
Numerical Quadrature

•When you took calculus, you quickly discovered that integration is much
more difficult than differentiation. In fact, the majority of integrals can not
be integrated analytically. For example, integrals such as∫ b

a

sinx2 dx

∫ b

a

e−x
2
dx

can not be integrated exactly.

• Other integrals may be defined over higher dimensional spaces with compli-
cated boundaries.

• In addition, sometimes we may only know the integrand at a set of points.

• Sometimes we can represent the integrand as an infinite series but even if
we can integrate each term of the series exactly we must still truncate the
series and thus approximate the integral.



For a function of one independent variable, the basic idea of a quadrature
rule is to replace the definite integral by a sum of the integrand evaluated
at certain points (called quadrature points ) multiplied by a number (called
quadrature weights ).∫ b

a

f (x) dx ≈ w1f (q1) + w2f (q2) + · · · + wnf (qn) =

n∑
i=1

f (qi)wi

where the wi are weights and the qi are quadrature points and n is the
number of quadrature points.

For example, for the left Riemann sum rule∫ b

a

f (x) dx ≈ (b− a)f (a)

we have n = 1, q1 = a and w1 = (b− a).



Goals:

– To investigate Newton-Cotes formulas for approximating integrals in IR1.

– To investigate Gauss quadrature formulas for approximating integrals in
IR1.

– To determine the highest degree of polynomial that the quadrature rule
integrates exactly (the degree of precision)

– To estimate the error we make in using quadrature rules.

– To investigate piecewise integration (as we did for piecewise interpolation).

– To look at approximating improper integrals and integrals with singulari-
ties.

– To extend some of our results in one dimension to integrals in higher
dimensions.

– In the lab you will investigate adaptive quadrature and nested rules.



Newton-Cotes Quadrature Formulas

The idea behind Newton-Cotes formulas is to use evenly spaced quadrature points
so that we have “nice” points. We then interpolate these quadrature points and
integrate to get the weights. Thus Newton-Cotes formulas are interpolatory
quadrature rules. There are two basic types of Newton-Cotes formulas:

open type: doesn’t use the endpoints of the interval as quadrature points

and

closed type: uses the endpoints of the interval as quadrature points

Once you choose the number of points in your Newton-Cotes formula and decide
whether to use an open or closed formula then all that remains is to determine the
weights wi. To do this we simply use a Lagrange polynomial to interpolate f (x)
at the quadrature points. We then use this polynomial to approximate f (x) and
integrate it exactly. We will get a sum of terms where f is evaluated at quadrature
point times a number; this number is the weight for that quadrature point. This
is the reason that Newton-Cotes quadrature rules are called interpolatory.



The simplest open Newton-Cotes quadrature formula is the Midpoint Rule where

Midpoint Rule:

∫ b

a

f (x) dx ≈ (b− a)f (a + b

2
)

Here the quadrature point q1 = (a+ b)/2 is the midpoint of [a, b] and the weight
is w1 = b − a, the length of the interval. The midpoint rule is a one point rule
because it only has one quadrature point. Note that if f (x) ≥ 0 for a ≤ x ≤ b
then we are approximating the integral by the area of the rectangle with base
b− a and height f (a+b2 ).

We can derive this formula by approximating f (x) on [a, b] by f evaluated at the

quadrature point, i.e., f
(
a+b
2

)
(the constant Lagrange interpolating polynomial)

and integrating this to get an approximation to
∫ b
a f (x) dx, i.e.,∫ b

a

f
(a + b

2

)
dx = (b− a)f

(a + b

2

)
Consequently our weight is determined to be b− a.

The simplest closed Newton-Cotes formula is the Trapezoidal Rule which is a two



point rule because we use the two endpoints x = a, b. To determine the weights
we fit a linear polynomial (i.e., a line) through the two points.

We have the linear Lagrange polynomial through (a, f (a)) and (b, f (b))

p1(x) =
f (b)− f (a)

b− a
(x− a) + f (a)

which we use to approximate f (x). Integrating we get∫ b

a

f (x) dx ≈
∫ b

a

p1(x) dx =

(
f (b)− f (a)

b− a

)
(x− a)2

2

∣∣∣b
a
+ xf (a)

∣∣∣b
a

=

(
f (b)− f (a)

b− a

)[
(b− a)2

2
− 0

]
+ f (a)(b− a) = (b− a)f (a) + f (b)

2

Thus the weights are w1 = w2 = (b− a)/2.

The rule gets its name because the area of the trapezoid with base b− a is just

(b− a)f (a) + 1

2
(b− a)

(
f (b)− f (a)

)
= (b− a)f (a) + f (b)

2
.

Thus, if f (x) ≥ 0 for a ≤ x ≤ b then we are approximating the area under the
curve f (x) between x = a and x = b by a trapezoid.



Closed Trapezoid Rule:

∫ b

a

f (x) dx ≈ (b− a)f (a) + f (b)

2

Oftentimes the Midpoint Rule is considered both an open and closed Newton-
Cotes rule; we will use this fact in the lab.

