary impeding the movement of the vortices.

Example 5 had the same parameters as Example 2, which gave poor superconductivity,

except that applied field was weakened. Example 5 showed that lowering the applied

field also improves the superconductivity as expected.
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