Chapter

A Survey of Methods

In the last chapter we looked at the forward and backward Euler method for ap-
proximating the solution to the first order IVP (2.2). Although both methods are
simple to understand and program, they converge at a linear rate which is often
prohibitively slow. In this chapter we provide a survey of schemes which have higher
than linear accuracy. Also in Example 2.8 we saw that the forward Euler method
gave unreliable results for some choices of time steps so we need to investigate when
this numerical instability occurs so it can be avoided.

The standard methods for approximating the solution of (2.2) fall into two
broad categories which are single-step/one-step methods and multistep meth-
ods. Each category consists of families of explicit and families of implicit methods
of varying degrees of accuracy. Both the forward and backward Euler methods are
single-step methods because they only use information from one previously com-
puted solution, that is, at ¢,, to compute the solution at ¢,4;. We have not
encountered multistep methods yet but they use information at several previously
calculated points; for example, a two-step method uses information at t,, and ¢,,_1
to predict the solution at ¢, 1. Using previously calculated information is how mul-
tistep methods improve on the linear accuracy of the Euler method. One-step meth-
ods improve the accuracy by performing intermediate approximations in (¢, t,+1]
which are then discarded. We will see that there are advantages and disadvantages
to each class of methods.

Instead of simply listing common single-step and multistep methods, we want to
understand how these methods can be derived so that we gain a better understand-
ing. For one-step methods we begin by using Taylor series expansions to derive the
Euler methods and see how this approach can be easily extended to get higher order
accurate methods. However, we will see that these methods require repeated differ-
entiation of the given slope f(¢,y) and so are not, in general, practical. To obtain
methods which don't require repeated differentiation we investigate how numerical
quadrature rules and interpolating polynomials can be used to derive methods. In
these approaches we integrate the differential equation from ¢,, to ¢,,+1 and either

51

52 CHAPTER 3. A SURVEY OF METHODS

use a quadrature rule to evaluate the integral of f(¢,y) or first replace f(t,y) by
an interpolating polynomial and then integrate. We will also introduce a systematic
approach to deriving schemes called the method of undetermined coefficients. In
this approach we let the coefficients in the scheme be undetermined parameters and
determine conditions on the parameters so that the scheme has as high accuracy
as possible. The Runge-Kutta methods discussed in § 3.1.3 are the most popular
one-step methods. After introducing Runge-Kutta methods we investigate how to
determine if a single-step method is stable for all choices of time step; if it is not,
we show how to obtain conditions on the time step which guarantee stability.

Multistep methods can be derived in analogous ways. However, when we inte-
grate the equation or use an interpolating polynomial we need to include points such
as tp_1, tp—o, etc. Backward difference methods are discussed in § 3.2.1 and the
widely used Adams-Bashforth and Adams-Moulton families of multistep methods
are presented in § 3.2.2. Because multistep methods rely on previously computed
values the stability analysis is more complicated than for single-step methods so we
will simply summarize the conditions for stability.

For both multistep and single-step methods we provide numerical results and
demonstrate that the numerical rate of convergence agrees with the theoretical
results. Efficient implementation of the methods is discussed.

In § 3.3 we see how using Richardson extrapolation can take a sequence of ap-
proximations from a lower order method and generate more accurate approximations
without additional function evaluations. This approach can be used with single-step
or multistep methods. We will discuss how the currently popular Burlisch-Stoer
extrapolation method exploits certain properties of methods to provide a robust
algorithm with high accuracy.

In Chapter 2 we saw that implicit methods were inherently more costly to imple-
ment than explicit methods due to the fact that they typically require the solution
of a nonlinear equation at each time step. In § 3.4 we investigate an efficient way
to implement an implicit method by pairing it with an explicit method to yield the
so-called Predictor-Corrector methods.

3.1 Single-Step Methods

In this section we look at the important class of numerical methods for the IVP (2.2)
called single-step or one-step methods which only use information at one previously
calculated point, ¢, to approximate the solution at t,,1. Both the forward and
backward Euler methods are one-step methods with linear accuracy. To improve on
the accuracy of these methods, higher order explicit single-step methods compute
additional approximations in the interval (¢,,t,+1) which are used to approximate
the solution at ¢,,+1; these intermediate approximations are then discarded.

We first look at Taylor series methods which are easy to derive but impractical
to use because they require repeated differentiation of the given slope f(¢,y). Then
we demonstrate how other one-step methods can be derived by first integrating
the differential equation and using a numerical quadrature rule to approximate the
integral of the slope. One shortcoming of this approach is that for each quadra-

3.1. SINGLE-STEP METHODS 53

ture rule we choose we obtain a different method whose accuracy must then be
obtained. An alternate approach to deriving methods is to form a general explicit or
implicit method, assuming a fixed number of additional function evaluations, and
then determine the coefficients in the scheme so that one has as high an accuracy as
possible. This approach results in families of methods which have a given accuracy
and so eliminates the tedious local truncation error calculations. Either approach
leads to the Runge-Kutta family of methods which we discuss in § 3.1.3.

3.1.1 Taylor series methods

Taylor series is an extremely useful tool in numerical analysis, especially in deriv-
ing and analyzing difference methods. In this section we demonstrate that it is
straightforward to derive the forward Euler method using Taylor series and then
to generalize the approach to derive higher order accurate schemes. Unfortunately,
these schemes are not very practical because they require repeated differentiation of
the given slope f(t,y). This means that software implementing these methods will
be very problem dependent and require several additional routines to be provided
by the user for each problem. Additionally, f(¢,y) may not possess higher order
derivatives.

To derive explicit methods using Taylor series we use the differential equation
evaluated at ¢,, so we need an approximation to y’(¢,). Thus we expand y(t,, + At)
about t, to get

At)? At)F
(2!) y/’(tn)+...+uy[k]

Y(tn + At) = y(t,) + Aty (tn) + x

(tn)+-- . (3.1)

This is an infinite series so if we truncate it then we have an approximation to
y(t, + At) from which we can approximate /'(t,,). For example, if we truncate the
series at the term which is O(At) we have

y(tn-‘rl) B y(tn)

Y(tat) 2 y(ta)+0ty (tn) = y(b)+ AL (b, y(ta)) = 3/ (1) ~ L

which leads to the forward Euler method when we substitute into the differential
equation evaluated at t,, i.e., ¥'(t,) = f(tn,y(tn)). Alternately, we can view this
as giving the difference equation directly.

So theoretically, if we keep additional terms in the series expansion for y(t,, +At)
then we get a higher order approximation. To see how this approach works, we now
keep three terms in the expansion and thus have a remainder term of O(At?). From
(3.1) we have

y(t, + At) = y(t,) + Aty (t,) +

so we expect a local error of O(At3) which leads to an expected global error of
O(A#?). Now the problem we have to address when we use this expansion is what
to do with y”(t,,) because we only know ¢'(t) = f(¢,y). If our function is smooth
enough, we can differentiate this equation with respect to ¢ to get 3 (¢). To do this

54 CHAPTER 3. A SURVEY OF METHODS

recall that we have to use the chain rule because f is a function of ¢t and y where
y is also a function t. Specifically, we have

ofdt 0Ofd
_ofdt Ofdy

y'(t) = flt,y) =y"(t) = otdr oy dt

=fe+ fyf-

Substituting this into the expression for y(t,, + At) gives

(At)?

Y(tp+dt) = y(tn)+ALf (tn, y(tn))+T

[(ft(tna y@n))"’f@m y(tn)) (fy(tna y(tn))}

which gives the second order explicit Taylor series method.