Of course, the next closed rule would use three points; since it is closed and we
use evenly spaced points, then we choose the endpoints and the midpoint of the
interval. To determine the weights we first obtain the quadratic Lagrange inter-
polating polynomial which passes through (a, f (a)),

(
a+b
2 , f (

a+b
2 )
)

, and (b, f (b))
which is

p2(x) = f (a)
(x− a+b

2 )(x− b)
(a− a+b

2 )(a− b)
+f
(a + b

2

) (x− a)(x− b)
(a+b2 − a)(

a+b
2 − b)

+f (b)
(x− a)(x− a+b

2 )

(b− a+b
2 )(b− a)

If h = b− a then we have

p2(x) =
2f (a)

h2
(x−a + b

2
)(x−b)−

4f
(
a+b
2

)
h2

(x−a)(x−b)+2f (b)

h2
(x−a)(x−a + b

2
)



Thus

w1 =
2

h2

∫ b

a

(x− a + b

2
)(x− b) dx =

2

h2
h3

12
=
h

6

Similarly w2 =
2h
3 and w3 =

h
6 .

Simpson’s Rule:

∫ b

a

f (x) dx ≈ b− a
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
So far for closed rules we have the two-point Trapezoidal Rule and the three-point
Simpson’s Rule. In the table where we summarize Newton-Cotes formulas we list
the next rule which is called Simpson’s 3/8 Rule which you will explore in the
exercises.

For open rules we have just derived the Midpoint Rule which is a one-point
rule. The next would be a two-point Rule using the points a + (b − a)/3 and
a+2(b−a)/3. This also forms a trapezoid to approximate the area so it is called
an open trapezoid rule. You will explore this method in the exercises.



We can continue in this manner by choosing to use more quadrature points and
generate both open and closed Newton-Cotes families of quadrature rules. Before
we tabulate the rules we look at the degree of precision of each rule and the error.

Degree of Precision for Quadrature Rules

One way to compare quadrature rules is to determine the highest degree poly-
nomial that the rule integrates exactly, that is, the degree of precision of the
rule.

The Midpoint Rule integrates a linear function exactly but not a quadratic. To
see this we first integrate a linear and quadratic polynomial exactly to get:∫ b

a

(a0 + a1x) dx =

(
a0x + a1

x2

2

) ∣∣∣b
a
= a0(b− a) +

a1
2
(b2 − a2)

∫ b

a

(a0+a1x+a2x
2) dx =

(
a0x + a1

x2

2
+ a2

x3

3

) ∣∣∣b
a
= a0(b−a)+

a1
2
(b2−a2)+a2

3
(b3−a3)



Applying the midpoint rule to a general linear function f (x) = a0 + a1x gives∫ b

a

f (x) dx ≈ (b−a)f
(
a + b

2

)
= (b−a)

(
a0 + a1

(
a + b

2

))
= (b−a)a0+

a1
2
(b2−a2)

which agrees with the result above. However, applying the midpoint rule to a
quadratic polynomial does not give the correct answer

(b−a)

(
a0 + a1

(
a + b

2

)
+ a2

(
a + b

2

)2
)
6= a0(b−a)+

a1
2
(b2−a2)+a2

3
(b3−a3)

Because the Trapezoid Rule uses two quadrature points whereas the Midpoint
Rule only uses one; we might think that its degree of precision would be higher.
However, it only integrates linear polynomials since applying the rule to f (x) =
a0 + a1x gives

(b− a)[a0 + a1a] + [a0 + a1b]

2
= (b− a)a0 +

a1
2
(b2 − a2) =

∫ b

a

(a0 + a1x) dx

but applying the rule to f (x) = a0 + a1x + a2x
2 gives

(b− a)[a0 + a1a + a2a
2] + [a0 + a1b + a2b

2]

2
= (b− a)a0 +

a1
2
(b2 − a2)+



+
a2
2

(
b3 − a3 + a2b− ab2

)
6= a0(b− a) +

a1
2
(b2 − a2) + a2

3
(b3 − a3)

=

∫ b

a

(a0 + a1x + a2x
2)dx

If we do the math we can demonstrate that Simpson’s rule integrates polynomials
of degree three exactly; this will be clear when we look at the error estimate.

If we take the Midpoint Rule as the one-point closed (as well as open) Newton-
Cotes formula then what we have seen is that for closed rules the one-point rules
has degree of precision one, the two-point rule has degree of precision one and
the three point rule has degree of precision three. For Newton-Cotes rules this is
true, in general.

Newton-Cotes N even - degree of precision N − 1 & N odd - degree of precision N



Computing the Error in an Integration Rule

We first compute the error for the Midpoint Rule:

Emidpt =

∣∣∣∣∣
∫ b

a

f (x) dx− (b− a)f
(
a + b

2

)∣∣∣∣∣
In order to simplify this expression we can expand f ((a+ b/2)) in a Taylor series
but then we need to represent the integral in terms of f (a) and its derivatives.
From the Fundamental Theorem of Calculus we know there is a function F (x)
such that ∫ x

a

f (s) ds = F (x) ,

so that F (b) is our desired integral. Now we expand F (a + h) = F (b) using a
Taylor’s series with remainder to get∫ a+h

a

f (s) ds = F (a + h) = F (a) + F ′(a)h + F ′′(a)
h2

2
+ F ′′′(a)

h3

6
+O(h4)

where we have set h = b − a. Now from the definition of F (x), we have that



F (a) = 0, F ′(a) = f (a), F ′′(a) = f ′(a) so that∫ a+h

a

f (s) ds = 0 + f (a)h + f ′(a)
h2

2
+ f ′′(a)

h3

6
+O(h4)

To combine this with the Midpoint Rule we expand f
(
a+b
2

)
= f

(
a + h

2

)
in a

Taylor’s series about x = a

hf (a +
h

2
) = h

[
f (a) +

h

2
f ′(a) +

h2

2 · 4
f ′′(a) +

h3

6 · 8
+O(h3)

]
Combining these results gives the final error

Emidpt =

∣∣∣∣∣
∫ b

a

f (x) dx− hf
(
a + b

2

)
dx

∣∣∣∣∣ = f ′′(a)
h3

24
= O(h3)

Recall that the Midpoint Rule integrates linear functions exactly but not quadratic
functions; this is clear from the error estimate because the second derivative of
a linear function is zero whereas the second derivative of a quadratic is not zero,
in general.

Recall that the Trapezoid Rule uses two quadrature points so we might expect its
error to be smaller than the Midpoint Rule which just used one point. However,
this is not the case, as we shall see.



Etrap =

∣∣∣∣∣
∫ b

a

f (x) dx− (b− a)f (a) + f (b)

2

∣∣∣∣∣
As before, we let ∫ x

a

f (s) ds = F (x)

and expand using a Taylor’s series with remainder, and use the definition of F (x)
to get ∫ a+h

a

f (s) ds = 0 + f (a)h + f ′(a)
h2

2
+ f ′′(a)

h3

6
+O(h4)

To combine this with the Trapezoid Rule we only need to expand f (b) since the
other term involves f (a). To this end we have

f (b) = f (a + h) = f (a) + f ′(a)h +
h2

2
f ′′(a) +

h3

6
f ′′′(a) +O(h4)

Combining these results gives the final error

Etrap =

∣∣∣∣∣
∫ b

a

f (x) dx− hf (a) + f (b)

2

∣∣∣∣∣ = ∣∣∣f (a)h+ f ′(a)
h2

2
+ f ′′(a)

h3

6
+O(h4)



−h
2

(
f (a) +

[
f (a) + f ′(a)h +

h2

2
f ′′(a) +

h3

6
f ′′′(a) +O(h4)

]) ∣∣∣
=
∣∣∣f ′′(a)h3

12
+O(h4)

∣∣∣ = O(h3)
So from this estimate you can see that the Midpoint Rule and the Trapezoid Rule
are both O(h3) and because the error estimate involves the second derivative,
they are exact for linear polynomials but not quadratic polynomials and thus their
degree of precision is one.

To determine the error in Simpson’s rule we must expand both f (a + h
2) and

f (b) = f (a+ h) in the formula in Taylor’s series. Completing this gives an error
for Simpson’s method of

ESimp =
h5

180
f ′′′′(ξ) = O(h5)

This says that the degree of precision of Simpson’s method is three, i.e., it inte-
grates cubic polynomials exactly; this is due to the fact that the fourth derivative
of a cubic is zero but the fourth derivative of a quartic is not.

We tabulate some of the open and closed Newton-Cotes Formulas below. For



brevity we use h = b− a and fi to denote f (x) evaluated at the ith quadrature
point.



Open Newton-Cotes Formulas

Method Quad Pts Formula Degree of Error
Precision Term

Midpoint a + h
2 hf1 1 h3

24 max
ξ∈[a,b]

|f ′′(ξ)|

Trapezoid a + h
3 , a +

2h
3

h
2 (f1 + f2) 1 h3

36 max
ξ∈[a,b]

|f ′′(ξ)|

Milne’s rule a + h
4 , a +

h
2 , h

3 (2f1 − f2 + 2f3) 3 7h5

23040 max
ξ∈[a,b]

|f ′′′′(ξ)|

a + 3h
4



Closed Newton-Cotes Formulas

Method Quad Pts Formula Degree of Error
Precision Term

Trapezoid a, b h
2 (f1 + f2) 1 h3

12 max
ξ∈[a,b]

|f ′′(ξ)|

Simpson’s a, a + h
2 , b

h
6 (f1 + 4f2 + f3) 3 h5

180 max
ξ∈[a,b]

|f ′′′′(ξ)|

3/8 rule a, a + h
3 , a +

2h
3 , b

h
8 (f1 + 3f2 + 3f3 + f4) 3 h5

6480 max
ξ∈[a,b]

|f ′′′′(ξ)|

Higher order formulas can be found on Wikipedia.



Example

Let’s take as an example an integral that we can integrate exactly so we can
compute the exact error and show that it agrees with our theoretical results.∫ .6

0

x4 dx = 0.015552

Here f (x) = x4. We apply our three open Newton-Cotes rules with h = 0.6.

(I) Midpoint Rule: one quadrature point 0.3∫ .6

0

x4 dx ≈ 0.6(0.3)4 = .00486

with an error of Emid = 0.010692 = 1.0692 10−2. The theoretical error bound is
.63/24max |f ′′(x)| where f ′′(x) = 12x2 which is an increasing function on [0, .6]
so its maximum value there is 12(.6)2. Therefore the theoretical error bound is
(.63/24)12(.6)2 = 0.038888 and clearly our error is smaller than this.