Second order explicit Taylor series method

Yn+1 —_yn + Atf(tn,yn) + (A;)Q ft(tn,Yn) + f(tn,Y")fy(thn)} (32)

To implement this method, we must provide function routines not only for f(¢,y)
but also fi(¢,y) and fy(¢,y). In some cases this will be easy, but in others it can
be tedious or even not possible. The following example applies the second order
Taylor scheme to a specific IVP and in the exercises we explore a third order Taylor
series method.

Example 3.1. SECOND ORDER TAYLOR METHOD

Approximate the solution to

1

y'(6) =3yt" y(0) =3

using (3.2) and verify the quadratic convergence. The exact solution is %etg.
Before writing a code for a particular method, it is helpful to first perform some calculations
by hand so it is clear that the method is completely understood and also to have some
results with which to compare the numerical simulations for debugging. To this end, we
first calculate Y' and Y2 using At = 0.1. Then we provide numerical results at t = 1
for several choices of At and compare with a first order explicit Taylor series method, i.e.,

with the forward Euler method.

From the discussion in this section, we know that we need f; and f, so
flt,y) =3yt> = fi =6ty and f, =3t°.
Substitution into the difference equation (3.2) gives the expression

2
Y = YT 4 3AY R + (&%)

(6t Y™ +9t,Y™) . (3.3)

3.1. SINGLE-STEP METHODS 55

For Y° = 1/3 we have

vi=L 01 (%) (14 D (6(.1% + 9(-1)‘%) = 0.335335.

The exact solution at ¢ = 0.2 is 0.336011 which gives an error of 0.675862 10~>.

To implement this method in a computer code we modify our program for the forward
Euler method to include the O(At?) terms in (3.2). In addition to a function for f(¢,v)
we also need to provide function routines for its first partial derivatives f, and f;; note
that in our program we code the general equation (3.2), not the equation (3.3) specific
to our problem. We perform calculations with decreasing values of At and compare with
results at ¢ = 1 using the forward Euler method. When we compute the numerical rate
of convergence we see that the rate of convergence is O(At?), as expected whereas the
forward Euler is only linear. For this reason when we compare the global errors at a fixed,
small time step we see that the error is much smaller for the second order method because
it is converging to zero faster than the Euler method.

At Error in Numerical Error in Numerical
Euler rate second order Taylor rate
1/4 | 3.1689 107" 1.2328 107"
1/8 | 2.0007 1071 0.663 4.1143 1072 1.58
1/16 | 1.1521 10T 0.796 1.1932 1072 1.79
1/32 | 6.2350 102 0.886 3.2091 1073 1.89
1/64 | 3.2516 1072 0.939 8.3150 10~ 1% 1.95
1/128 | 1.6615 102 0.969 21157107 % 1.97

Implicit Taylor series methods can be derived in an analogous manner. In this
case we use the differential equation evaluated at t,,4.1, i.e., ¥/ (tn41) = f(tns1, y(tnt1)).
Consequently we need an approximation to y'(t,+1) instead of y'(t,,) so we use the
expansion

2

Y(tn) = y(tnsr — At) = y(tn1) — Aty (tn1) + G

ol y//(tn+1) + e (34)

Keeping terms through O(At) gives the backward Euler method. In the exercises
you are asked to derive a second order implicit Taylor series method.

Taylor series methods are single step methods. Although using these methods
results in methods with higher order accuracy than the Euler methods, they are
not considered practical because of the requirement of repeated differentiation of
f(t,y). For example, the first full derivative has two terms and the second has five
terms. So even if f(t,y) can be differentiated, the methods become unwieldy. To
implement the methods on a computer the user must provide routines for all the
partial derivatives so the codes become very problem dependent. For these reasons
we look at other approaches to derive higher order schemes.

56 CHAPTER 3. A SURVEY OF METHODS

3.1.2 Derivation of methods which don’t require repeated dif-
ferentiation

Taylor series methods are not practical because they require repeated differentiation
of the solution so it is important to obtain methods which don't need to do this. If
we integrate the differential equation then the left-hand side can be evaluated easily
but, in general, we won't be able to integrate the given slope. One approach is to
use a numerical quadrature rule to approximate this integral. A second approach is
to use an interpolating polynomial in [t,,t,+1] to approximate the slope and then
integrate. Because many quadrature rules are interpolatory in nature, these two
approaches often yield equivalent schemes. The use of a quadrature rule is more
general so we concentrate on that approach. The shortcoming of this approach is
that for each method we derive, we have to demonstrate its accuracy. An approach
which generates families of methods of a prescribed accuracy is illustrated in § 3.1.2.

Using numerical quadrature

We first derive one-step methods by integrating the differential equation from t,, to
tn+1 and then approximating the integral of the slope using a numerical quadrature
rule. When we integrate (2.2a) from t,, to t,,+1 we have

tnt1 tnt1
[vwae= [T s . (3.5)
t t

n n

The integral on the left hand side can be evaluated exactly by the Fundamental
Theorem of Calculus to get y(t,4+1) — y(¢n). However, in general, we must use
numerical quadrature to approximate the integral on the right hand side. Recall from
calculus that one of the simplest approximations to an integral is to use either a left
or right Riemann sum, i.e., if the integrand is nonnegative then we are approximating
the area under the curve by a rectangle. If we use a left sum for the integral we
approximate the integral by a rectangle whose base is At and whose height is
determined by the integrand evaluated at the left endpoint of the interval; i.e., we
use the formula

b
/ o(x) ~ g(a)(b—a).

Using the left Riemann sum to approximate the integral of f(¢,y) gives

Y(tnsn) — y(tn) = / " Fty) dt =~ AL (n y(ta)

n

which leads us to the forward Euler method. In the exercises you will explore the
implications of using a right Riemann sum. Clearly different approximations to the
integral of f(t,y) yield different methods.

Numerical quadrature rules for single integrals have the general form

b Q
[ot~ wigla)

3.1. SINGLE-STEP METHODS o7

where the scalars w; are called the quadrature weights, the points ¢; are the quadra-
ture points in [a,b] and @ is the number of quadrature points used. One common
numerical integration rule is the midpoint rule where, as the name indicates, we
evaluate the integrand at the midpoint of the interval; specifically the midpoint

quadrature rule is
b
a+b
/ g(t) dtm(b—a)g(5) .

Using the midpoint quadrature rule to approximate the integral of f(¢,y) in (3.5)
gives

At At

Y(tnr1) —y(tn) = Atf(tn + 50 y(tn + ?)) .

The problem with this approximation is that we can’t evaluate f(thr%, y(tn+%))
because we don't know y evaluated at the midpoint. Our only recourse is to use an
approximation. If we use the forward Euler method starting at ¢,, and take a step
of length At/2 then this produces an approximation to y at the midpoint i.e.,

At

y(tn + 7) ~y(tn) + %f(tm y(tn)) -

Thus we can view our method as having two parts; first we approximate y at the
midpoint using Euler's method and then use it to approximate y(¢,+1). Combining
these into one equation allows the scheme to be written as

Y =Y Atf(t, + %,Y” + %Atf(tn,Y”)) .

However, the method is usually written in the following way for clarity and to
emphasize the fact that there are two function evaluations required.