(II) Open Trapezoid Rule: two quadrature points 0.2, 0.4∫ .6

0

x4 dx ≈ 0.6

2

[
(0.2)4 + (0.4)4

]
= 0.00816

with an error of Etrap = 0.007392 = 7.392 10−3. The theoretical error is
.63/36max |f ′′(x)| = (.63/36)12(.6)2 = 0.0039539

(III) Milne Rule: three quadrature points 0.15, 0.3, and 0.45∫ .6

0

x4 dx ≈ 0.6

3

[
2(0.15)4 − (0.3)4 + 2(0.45)4

]
= 0.014985

with an error of Emilne = 0.000567 = 5.67 10−4. The theoretical error bound
is 7(.6)5/23040max |f ′′′′| = 7(.6)5/23040 · 24 = 0.000567. Note that here the
theoretical bound matches the exact error because the maximum value of f ′′′′ on
[0, .6] is a constant so there is no estimate as in the other cases.



Composite Integration Rules

If we approximate our integral using the Midpoint rule and are unhappy with
the size of the error, then our only option at this point is to apply a more
accurate method. However, as we keep increasing the number of quadrature
points, we need a higher degree Lagrange interpolating polynomial and we have
seen that there is typically not a good choice. Similar to when we used piecewise
interpolation we can divide our interval into subintervals and apply a lower order
rule over each subinterval. These are called composite rules.

First we look at the Composite Midpoint Rule. As before, assume we want to
integrate ∫ b

a

f (x) dx

So we take the interval [a, b] and divide it into M subintervals of length b−a
M .



Then we apply the Midpoint Rule over each interval. The quadrature points are

q1 = a+
b− a
2M

, q2 = q1+
b− a
M

q3 = q1+2
b− a
M

, · · · qM = q1+(M−1)
b− a
M∫ b

a

f (x) dx ≈ b− a
M

[f (q1) + f (q2) + · · · f (qM)] =
b− a
M

M∑
i=1

f (qi)

As an example for a closed Newton-Cotes formula we use the composite Trape-
zoid Rule which is h/2 times the average of f (x) at the endpoints. Using M
subintervals of length b−a

M we apply the Trapezoid Rule over each interval. The
quadrature points are

q1 = a, q2 = a +
b− a
M

, q3 = q2, q4 = q2 +
b− a
M

, q5 = q4 · · ·

∫ b

a

f (x) dx ≈ b− a
2M

[(
f (q1) + f (q2)

)
+
(
f (q3) + f (q4)

)
+
(
f (q4) + f (q5)

)
+ · · · +

(
f (qM−2) + f (qM−1)

)
+
(
f (qM−1) + f (qM)

)]



=
b− a
2M

[
f (q1) + 2f (q2) + 2f (q4) + · · · + 2f (qM−1) + f (qM)

]

Error in Composite Rules

We look at the Composite Midpoint Rule as an example to see how to compute
the error. Recall that when we applied the rule on an interval [a, b] then the error
was bounded by

Emidpt ≤
(b− a)3

24
max
x∈[a,b]

|f ′′(x)|

So on each interval of length b−a
M (assuming M subintervals) we have an error

bound on interval Ij of (
b−a
M

)3
24

max
x∈Ij
|f ′′(x)|

Now if we sum these errors up over the M subintervals Ij and bound the max-
imum of f ′′ over each Ij by the maximum over all [a, b] then we have the total



error of
M∑
j=1

(b− a)3

24M 3
max
x∈Ij
|f ′′(x)| ≤ (b− a)3

24M 2
max
x∈[a,b]

|f ′′(x)|

Example Apply the composite Midpoint Rule to the integral∫ 1

0

x3 dx = 0.25

using M = 1, 2, 4, 8 equal subintervals. Obtain the approximations and the
errors. Compare with the theoretical results.

Since f (x) = x3, f ′′(x) = 6x then max |f ′′(x)| = 6 on [0, 1]. Using one interval
of length one we have∫ 1

0

x3 dx ≈ 1[.53] =
1

8
error 0.125 <

1

24
6 = 0.25

Using two subintervals of length one-half we have∫ 1

0

x3 dx ≈ 1

2
[.253 + .753] = 0.21875 error 0.03125 <

6

4 · 24
= 0.0625



Using four subintervals of length one-fourth we have∫ 1

0

x3 dx ≈ 1

4

[(
1

8

)2

+

(
3

8

)2

+

(
5

8

)2

+

(
7

8

)2
]
= 0.242188

error 0.0078125 < 0.015625

Using eight subintervals of length one-eighth we have∫ 1

0

x3 dx ≈ 0.248047 error 0.00195313 < 0.00390625



Gauss-Legendre Quadrature

In Newton-Cotes formulas we fixed the quadrature points as uniformly spaced
in the interval and then an interpolation polynomial was used to determine the
weights. We saw that the degree of precision of the formulas was either N − 1
or N depending on whether the rule was even or odd. One might think that if
we let the quadrature points and the weights be unknowns then we could derive
a quadrature formula which has a higher degree of precision than Newton-Cotes
formulas. Also, when we studied interpolation we saw that other points than
uniformly spaced ones often work better such as Chebyshev points.