Midpoint Rule
ki = Atf(t,,Y")
ky = Atf(tn+5LY"+ ki) (3.6)
Yol = Yn 4k

The midpoint rule has a simple geometrical interpretation. Recall that for the
forward Euler method we used the tangent line at ¢,, to extrapolate the solution at
tn+1. In the midpoint rule we use the tangent line at ¢, + At/2 to extrapolate the
solution at t,1. Heuristically we expect this to give a better approximation than
the tangent line at ¢,,.

The midpoint rule is a single step method because it only uses one previously
calculated solution, i.e., the solution at t,,. However, it requires one more function
evaluation than the forward Euler method but, unlike the Taylor series methods,
it does not require additional derivatives of the slope f(t,y). Because we are
doing more work than the Euler method, we would like to think that the scheme

58 CHAPTER 3. A SURVEY OF METHODS

converges faster. In the next example we demonstrate that the local truncation
error of the midpoint method is O(At?) so that we expect the method to converge
with a global error of O(At?). The steps in estimating the local truncation error for
the midpoint method are analogous to the ones we performed for determining the
local truncation error for the forward Euler method except now we need to use a
Taylor series expansion in two independent variables for f(t,y) because of the term
fltn+ 5L Y" + 2ky).

Example 3.2. LOCAL TRUNCATION ERROR FOR THE MIDPOINT RULE

Show that the local truncation error for the midpoint rule is exactly O(At?).

Recall that the local truncation error is the remainder when the exact solution is substituted
into the difference equation. For the midpoint rule the local truncation error 7,1 at tn41
is

At

Tr1 = Y(tnr1) — [Y(tn) + ALf (tn + 5 y(ta) + %f(tn,y(tn))) : (3.7)

As before, we expand y(t,+1) with a Taylor series but this time we keep the terms through
(At)® because we want to demonstrate that terms in the expression for the truncation
error through (At)? cancel but terms involving (At)® do not; this way we will demonstrate
that the local truncation is exactly O(At?) rather than it is at least O(At?). We have

yltns) = yltn) + At (1) + By) + By) voart). @9)
Substituting this into (3.7) yields
Tat1 = {y(tn) + Aty () + —(A;) Y (tn) + —(A;!) v (tn) + O(At‘*)} 59
= [ute 4 atr e+ Gvten) + G|

Now all terms are evaluated at t, except the term f(tn + &%, y(tn) + &L f(tn, y(tn))).
Because this term is a function of two variables instead of one we need to use the Taylor
series expansion given in (18). To use this formula we note that the change in the first
variable ¢ is h = At/2 and the change in the second variable y is k = (At/2) f (tn, y(tn)).
Thus we have

Atf(tn + %,y(tn) + %f(tmy(tn))) = At [f+ %ft n %ffy
At)? At)? At)2
+(4 .tg)! e + (4.2! I fuy +2(4.t2)! [fey +(’)(At3)] .

All terms involving f or its derivatives on the right-hand side of this equation are evaluated
at (tn,y(tn)) and we have omitted this explicit dependence for brevity. Substituting this
expansion into the expression (3.9) for 7,41 and collecting terms involving each power of
At yields

ron = Atly = f] + AR (LY = 20+ 1)
1, 1

(3.10)
A (Gy" = g [fu+ £ hu 20 fu] + O(AL).

3.1. SINGLE-STEP METHODS 59

Clearly 4’ = f so the term involving At cancels but to see if the other terms cancel we
need to write ¥ and y"’ in terms of f and its derivatives. To write " (¢) in terms of
f(t,y) and its partial derivatives we have to differentiate f(¢,y) with respect to ¢ which
requires the use of the chain rule. We have

" _ 8f@ af 8y _ !
V0= Gt gy ar = fH I = fot ul
Similarly,

" o a(ft+fyf)8t B(ft"!‘fyf)ay
v = ot ot oy ot

Jeo + furf + fufe + (fty + fyuf + f;)f
fre +2fuef + fufe + fouf2 + ff7

Thus the terms in (3.10) involving At and (At)? cancel but the terms involving (At)? do
not. Consequently the local truncation error converges cubically and we expect the global
convergence rate to be quadratic.

If we use a Riemann sum or the midpoint rule to approximate an integral
fabg(t)dt where g(t) > 0 on [a,b] then we are using a rectangle to approximate
the area. An alternate approach is to use a trapezoid to approximate the area.
The trapezoidal integration rule is found by calculating the area of the trapezoid
with base (b — a) and height determined by the line passing through (a, g(a)) and
(b, g(b)); specifically the rule is

/ o0 di~ LD () + 90).

Integrating the differential equation (2.2a) from ¢,, to ¢,,+1 and using this quadrature
rule gives

y(tn-i-l) - y(tn) ~ % [f(tnvy(tn)) + f(tn+17y(tn+1))} .

At
Trapezoidal Rule yrtl —y» 4 > [ftn,Y™) + f(tn, Y"TH] (3.11)

However, like the backward Euler method this is an implicit scheme and thus for
each t,, we need to solve a nonlinear equation for most choices of f(¢,y). This can
be done, but there are better approaches for using implicit schemes in the context
of ODEs as we will see in § 3.4.

Other numerical quadrature rules on the interval from [t,,,t,41] lead to addi-
tional explicit and implicit one-step methods. The Euler method, the midpoint rule
and the trapezoidal rule all belong to a family of methods called Runge-Kutta
methods which we discuss in § 3.1.3.

60 CHAPTER 3. A SURVEY OF METHODS

Many quadrature rules are interpolatory in nature; that is, the integrand is
approximated by an interpolating polynomial which can then be integrated exactly.
For example, for fabg(x) dz we could use a constant, a linear polynomial, a quadratic
polynomial, etc. to approximate g(x) in [a,b] and then integrate it exactly. We
want to use a Lagrange interpolating polynomial instead of a Hermite because the
latter requires derivatives. If we use f(¢,y(t)) = f(tn,y(tn)) in [tn,tnt1] then we
get the forward Euler method and if we use f(¢,y(t)) = f(tn +At/2, y(t, + At/2))
then we get the midpoint rule. So to derive some single-step methods we can use
interpolation but only using points in the interval [t,,t,+1]. However there are
many quadrature rules, such as Gauss quadrature, which are not interpolatory and
so using numerical quadrature as an approach to deriving single-step methods is
more general.

Using the method of undetermined coefficients

One problem with deriving methods using numerical integration or interpolation is
that once we have obtained a method then we must determine its local truncation
error which is straightforward but often tedious. A systematic approach to deriving
methods is to assume the most general form of the desired method and then de-
termine constraints on the coefficients in the general method so that it has a local
truncation error which is as high as possible.

Suppose we want an explicit one-step scheme and we are only willing to perform
one function evaluation which is at (¢,,Y™). The forward Euler method is such a
scheme; we want to determine if there are any others, especially one which converges
at a higher rate. The most general form of an explicit one-step scheme is

Y™ = oY ™ 4 b Atf(t,, Y™);

note that the forward Euler method has &« = b; = 1. To determine the local
truncation error we substitute the exact solution into the difference equation and
calculate the remainder. We have

Tl = Y(tns1) —ay(tn) — blAtf(tnay(tn))
/ AtQ 1 Atg n /
= [ulta) + Aty (1) + Ty (t) + (6] - ayta) - Al (1)
3
= y(tn) [1 - a] + y/(tn)At[l - bl] + y//(tn)At2 [%] + %ym(fn))

where we have expanded y(t,+1) in a Taylor series with remainder and used the
fact that ¢/ (¢) = f(¢,y) in the second step. In the last step we have grouped the
constant terms, the terms involving At, At? and At3. For the constant term to
disappear we require that o = 1; for the linear term in At we require that by = 1.
The term involving At? can not be made to disappear so the only explicit method
with one function evaluation which has a local truncation O(At?) is the forward
Euler method. No explicit method using only the function evaluation at t,, with a
local truncation error greater than O(At?) is possible. Note that o must always be
one to cancel the y(t,) term in the expansion of y(t, + At) so in the sequel there
is no need for it to be unknown.

3.1. SINGLE-STEP METHODS 61

The following example illustrates this approach if we want an explicit single-step
method where we are willing to perform one additional function value in the interval
[tn, tnt1]. We already know that the midpoint rule is a second order method which
requires the additional function evaluation at ¢, + At¢/2. However, this example
demonstrates that there is an infinite number of such methods.

Example 3.3. DERIVATION OF A SECOND ORDER EXPLICIT SINGLE-STEP METHOD

We now assume that in addition to evaluating f(t,,Y™) we want to evaluate the slope
at one intermediate point in (tn,%n+1]. Because we are doing an additional function
evaluation, we expect that we should be able to make the truncation error smaller if we
choose the parameters correctly; i.e., we choose an appropriate point in (tn,tnt1]. A
random point may not give us second order accuracy. We must leave the choice of the
location of the point as a variable so our general difference equation is

Y = V™ 4+ b1 AL f (tn, Y) + b2 ALf (tn + c2AL Y + a1 ALf(tn, Y™)) (3.12)

where the general point in (tn,tn+1] is tn + c2At and the general approximation to y at
this point is Y™ + a21 Atf(tn, Y ™). Recall that we have set & = 1 as in the derivation of
the forward Euler method.

To determine constraints on the parameters b1, b2, c2 and a1 which result in the highest
order for the truncation error, we compute the local truncation error and use Taylor series
to expand the terms. For simplicity, in the following expansion we have omitted the explicit
evaluation of f and its derivatives at the point (¢n,y(tn)); however, if f is evaluated at
some other point we have explicitly noted this. We use (18) for a Taylor series expansion
in two variables to get

2 3
%y//+%yll/+O(At4):|

Tn+1

[y + Aty +
- [y FOLALS + boALf(tn + 2Ny + aglAtf)]

2 3
= 20 Bt £1) + B 4 26 4 £+ Fuf + £52) + O(A0))]

—biALf — ba AL [f + eaALfi + anALff,

a31 (At)? f2
2

Jrc%(At)2

D) fee +

fou + c2a21 (A8 fiy + O(AE)] .

We first see if we can determine the parameters so that the scheme has a local truncation
error of O(At?); to this end we must determine the equations that the unknown coefficients

must satisfy in order for the terms involving (At)' and (At)? to vanish. We have
At [f(l — by — bg)] = 0

1 1
Atz ft(§ — bQCQ) —+ ffy(§ - b2a21):| = 0

where once again we have dropped the explicit evaluation of y and f at (¢n,y(tn)). Thus
we have the conditions

1 1
by + by = 1, baco = 5 and baao = 5 . (313)

62 CHAPTER 3. A SURVEY OF METHODS

Note that the midpoint method given in (3.6) satisfies these equations with b1 = 0,b2 = 1,
c2 = a21 = 1/2. However, any choice of the parameters which satisfy these constraints
generates a method with a third order local truncation error.

Because we have four parameters and only three constraints we might ask ourselves if it
is possible to choose the parameters so that the local truncation error is one order higher,
i.e., O(At*). To see that this is impossible note that in the expansion of y(t,11) the
term 3" involves terms such as f,f, for which there are no corresponding terms in the
expansion of f(tn + co AL, Y™ + aglAtf(tn,Y")) so these O(At3) terms will remain.
Consequently there is no third order explicit one-step method which only performs two
function evaluations per time step.

3.1.3 Runge-Kutta methods

Runge-Kutta® (RK) methods are a family of one-step methods which include both
explicit and implicit methods. They are further characterized by the number of
stages which is just the number of function evaluations performed at each time step.
The forward Euler and the midpoint methods are examples of explicit RK methods;
the Euler method is a one-stage method whereas the midpoint method is a two-
stage method because it uses information at the midpoint ¢,,+At/2 as well as at ¢,,.
Both the backward Euler and the trapezoidal methods are examples of implicit RK
methods; the Euler method is a one-stage method whereas the trapezoidal method
is a two-stage method. The family of RK methods were developed primarily from
1895 to 1925 and involved work by Runge, Heun, Kutta and Nystrom. Interested
readers should refer to the paper by J.C. Butcher entitled “A history of Runge-Kutta
methods.”

The standard approach for the derivation of families of RK methods is to use the
method of undetermined coefficients discussed in § 3.1.2 because it gives families of
methods with a prescribed local truncation error. This was illustrated in Example 3.3
where we assumed the most general form of an explicit two-stage single step method
in (3.12). To illustrate the fact that it is a two-stage method we can also write
(3.12) as

ki = Atf(t,,Y™)
ke = Atf(tn + At Y" 4+ ask:)
yrtl = yn 4 b1kt + boks .

We obtained the constraints by +bs = 1, bacy = 1/2 and baas; = 1/2 and so there
is a family of second order accurate two-stage explicit RK methods. The midpoint
method which we derived using numerical quadrature is one of the two-stage RK
methods. Another commonly used two-stage RK method is the Heun method where
the intermediate point is (¢, + 2At, Y™ + 2Atf(t,,Y™)); note that y(t, + 2At)
is approximated by taking an Euler step of length %At.

LCarl David Tolmé Runge (1856-1927) and Martin Wilhelm Kutta (1867-1944) were Ger-
man mathematicians

3.1. SINGLE-STEP METHODS 63

Heun Method

ky = Atf(tnvyn)
ky = Atf(tn+2At Y™+ 2k) (3.14)
YrHl = Y™+ Tk + 3k

The general form for an explicit s-stage RK method is given below. The coef-
ficient ¢; is always zero because we always evaluate f at the point (¢,,Y™) from
the previous step to get the appropriate cancellation for the At term in the local
truncation error calculation.

General s-stage explicit RK method

ki = Atf(t,,Y"™)
ky = Atf(tp + oAt Y™ + agik:)
kg = Atf(tn —+ CgAt, Yn + a31k1 —+ aggkg)
. (3.15)
ks = Atf(tn+csAt7Yn+aslkl +a52k2+"'+a5571k571)
Yol = Y3 biky

Once the stage s is set and the coefficients are determined, the method is completely
specified; for this reason, the RK explicit s-stage methods are often described by a
Butcher? tableau of the form

0
C2 | G21
C3 | a3z1 Aa32
(3.16)
Cs | As1 A52 e Ass
bl b2 . bs

As an example, a commonly used four-stage RK method is described by the tableau

0
111
2 | 2
1 1
2|0 2 (3.17)
1o 0 1
1 1 1 1
6 3 3 6

2Named after John C. Butcher, a mathematician from New Zealand.

64 CHAPTER 3. A SURVEY OF METHODS

which uses an approximation at the point ¢,,, two approximations at the point
t, + At/2, and the fourth approximation at ¢,,11. This defines the method

ki o= Atf(t,,Y™)

ky = Atf(tn + 3ALY" + 1k)

ks = Atf(ta +2A6Y" + ko)

ki = Atf(t,+ AL, Y™ + k)
Yo+l = Yrp By Bk gk

In the examples of RK methods provided, we note that c; in the term ¢, 4 c; At
satisfy the property that ¢; = 23;11 a;; which can be demonstrated rigorously. In
addition, the weights b; satisfy Zle b; = 1. This can be used as a check in a
computer code to confirm the coefficients have been entered correctly.