The most commonly used of these rules is Gauss-Legendre quadrature or just
Gauss quadrature. One way to derive a Gauss rule is to determine the quadrature
points and weights such that the rule integrates as high a degree polynomial as
possible; i.e., we optimize the rule. Hence the Gauss-Legendre rules are not
interpolatory like the Newton-Cotes rules. Another way to derive the quadrature
points is to take the roots of the Legendre polynomial. We will see that if we



use N quadrature points then we can integrate a polynomial of degree 2N − 1
exactly with these rules. (Or equivalently, if we use N+1 quadrature points then
we can integrate a polynomial of degree 2N + 1 exactly.)

The first Gauss rule is the Midpoint Rule where we use one quadrature point.
Note that here N = 1 so from above the Midpoint should have degree of precision
2N − 1 = 1 and this agree with what we already know because we have seen
that the Midpoint Rule integrates linear polynomials exactly. We will derive a
two-point Gauss rule directly and then show that the quadrature points are roots
of the Legendre polynomial.

Derivation of Two-Point Gauss Rule

Let the two quadrature points and weights be (qi, wi), i = 1, 2. Then a two
point quadrature rule for an integral I is of the form

I ≈ f (q1)w1 + f (q2)w2

so we have four variables and so we can satisfy four different conditions. This
means that we should be able to choose the points and weights to integrate a



cubic polynomial exactly. This agrees with our formula because here we are using
2 = N points and we said we can integrate polynomials of degree 2N − 1 = 3
exactly with Gauss rules.

We set up the equations to determine the quadrature points and weights by
requiring the rule to integrate the cubic a0 + a1x + a2x

2 + a3x
3 exactly. This

means the following relationship must hold:∫ 1

−1

(
a0 + a1x + a2x

2 + a3x
3
)
dx = w1

[
a0 + a1q1 + a2q

2
1 + a3q

3
1

]
+

+w2

[
a0 + a1q2 + a2q

2
2 + a3q

3
2

]
Integrating gives us∫ 1

−1

(
a0 + a1x + a2x

2 + a3x
3
)
dx = 2a0 +

2a2
3

so that

2a0 +
2a2
3

= w1

[
a0 + a1q1 + a2q

2
1 + a3q

3
1

]
+ w2

[
a0 + a1q2 + a2q

2
2 + a3q

3
2

]



Rearranging this expression yields

a0 [w1 + w2 − 2]+a1 [w1q1 + w2q2]+a2
[
w1q

2
1 + w2q

2
2

]
+a2

[
w1q

3
1 + w2q

3
2 −

2

3

]
= 0

Now the coefficients ai, i = 0, 1, 2, 3 are arbitrary so they can’t be zero so we
need to make the terms inside the square brackets to be each zero which will give
us the four nonlinear equations for our four unknowns:

w1 + w2 = 2
w1q1 + w2q2 = 0
w1q

2
1 + w2q

2
2 = 2

3
w1q

3
1 + w2q

3
2 = 0

We could have gotten the same equations if we had required the rule to integrate
a constant, x, x2 and x3. Solving these we get

w1 = w2 = 1 q1 = −
1√
3
, q2 =

1√
3

So the two point Gauss quadrature rule is∫ 1

−1
f (x) dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)



For a three point Gauss rule we have N = 3 points so we have six unknowns
which means we should be able to integrate a fifth degree polynomial exactly.
This agrees with the fact that we want to integrate polynomials of degree 2N−1
exactly. We will not derive it here but the approach is the same.

Legendre Polynomials

Legendre polynomials are solutions to the Legendre ordinary differential equation

d

dx

[
(1− x2) d

dx
Pn(x)

]
+ n(n + 1)Pn(s) = 0

and are given by the recursion formula

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
.

Thus

P1(x) =
1

2
2x = x,

P2(x) =
1

8

d2

dx2
(x4 − 2x2 + 1) =

1

8

d

dx
(4x3 − 4x) =

1

2
(3x2 − 1), · · ·



The root of P1(x) = x is just x = 0 which is the quadrature point for the
Midpoint Rule. The roots of P2 =

1
2(3x

2 − 1) are just x = ± 1√
3

which are the

roots for the two-point Gauss rule that we derived.

In the table below we summarize the first five Gauss quadrature rules.

Table 0.1
Gauss quadrature formulas on [−1, 1]

n nodes weights
1 0.0000000000 2.0000000000
2 ± 1√

3
= ±0.5773502692 1.0000000000

3 ±0.7745966692 0.5555555556
0.0000000000 0.8888888889

4 ±0.8611363116 0.3478548451
±0.3399810436 0.6521451549

5 ±0.9061798459 0.2369268850
±0.5384693101 0.4786286701
0.0000000000 0.5688888889



Transforming a Gauss rule to an arbitrary interval

Gauss quadrature rules are always given on the interval [−1, 1] but we need to
perform integrations over other intervals.