When implementing RK methods using a fixed time step one could have separate
codes for the Euler method, midpoint method, Heun's method, etc. but a more
general approach is discussed here. Basically one writes “library” routines which
input the coefficients for each s-stage method coded and another routine which
advances the solution one time step for any s-stage method; once debugged, these
routines never need to be modified so they can be private routines. The user sets
the number of stages desired and the problem specific information. Then the driver
routine initializes the computation by calling the appropriate routine to set the RK
coefficients and then at each time step the routine is called to advance the solution.
This code structure can be easily done in an object-oriented manner or simply with
conditional statements. Error routines need to be added if the exact solution is
known.

The following example compares the results of using explicit RK methods for
stages one through four. Note that the numerical rate of convergence matches the
stage number for stages one through four but, as we will see, this is not true in
general.

Example 3.4. NUMERICAL SIMULATIONS USING EXPLICIT RK METHODS

Consider the IVP

YO =t t) 0<t<2 y0)=-1
whose exact solution is y(t) = —2/(t> +2) . In the table below we provide numerical
results at ¢ = 2 using RK methods with stages one through four. The methods were
chosen so that they have as high degree of accuracy as possible for the given stage. The
global error for each s-stage method at ¢ = 2 is tabulated along with the corresponding
numerical rates calculated by comparing errors at successive values of the time step.

At stage 1 stage 2 stage 3 stage 4
error rate error rate error rate error rate
1/5 | 2.3810° 7 1.36 1072 1.29 1077 1.17107°

1/10 [1.08 1072 1.14 | 3.4010°" 2.01 | 1.4810° 3.12 | 72010 " 4.02
1/20 | 5171077 1.06 | 8.38107° 2.02 | 1.78 107° 3.05 | 4.4510°° 4.02
1/40 [253107 1.03 | 2.0810°° 2.01 | 2.191077 3.02 | 27710 ° 4.01

3.1. SINGLE-STEP METHODS 65

Many RK methods were derived in the early part of the 1900's; initially, the
impetus was to find higher order explicit methods. In Example 3.4 we saw that for
s < 4 the stage and the order of accuracy are the same. One might be tempted
to generalize that an s-stage method always produces a method with global error
O(At®), however, this is not the case. In fact, there is an order barrier which
is illustrated in the table below. As you can see from the table, a five-stage RK
method does not produce a fifth order scheme; we need a six-stage method to
produce that accuracy so there is no practical reason to use a five-stage scheme
because it has the same accuracy as a four-stage scheme but requires one additional
function evaluation.

Order 1
Min. stage 1

2 3 6
2 3 7

4 5 7
4 6 9 11 11

Unlike explicit RK methods, implicit RK methods do not have this order barrier.
The following four-stage implicit RK method has order five so it is more accurate
than any four-stage explicit RK method.

ki = Atf(tn,Y")
ke = Atf(tn+ 1A6LY™ + L1k + 1k2)
ks = Atf(t, + 7At Y™ — ki 4 32ko + k)
ke = Atf(tn+ ALY™ + 2k + 5k3)
Yot = Y Lk 4 Bk + 289k + 2ky.

Analogous to the general explicit s-stage RK scheme (3.15) we can write a general
form of an implicit s-stage RK method. The difference in implicit methods is
that in the calculation of k; the approximation to y(t, + ¢;At) can be over all
values of s whereas in explicit methods the sum only goes through the previous k;,
j=1,---,7—1 terms.

General s-stage implicit RK method

ki = Atf(tn,Y" + annk: + ainks + - - - a15ks)
ko = Atf(tn + o AL, Y™ + ag1 k1 + +aoggks + - - - agsks)

: (3.18)
ks = Atf(tn + CsAta Y™ +agiky + aspks + - + assks)

Y= YTk

66 CHAPTER 3. A SURVEY OF METHODS

An implicit RK method has a tableau which is no longer upper triangular

0 |ann a2 ais
C2 | G21 Q22 a2s
: (3.19)
Cs ags1 As2 Ags
b1 b coo by

3.1.4 Stability of single-step methods

For stability we want to know that the computed solution to the difference equation
remains close to the actual solution of the difference equation and so does not grow
in an unbounded manner. We first look at stability of the differential equation for
the model problem

y(#)= Ny 0<t<T,\eC, (3.20)

with the initial condition y(0) = yo and solution y(t) = yoe**. Note that in general
A is a complex number but to understand why we look at this particular problem first
consider the case when A is real. If A > 0 then small changes in the initial condition
can result in the solutions becoming far apart. For example, if we have IVPs (3.20)
with two initial conditions y1(0) = « and y2(0) = S which differ by 6 = |8 — ¢
then the solutions y; = ae* and y, = Be? differ by de*. Consequently, for large
A > 0 these solutions can differ dramatically as illustrated in the table below for
various choices of § and A. However, if A < 0 the term Je* approaches zero as
t — 0. Therefore for stability of this model IVP when A is real we require A < 0.

Ao [y1(0.5) — y2(0.5)[| [y1(1) — y2(1)] | |y1(10) — y2(10)]
1] 0.01 0.0165 0.0272 220
1101 0.165 0.272 2203
10 | 0.01 1.48 220 104!
10 | 0.1 14.8 2203 1042
—-110.1 6.07 1072 3.68 1072 4.54 106
—10 | 0.1 6.73 10~* 4.54 1076 1045

In general, X is complex so it can be written as A = « + i3 where «, 5 are real
numbers and ¢ = /—1. The exact solution is

y(t) = yoe™

= Yo

6at+i,3t at

= Yoe €

3Bt

Now e = cos(Bt) + isin(t) so this term does not grow in time; however the
term e** will grow in an unbounded manner if & > 0. Consequently we say that
the differential equation y’ = Ay is stable when the real part of A is less than or
equal to zero, i.e., Re(\) < 0 or A is in the left half of the complex plane.

3.1. SINGLE-STEP METHODS 67

When we approximate the model IVP (3.20) we want to know that small
changes, such as those due to round off, do not cause large changes in the so-
lution. Here we are going to look at stability of a difference equation of the form

Y = (A Y™ (3.21)

applied to the model problem (3.20). Our single step methods fit into this frame-
work. For example, for the forward Euler method applied to the differential equation
y' = Ay we have Y"1 = Y 4 AtAY™ so ((AAt) = 1 + At\. For the backward
Euler method we have Y1 = Y™ + AtAY"™ ! so ((AAt) = 1/(1 — AAt). For
explicit RK methods ((z) will be a polynomial in z and for implicit RK methods it
will be a rational function.

We apply the difference equation (3.21) recursively to get

Y= CAADY T = CAADY; g = -+ = ("(AAY)Y,

so we can view (as an amplification factor because the solution at time ¢, _1
is amplified by a factor of (to get the solution at t¢,,, the solution at time ¢, _o
is amplified by a factor of (2 to get the solution at t,, etc. We know that the
magnitude of ¢ must be less than or equal to one or else Y™ will become unbounded.
This condition is known as absolute stability. There are many other definitions of
different types of stability; some of these are explored in the exercises.

The region of absolute stability for the difference equation (3.21) is { At €
C | |C(AAt)] < 1}. A method is called A-stable if |((AAt)| < 1 for the entire
left half plane.

Example 3.5. We want to determine if the forward Euler method and the backward
Euler method are A-stable; if not, we want to determine the region of absolute stability.
We then discuss our previous numerical results for 3’ (t) = —20y(t) in light of these results.

For the forward Euler method ((AA¢) = 1 + AA¢ so the condition for A-stability is that
|1 + AA¢| < 1 for the entire left plane. Now A is, in general, complex which we can write
as A = a+ i3 but let's first look at the real case, i.e., 8 = 0. Then we have

—1<14+MAt<1=-2<AAt<0

so on the real axis we have the interval [—2,0]. This says that for a fixed real A < 0, At
must satisfy At < 2/|A| and thus the method is not A-stable but has a region [—2,0] of
absolute stability if A is real. If 8 # 0 then we have the region of stability as a circle in the
complex plane of radius one centered at -1. For example, when A = —20 At must satisfy
At < 0.1. In Example 2.8 we plotted results for At = 1/4 and 1/8 which do not satisfy
the stability criteria. In the figure below we plot approximations to the same problem using
At = 1/20, 1/40 and 1/60. As you can see from the graph, the solution appears to be
converging.

68 CHAPTER 3. A SURVEY OF METHODS

For the backward Euler method ((AAt) = 1/(1 — AAt). To determine if it is A-stable we
see if it satisfies the stability criteria for the entire left plane. As before, we first find the
region when X is real. For A < 0 have 1 — AA¢ > 1 so that ((AA¢t) < 1 for all At and
we have the entire left plane. The backward Euler method is A-stable so any choice of At
provides stable results for A < 0.

To be precise, the region of absolute stability for the backward Euler method is actually the
region outside the circle in the complex plane centered at one with radius one. Clearly, this
includes the left half plane. To see this, note that when AA¢ > 2 then |1/(1 — AA¢t)| < 1.
However, we are mainly interested in the case when Re(\) < 0 because the differential
equation ¥’ (t) = \y is stable.

Example 3.6. In this example we investigate the regions of absolute stability for the
explicit 2-stage Heun method

A 2 2
Yyt =vy" 4 Tt [f(tn, Y™) +3f(tn + ALY + gAztf(tn,Y”))} .

We have written the scheme as a single equation rather than the standard way of specifying
k; because this makes it easier to determine the amplification factor.

We apply the difference scheme to the model problem 3" = Ay where f(t,y) = Ay(t) to
get

y"tl=vy" 4 % [AY™ 43Xy + %At/\Y")] =1+ i(mt) + %(AAt) + %()\At)Q]Y"

so ((AAt) = 14 AAt + 2(AAt)®. The region of absolute stability is all points z in the
complex plane where |((z)| < 1. If A is real and non-positive we have

2
—1§1+Z+%§1:>—2§z(1+%)§0.

For A < 0 so that z = AAt¢ < 0 we must have 1+ %)\At > 0 which says AtA > —2. Thus
the region of stability is [—2,0] when X is real and when it is complex we have a circle of
radius one centered at —1. This is the same region as the one computed for the forward
Euler method.

In Figure 3.1 numerical results are presented for the case when A = —20. For this choice
of A the stability criteria becomes At < 0.1.

It can be shown that there is no explicit RK method that has an unbounded
region of absolute stability such as the left half plane region of stability that we got
for the backward Euler method. In general, implicit methods do not have stability
restrictions so this is one reason that we need implicit methods. Implicit methods
will be especially important when we study initial boundary value problems.

3.2 Multistep Methods

An m-step multistep method uses previously calculated information at the m points
tny th—1s---5 tn—(m—1) to approximate the solution at t,,; whereas a one-step

3.2. MULTISTEP METHODS 69

501 , 10
/
d / / osf{
At=05 / / |
» / /

/ At=025

Figure 3.1: Approximations for the IVP ¢/(¢t) = —20y, y(0) = 1 using the Heun
method. For the plot on the left the step size At is too large and numerical instability
is occurring. When we reduce the step size the method converges as the graph on
the right demonstrates.

method uses only the information at ¢,, plus additional approximations in the interval
[tr, tnr1] which are then discarded. This, of course, means that multistep methods
require fewer function evaluations than single-step methods. However, because
information from previous time steps is needed to advance the solution to t,1,
these values must be stored. This is not an issue when we are solving a single
IVP but when we have a very large system of IVPs the storage of information from
previous steps is significant. Another issue with multistep methods is that they are
not self-starting. Recall that when we implement a RK method we use the initial
condition and then the scheme gives the approximation at tg + At and subsequent
points. However, if we are using say a three-step method then we need the initial
condition at ¢y plus approximations at t; and ts to start using the method. So a
shortcoming of m-step methods is that we have to use a one-step method to get
approximations at the first m — 1 time steps after tg.

An m-step method can be implicit or explicit. The solution at ¢, 1 can depend
explicitly on the solution and the slope at previous points but the most common
methods only use the solution at ¢,, and the slopes at all points. To write the general
form of an m-step method which can be explicit or implicit we allow the scheme to
be a linear combination of the solution at the m points 5, t,—1, ..., t,_(m—1) and
the slopes at the m + 1 points 41, tn, tn—1, .-, tn_(m—1) POINts. If the method
is explicit then the coefficient in front of the term f(t, 11, Y""?) is zero.

General m-step method
W = Am—1Y" + am—QYn_l +am—3Y,_2+---+ aOYn—i-l—m
+At |:bmf(tn+17 YnJrl) I bm—lf(tna Yn) al bm—Qf(tn—la Ynil)

4.+ bOf(thrl—m, Yn-i—l—m)
(3.22)

If b, = 0 then the method is explicit; otherwise it is implicit. We don’t include
a term a,, Y"1 on the right-hand side for implicit methods because if we did we

70 CHAPTER 3. A SURVEY OF METHODS

could just combine it with the Y"1 term on the left-hand side of the formula and
then divide by that coefficient to get the form in (3.22).
In this section we begin by looking at xxxxxxx

3.2.1 Derivation of multistep methods

We saw that a common approach to deriving one-step methods (other than Taylor
series methods) is to integrate the differential equation from ¢, to ¢,+1 and use
a quadrature rule to approximate the integral over f(¢,y). However, for an m-
step method we must integrate from ¢,,_,,41 to t,+1. For example, for a two-step
method we integrate the equation from ¢, _; to ¢,41 to get

tn+1

/ W) dt = y(tnsn) — y(ta) = / F(ty) dt.

tn—1 tn—1

Now if we use the midpoint quadrature rule to approximate the integral we have
the two-step scheme
Y = Yyl L 2ALf(t,, YY) (3.23)

which is sometimes called the modified midpoint method. However, unlike one-
step methods, our choice of quadrature rule is restricted because for the quadrature
points we must use only the previously calculated times. For example, if we have a
three-step method using t,,, t,_1, and t,,_o we need to use a Newton-Cotes integra-
tion formula such as Simpson’s method. Remember that Newton-Cotes quadrature
rules are interpolatory and so this approach is closely related to using an interpola-
tion polynomial.

Multistep methods are typically derived by using an interpolating polynomial in
either of two ways. The first is to approximate y(t) by an interpolating polynomial
through t,, tp—1,...,th—m+1 and then differentiate it, evaluate at t,; for an
implicit method and set it equal to the given slope at that point to obtain the
difference equation. This gives rise to a family of implicit methods called backward
difference formulas. The second approach is to use an interpolating polynomial
through ¢, tn—1,...,tn—m+1 for the given slope f(t,y) and then integrate the
equation; the integral of the interpolating polynomial can be computed exactly. We
discuss both approaches here.