If the domain of integration is different from [−1, 1], then a change of variables

is needed. For example, to compute the integral
∫ b
a f (x̂) dx̂ we use the linear

mapping x̂ = a+ b−a
2 (x+ 1) to map to the integral over [−1, 1]. Note that this

mapping sends the point x = −1 to x̂ = a and x = 1 to x̂ = b. Then with this
change of variables we have

∫ b

a

f (x̂) dx̂ =
b− a
2

∫ 1

−1
f

(
a +

b− a
2

(x + 1)

)
dx ,

where we have used the fact that dx̂ = (b − a)/2dx. Then we apply the
quadrature rule to the integral over (−1, 1). Note that we have just modified the
quadrature weight in the given rule by b−a

2 and mapped the quadrature point to
the interval [a, b].



Example

Approximate
∫ π
0 sinx dx = 2 using a 2-point and a 3-point Gauss quadrature

rule. Calculate the error for each rule. Compare your results with using Simpson’s
rule.

For the 2-point rule we need to transform the points x = ±1/
√
3 to the interval

[0, π]. We have the transformed points as

0 +
π

2

(
± 1√

3
+ 1

)
⇒ q1 = 0.6638966, q2 = 2.477696

and the weights

w1 = w2 =
π

2
(1)

Using these points and weights gives the approximation∫ π

0

sinx dx ≈ π

2
sin(0.6638966) +

π

2
sin(2.477696) = 1.93582

giving an error of 0.06418.

For the 3-point rule we need to transform the points x = ±0.7745966692, 0 to



the interval [0, π]. We have the transformed points as

0 +
π

2
(±0.7745966692 + 1)⇒ q1 = 0.354063, q3 = 2.78753

and for the quadrature point x = 0 we have

0 +
π

2
(0 + 1)⇒ q2 =

π

2
= 1.570796

The weights are

w1 = w3 =
π

2
(0.5555555) w2 =

π

2
(0.8888888)

Using these points and weights gives the approximation∫ π

0

sinx dx ≈ π

2

[
0.5555555 sin(0.354063) + 0.8888888 sin(

π

2
)

+0.5555555 sin(2.78753)] = 2.00136

giving an error of 0.001362.

Note that the interval is quite large (length π) and we are only using two or three
quadrature points so our accuracy is quite good. If we use Simpson’s Rule to



approximate this integral we get
π

6

(
sin(0) + 4 sin(

π

2
) + sin(π)

)
= 2.0944

with an error of 0.094395. So performing both Simpson’s Rule and the 3-point
Gauss Rule require three function evaluations but the error in the Gauss Rule is
almost seventy times smaller.

Summary for Gauss quadrature

•We use N quadrature points.
• The quadrature points are symmetric on [−1, 1].
• The degree of precision of the rule is 2N − 1, i.e., it integrates polynomials

of degree 2N − 1 or less exactly.
• The rule can be applied on any interval using an appropriate transformation.
• The rules can easily be used as composite rules just like Newton-Cotes rules.
• Gauss rules are preferred over Newton-Cotes rules because the accuracy is

greater for the same number of function evaluations.



Gauss Rules other than Gauss-Legendre

As we saw, the quadrature points for Gauss-Legendre rules are the roots of the
Legendre polynomials. However, we can also derive Gauss rules using other
orthogonal polynomials.

Gauss-Laguerre Quadrature Rules

Consider integrals which have a semi-infinite domain of the form∫ ∞
0

e−xf (x) dx

In this case we use quadrature points which are roots of the Laguerre polynomial
Ln. Like Legendre polynomials, Laguerre polynomials can be obtained from a
recursion formula and the first three are given here

L1 = 1− x, L2 =
1

2
(x2 − 4x + 2), L3 =

1

6
(−x3 + 9x2 − 18x + 6)

Once we have the roots for the quadrature points, then we determine the weights



by fitting the Lagrange interpolating polynomial. For example, for the one-point
Gauss-Laguerre formula we have the quadrature point q1 = 1 so we can simply
use p0(x) = 1. Since we want a one point formula of the form∫ ∞

0

e−xf (x) dx ≈ f (1)w1

we take the Lagrange polynomial and integrate∫ ∞
0

e−xf (1)L1(x) dx = f (1)

∫ ∞
0

e−x(1) dx = f (1) · 1

so w1 = 1.

One can also obtain an explicit formula for the weights in terms of the Laguerre
polynomial evaluated at the quadrature point.

What do we do if we have an integral with a semi-infinite domain but there is
no e−x in the integrand? We simply do a change of variables as the following
example illustrates.



Example Approximate the integral∫ ∞
0

ln(1 + e−x) dx =
π2

12
= 0.822467

using a 2-point Gauss Legendre rule.

We must first rewrite the integral so that it is in a form we can use. To this end,
we have∫ ∞

0

ln(1 + e−x) dx =

∫ ∞
0

e−xex ln(1 + e−x) dx =

∫ ∞
0

e−xf (x) dx

where f (x) = ex ln(1 + e−x). The quadrature points are q1 = 0.585786437627,
q2 = 3.41421356237 and the weights are w1 = 0.853553390593 and w2 =
0.146446609407. Applying the rule gives∫ ∞
0

ln(1+e−x) dx ≈ 0.853553390593eq1 ln(1+e−q1)+0.146446609407eq2 ln(1+e−q2)

= 0.822659



Gauss-Hermite Quadrature Rules

In Gauss-Hermite we consider integrals of the form∫ ∞
−∞

e−x
2
f (x) dx

Here the quadrature points are the roots of the Hermite polynomials and the
weights are determined as before. These are used when we have an integral with
both limits of integration being infinite.