Similar to one-step methods, we can also derive multistep methods by assuming
the most general form of the m-step method and then determine the constraints on
the coefficients which give as high an order of accuracy as possible. This approach
is just the method of undetermined coefficients discussed in § 3.1.2. This approach
for deriving multistep methods is explored in the exercises.

Using an interpolating polynomial to approximate the solution

Backward difference formulas (BDFs) are a family of implicit multistep methods;
the backward Euler method is considered the first order BDF even though it is a
single step method. We begin by demonstrating how to derive the backward Euler
method by approximating y(t) by a linear interpolating polynomial and then show

3.2. MULTISTEP METHODS 71

how this approach can be used to generate more accurate methods by simply using
a higher degree interpolating polynomial.

The Lagrange form of the unique linear polynomial that passes through the
points (t,,y(tn)) and (tng1,y(tns1)) is

t—tni t—tn
_ t
N +y(tnsr) AL

p1(t) = y(tn)

Differentiating with respect to ¢ gives

e Ly, L
Ph(0) = gu(ta) + 17u(tns)

which leads to the familiar approximation

y,(t) ~ y(t"-‘rl) - y(tn)
At '
Using this expression in the differential equation y'(t) = f(t,y) at t,+1 gives the
implicit backward Euler method.
For the second order BDF we approximate y(¢,+1) by the quadratic polynomial

that passes through (t,—1,y(tn—1)) ,(tn, y(tn)) and (tn41, y(tn+1)); the Lagrange
form of the polynomial is

(t — tn)(t — tn+1)
(tnfl - tn)(tnfl - thrl)

(t - tn—l)(t - tn)
tn+1 - tnfl)(thrl - tn)

(t = tn1)(t — tny1)
(tn - tnfl)(tn - tn+1)

p2(t) = yltn-1) +y(tn)

+y(tn+1) (

and differentiating with respect to ¢ and assuming a constant At gives

~

pa(t) = 3;((75&)12) [2t—tn—tni1] - E’Xt’sg [2t—tn—1—tps1]+ gﬁtg;;; [2t—tn_1—ts] -

We use p)(tn41) as an approximation to y'(t,41) in the equation y/(tn4+1) =
[(tng1,y(tns1)) to get

y;&)g) At — E’Xglmw ‘1’2(&:)12) BAL & f(tns1,y(tns1)) -

This suggest the BDF

3 1
5Y"+1) §Y"‘1 = Atf(tny1, Y™,

often these formulas are normalized so that the coefficient of Y™t is one. It can
be shown that this method is second order.

72 CHAPTER 3. A SURVEY OF METHODS

Doy L

2
Second order BDF }m+%:§Y 3ym—k+§Aﬁ@mHJm+U (3.24)

In general, BDF formulas using approximations at t,41, tn, -+ ,tnt+1—m have
the general normalized form

Y =3 ", YD 4 BALf (40, YY) (3.25)
j=1
For the two-step scheme (3.24) we have m = 2, as1 = 4/3, azs = —1/3 and

B = 2/3. Table 3.1 gives coefficients for other uniform BDF formulas using the
terminology of (3.25). It can be proved that the accuracy of the m-step methods
included in the table is m.

m'Step Am1 Am2 am3 Ama Am5 ﬂ
1 1 1
2 | 4/3 -1/3 2/3
3 |18/11 -9/11 2/11 6/11
4 | 48/25 -36/25 16/25 -3/25 12/25
5 300/137 -300/137 200/137 -75/137 12/137 | 60/137

Table 3.1: Coefficients for implicit BDF formulas of the form (3.25) where the
coefficient of Y *1 is normalized to one.

It is also possible to derive BDFs for nonuniform time steps. The formulas are
derived in an analogous manner but are a bit more complicated because for the
interpolating polynomial we must keep track of each At;; in the case of a uniform
At there are some cancellations which simplify the resulting formulas.

Using an interpolating polynomial to approximate the slope

The second choice for deriving schemes using an interpolating polynomial is to
approximate f(t,y) by an interpolating polynomial and then integrate. For example,
suppose we approximate f(t,y) by a polynomial of degree zero, i.e., a constant in the
interval [t,, ty41]. If we use the approximation f(t,y) & f(tn,y(tn)) in [tn, tnt]
then integrating the differential equation yields

Yltnsn) — y(tn) = / " pty) dt ~ / " b yt) dt = £t y(t)) A

n n

which leads to the forward Euler method. If we choose to approximate f(t,y) in
[tnstnt1) by f(tn41,y(tns1)) then we get the backward Euler method. In general,

3.2. MULTISTEP METHODS 73

if the interpolation polynomial approximating f(¢,y) includes the point ¢, then
the resulting scheme will be implicit because it will involve f(t,41, Y™ "!); otherwise
it will be explicit.

To see how to derive a two-step explicit scheme, we use the previous information
at ¢, and t,,_1 and write the linear interpolating polynomial for f(t,y) through the
two points and integrate the equation from ¢, to t,41. As before we use the
Fundamental Theorem of Calculus to integrate ftt:“ y'(t) dt. Using uniform step
sizes, we have

Q

Y(tns1) — y(tn) /t+ {f(tnl,y(tnl))t_At: +f(tn,y(tn))t_£;‘l} dt

_ 1 (t —tp)? |tntr
= —Ef(tn—lay(tn—l))T .
1 (t — tnfl) tnt1
+th(tn7y(tn))f .

_éf(tn—lvy(tn—lw <(A2t)) é (tnzy(tn)) 3A2t

which suggests the scheme

3 At
yrHl = ym g 5Atf(tn,y") — 7f(tn,1, vy, (3.26)
This is an example of an Adams-Bashforth multistep method; these methods will
be discussed in more detail in § 3.2.2.

3.2.2 Adams-Bashforth and Adams-Moulton families

A commonly used family of explicit multistep methods are called Adams-Bashforth
methods which use the derivative f evaluated at m prior points (including t,,) but
only use the approximation to y(t) at t,; i.e.,, ag = -+ = am—2 = 0. The one
step Adams-Bashforth method is the forward Euler method. In § 3.2.1 we used an
interpolation polynomial for f(¢,y) to derive the 2-step scheme

Y Y S (1Y) S (e, YY)

which belongs to the Adams-Bashforth family with by = 0, by = 3/2 and by =
—1/2 in the general formula (3.22). In the exercises, you are asked to rigorously
demonstrate that the local truncation error for (3.26) is third order and thus the
scheme is second order accurate. The methods up to five steps are listed here for
completeness.

74 CHAPTER 3. A SURVEY OF METHODS

Adams-Bashforth 2-step, 3-step, 4-step and 5-step methods

y»th = }m/#At<3funﬁ”ﬁlf@w4,Y”U>

Yn+l = YY"+ At ftn;Yn _7f(n 11Yn 1)+ f(z 27 1= 2)>

*f(i—3, Yie 3))

1901 1387
mf oo) *%f(n LY" I)Jrff(z 2,Y;_2)

637 251

_%f(S 37}/1 3) mf(tz47}/24))

Yn+1 = Yn + At (f tn; Yn Zf(tnfla Yn_l) + ﬂf<ti72’l/;72)
yrth = Y”+At<

(3.27)

Schemes in the Adams-Moulton family are implicit multistep methods which use
the derivative f evaluated at ¢,,.1 plus m prior points but only use the solution Y.
The one-step Adams-Moulton method is the backward Euler scheme and the 2-step
method is the trapezoidal rule; several methods are listed here for completeness.