So for every orthogonal polynomial we can generate a family of Gauss rules.



Improper Integrals

A proper integral is a definite integral whose integrand is continuous over the
bounded domain of integration; any other integral is called an improper inte-
gral. For example,

∫∞
0 ln(1 + e−x) dx we considered is an improper integral

because we are not integrating over a bounded domain. Other integrals may
have discontinuities in their integrands and are thus improper.

We have seen that if we have one or both of our limits of integration as infinity
then we can use Gauss-Laguerre or Gauss-Hermite quadrature rules. Often, we
can also handle this situation by other techniques which we demonstrate here.

Integrals over unbounded domains

If one or both of our limits of integration are infinite then there are several
approaches we can try.



• Use a special quadrature rule such as Gauss-Laguerre or Gauss-Hermite (de-
pending on whether we have one or both limits as infinite)

• Truncate the interval to a finite one

• Perform a change of variables to transform the integral to one over a finite
domain.

If the integrand decays fast enough, then we can truncate the domain as illus-
trated in the next example.

Example Approximate
∫∞
0 ln(1 + e−x) dx by truncating the domain. If we

plot the integrand we see that it decays very rapidly to zero. From the graph
we choose to truncate the domain at x = 6 so all we have to do is evaluate∫ 6

0 ln(1 + e−x) dx using any of the techniques we have learned.

Another approach is to transform the integral so that it no longer is over an
infinite domain. Care must be used here or else the integrand may oscillate and
cause problems.

Example Approximate
∫∞
0 ln(1 + e−x) dx by performing a change of variables



so that the domain is finite. We want to define a new variable t such that when
x =∞ then t is bounded. If we let x = 1

t − 1 then when x = 0 then t = 1 and
when x =∞, t = 0. This gives

x =
1

t
− 1⇒ dx = − 1

t2
dt

so that∫ ∞
0

ln(1 + e−x) dx = −
∫ 0

1

ln(1 + e1−1/t)
1

t2
dt =

∫ 1

0

ln(1 + e1−1/t)
1

t2
dt



Integrals with Singularities

Suppose we want to approximate an integral such as∫ 1

0

e−x

x2/3
dx

If we tried to apply a formula such as Simpson’s Rule, then we are in trouble
because the integrand becomes infinite as x→ 0. However, if we use a rule such
as an open Newton-Cotes formula or Gauss quadrature rule which does not use
the endpoints then we can typically get a good answer.

What if the singularity doesn’t occur at the endpoints of the interval? If we have
an integral such as ∫ 2

0

1

x− 1
dx

where the integrand is not defined at x = a then we break it into two integrals∫ 2

0

1

x− 1
dx =

∫ 1

0

1

x− 1
dx +

∫ 2

1

1

x− 1
dx



and use a rule on each integral which does not use the endpoints as quadrature
points.



Integration Using the Monte Carlo Method

Monte Carlo methods are a widely used class of computational algorithms. In its
simplest form, the Monte Carlo algorithm can be used for straightforward com-
putations such as approximating a scalar, an area or volume. More complicated
variants of the algorithm can be used in areas such as computational physics,
chemistry, applied mathematics, for example. We will return to look at Monte
Carlo methods in more detail towards the end of the semester.

Monte Carlo methods were originally called statistical sampling methods due to
the use of randomness.

Historically these methods were developed by John von Neumann, Enrico Fermi,
Stanislaw Ulam and Nicholas Metropolis.



To describe the Monte Carlo method in its simplest form consider the problem
of approximating π.

•We know that the area of the unit circle (with radius 1) is just π. So the
area of the portion of the unit circle in the first quadrant is just π/4.

•We choose random numbers x, y where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

• If the point (x, y) lies in or on the circle (i.e., x2 + y2 ≤ 1) then we record
this as a “hit”.

• The area of the circle (π) is then approximated by

4× points satisfying x2 + y2 ≤ 1

N

where N is the total number of random points (x, y) that we generate.



Now we want to apply this technique to approximate an integral.

• Suppose we want to evaluate

∫ b

a

f (x) dx

• If f (x) ≥ 0 for a ≤ x ≤ b then we know that this integral represents the
area under the curve y = f (x) and above the x−axis.



• So far we have looked at standard deterministic numerical integration rules
approximate this integral by

N∑
i=1

wif (qi)

• The Monte Carlo method is a probablistic approach to approximating the
integral.
•We determine a simple region a1 ≤ x ≤ a1, b1 ≤ y ≤ b2 which contains
f (x) for a ≤ x ≤ b. Then we generate a random number (x̂, ŷ) where
a1 ≤ x̂ ≤ a1, b1 ≤ ŷ ≤ b2. We then determine if (x̂, ŷ) lies on or below the
graph of f (x), i.e., in the desired area. If so, it is labeled a ”hit” and we
increase our counters appropriately. We continue this process.



To approximate the integral using Monte Carlo we

• choose a simpler region (such as a rectangle) which includes the area you
want to determine

• generate a random point in the simpler region

• determine if random point is in desired region

• take area as fraction of area of simpler region



Example Approximate ∫ 2

0

x2 dx

using the Monte Carlo method.

Here we know that 0 ≤ x2 ≤ 4 on the domain so we take the square with base
two and height four as our bounding region. We generate a random point (x, y)
where 0 ≤ x ≤ 2, 0 ≤ y ≤ 4 and then check to see if it lies below the curve
or above the curve. To do this, we simply evaluate the integrand at the random
x value and if y ≤ f (x) then we call it a ”hit” otherwise, not. We continue in
this manner. Our approximation to the integral is simply the usual fraction of
the area of the testing region. Here the area of the testing region is 8 so we have

number of hits

number of points
× 8

Of course we could have chosen a different testing region.



12 random points generated and 

5 in the desired region

(2,0)

(2,4)

Example Approximate
∫ π
0 cos(4 sin(x))dx using Monte Carlo. We don’t see

the kind of rapid convergence we are used to! (Table from J. Burkardt)



N MC error NC error
1 0.598 0.805
2 1.892 4.389
3 1.208 0.925
4 1.312 0.201
5 1.316 0.662
6 0.618 0.348
7 0.195 0.025
8 0.552 0.372
9 0.157 0.065

10 1.061 0.036
11 0.117 0.014
12 0.517 0.010
13 0.591 0.003
14 0.222 0.001
15 0.034 0.002
16 0.584 0.001
17 0.065 2e-4
18 0.526 1e-4
19 0.466 9e-5
20 0.532 5e-5



As you can see from the results, it takes a lot of random points to get several
digits of accuracy for MC and the error is not monotonically decreasing. In one
dimension, deterministic quadrature rules are usually preferable to Monte Carlo
but in higher dimensions, Monte Carlo often is better.



Integration in Higher Dimensions

So far we have only looked at integrals in one dimension so the domain of inte-
gration is always an interval. Oftentimes we have to compute integrals in two,
three, and higher dimensions. If the domain is the tensor product of intervals
then we can extend our one-dimensional Newton-Cotes and Gauss rules easily.
However, if the dimension is high, then these may not be feasible. For example,
if we have extend a rule in one dimension which uses two points then in nine
dimensions it uses 29 = 512 quadrature points and in twenty dimensions we have
106 points!

For integrals where the domain of integration is complicated, we can not easily
extend our one-dimensional rules so we have to decide how these integrals can
be approximated.



Integrals whose domain is a tensor product [ai, bi]
n

For simplicity suppose we have the integral∫ b1

a1

∫ b2

a2

f (x, y) dydx

that we want to approximate using a Gauss-Legendre quadrature rule. The do-
main of integration is the rectangle [a1, b1]× [a2, b2].

In one dimension we employed the Gauss-Legendre quadrature rules on [−1, 1]. If
we take the tensor products of a p-point Gauss rule in each direction in IR2 then
we would have one point for the tensor product of the one-point rule, four points
for the tensor product of the two-point rule, etc. The quadrature points in two
dimensions formed by the tensor product of one-point through three-point Gauss
quadrature rules are described below. Note that in three dimensions we have 1,
8, and 27 quadrature points for tensor products of these three quadrature rules.

To apply these rules to an integral over an arbitrary rectangular domain, we must
perform a change of variables in both the x and y directions analogous to the



1-D rule # points in IR2 points qi & weights wi

r 1 point Gauss 1 q1 = (0, 0) w1 = 4

rr rr 2 point Gauss 4 qi =
1√
3

{
(−1,−1), (1,−1), (−1, 1), (1, 1)

wi = 1

r r rr r rr r r
3 point Gauss 9 qi =

√
3
5

{
(−1,−1), (0,−1), (1,−1), (−1, 0),

((0, 0), (1, 0), (−1, 1), (0, 1), (1, 1)
}

wi =
1
81

{
25, 40, 25, 40, 64, 40, 25, 40, 25

}
Table 0.2

Tensor product of Gauss quadrature rules in two dimensions

one-dimensional case.

The Newton-Cotes formulas can be extended to domains defined by [ai, bi]
n in

the same manner.

Extending the deterministic quadrature rules in one dimension works well on a



rectangular domain in two or three dimensions. However, if we have a high dimen-
sional domain even if it is a tensor product of 1-D intervals can be prohibitively
time consuming.

Consider a 10-D integral (far less uncommon then you would think) with simple
boundaries

I =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

f (x1, x2, ...x10) dx10...dx2dx1.

Even if you considered 10 points along each dimension xi, you would have to 1010

points to evaluate the function at. If your integrand required a millisecond to
compute, then evaluating simply the function at all the grid-points would require
more than 100 days. So this is not feasible.

What can be do instead? A common approach is to use Monte Carlo. We saw
that in one dimension Monte Carlo required a lot of points to get an accurate
solution and really had no advantage over deterministic methods except maybe
for its simplicity. In higher dimensions it is actually more feasible than most
standard deterministic rules.



The reason for this is that the error in Monte Carlo vanishes like
1√
N

where N is the number of points. In 1-D most of the methods we considered are
better than this.

However, the error in Monte Carlo does not depend on the spatial dimension.
This is in contrast to deterministic methods; for example, the error in Simpson’s
rule which vanishes like

1

N 4/d

where d is the spatial dimension.