Adams-Moulton 2-step, 3-step, 4-step and 5-step methods

yrr = yny B n+1,Y”+1)+f(thn))

yrtl = yP 4 At

<12
3 5
Yyt = Yy 4 At <8f(nt L, Y + — f(tn, Y™) — ﬂf(tnflayn_l)
+ f(tz 2, Lq 2)
251 646 264
Y = Y A o f(tnn, V) 4 2 f (b, V™) = 2 flt, Y
106 19
— f(t;— ,Y;'_ — o J(tiz 7}/;—
oI (ta i) — (o, Yino))

(3.28)

One drawback of an m-step method is that we need m starting values YO,
Y. ...,Y™ ! and we only have Y from the initial condition. Typically one uses
a one-step method to start the scheme. How do we decide what method to use? A
“safe” approach is to use a method which has the same accuracy as the multistep
method but we will see in the following examples that you can actually use a method

3.2. MULTISTEP METHODS 75

which has one power of At less because we are only taking a small number of steps
with the method. For example, if we use the 2-step second order Adams-Bashforth
method we need Y' in addition to Y°. If we take one step with the forward
Euler method it is actually second order accurate at the first step because the error
there is only due to the local truncation error. However, if we use a 3-step third
order Adams-Bashforth method then using the forward Euler method to get the two
starting values results in a loss of accuracy. This issue is illustrated in the following
examples.

Example 3.7. STARTING VALUES FOR MULTISTEP METHODS

In this example we implement the 3-step third order accurate Adams-Bashforth method
given in (3.27) to solve the IVP

Y () =t"+yt) 2<t<5
which has the exact solution
y(t) =112 — (* + 2t + 2).

We compare the numerical rates of convergence when we use different methods to generate
the starting values. Specifically we use RK methods of order one through four to generate
the starting values which for a 4-step method are Y' Y2 and Y? because we have Y? = 1.
The results are tabulated below for the errors at ¢ = 3. As you can see from the table,
if a second, third or fourth order scheme is used to compute the starting values then the
method is third order. There is nothing gained by using a higher order scheme (the fourth
order) for the starting values. However, if a first order scheme (forward Euler) is used then
the rate is degraded to second order even though we only used it to calculate two values,
Y! and Y,. Consequently to compute starting values we should use a scheme that has the
same overall accuracy or one degree less than the method we are using.

accuracy of starting method
first second third fourth
At error rate €error rate error rate error rate
1/10 | 2.425 107" 1.618 1072 8.231 1072 8.042 1073
1/20 | 6.106 1072 | 1.99 | 2.2411073 | 2.87 | 1.208 1073 | 2.77 | 1.195107° | 2.75
1/40 | 1.5291072 | 2.00 | 2.946 107* | 2.92 | 1.628 10™* | 2.89 | 1.620 107" | 2.88
1/80 | 3.823 1073 | 2.00 | 3.777107° | 2.96 | 2.112107° | 2.95 | 2.107 1075 | 2.94

Example 3.8. COMPARISON OF ADAMS BASHFORTH METHODS

In this example we solve the IVP from the previous example a by 2-step through 5-step
Adams Bashforth method. In each case we use a scheme that is one degree less accurate
to calculate the starting values. As can be seen from the table, all methods have the
expected numerical rate of convergence.

76 CHAPTER 3. A SURVEY OF METHODS
2-step method 3-step method 4-step method 5-step method
At error rate error rate error rate error rate
1/10 | 2.240 107! 1.618 1072 9.146 10~* 5.567 10~°
1/20 | 5.896 1072 | 1.93 | 2.241 1072 | 2.87 | 6.986 107° | 3.71 | 2.463 107° | 4.50
1/40 | 1.509 1072 | 1.97 | 2.946 10™* | 2.92 | 4.802107° | 3.86 | 8.983 1073 | 4.78
1/80 | 3.816 1072 | 1.98 | 3.777107° | 2.96 | 3.144 1077 | 3.93 | 3.022107° | 4.89

3.2.3 Stability of multistep methods

The numerical stability of a one-step method depends on the initial condition g
but in a m-step multistep method there are m — 1 other starting values Y1, Y2, ...,
Y™~1 which are obtained by another method such as a RK method. In 1956
Dahlquist® published a seminal work formulating criteria for the stability of linear
multistep methods. We will give an overview of the results here.

We first rewrite the m-step multistep method (3.22) by shifting the indices to
get

Yz+m — am,1YZ+m_1 + am72yz+m—2 —|—am,3Yl+m_3 W +a0yz

+At bmf(ti+m, Yz+m) 4 bm—lf(ti+m—17 Y1'+7n,—1)
+bm—2f(t1'+7n_2, Yi+m*2) 4+t bOf(ti7 Yz)

or equivalently

m—1 m
YhLm — Z a,jYZJrj = Atz bjf(ti+j7 YlJr]) .
7=0 7=0

As before, we apply it to the model IVP ' = Ay, y(0) = yo for Re(X) < 0 which
guarantees the IVP itself is stable. Substituting f = Ay into the difference equation
gives

m—1 m
YN a Y = ALY by
=0 j=0

Recall that a technique for solving a linear homogeneous ODE such as 3" (t) +
2y'(t) — y(t) = 0 is to look for solutions of the form y = ™ and get a polynomial
equation for r such as e"(r? 4+ 2r — 1) = 0 and then determine the roots of the
equation. We take the analogous approach for the difference equation and seek a
solution of the form Y™ = 2%, Substitution into the difference equation yields

m

m—1
Zrm g ajzlﬂ = At g bj/\z”].
j=0 J

=

3Germund Dahlquist (1925-2005) was a Swedish mathematician.

3.2. MULTISTEP METHODS 7

Canceling the lowest order term z* gives a polynomial equation in z which is a
function of A and At resulting in the stability equation

m

m—1
QAAL) = 2" — Z a2l — Atz bjrz! = p(z) — Atha(z),
Jj=0 J

—
where

m—1 m
p(z) =2"— Z a;2’ and o(z) = Z b2’ . (3.29)
§=0 §=0

For stability, we need the roots of p(z) to have magnitude < 1 and if a root is
identically one then it must be a simple root. If this root condition is violated,
then the method is unstable so a simple check is to first see if the root condition is
satisfied; if the root condition is satisfied then we need to find the region of stability.
To do this, we find the roots of Q(AAt) and require that each root has magnitude
less than or equal to one. To simplify the calculations we rewrite Q(AAt) as

QAL = 2"™(1 = AAthy) — 2™ (am—1 + b1 AAY)
2" (am—2 + bn—2AA) — -+ — (ag + boAAL).

The following two examples determine the region of stability using this approach.

Example 3.9. In this example we investigate the stability of the forward and backward
Euler methods by first demonstrating that the root condition for p(z) is satisfied and then
finding the region of absolute stability; we confirm that we get the same results as before.

The forward Euler method is written as Y"1 = Y™ + Atf(tn,Y™) so in the form of a
multistep method with m = 1 we have ap = 1, bp = 1, b1 = 0 and thus p(z) = z—1 whose
root is z = 1 so the root condition is satisfied. To find the region of absolute stability
we have Q(AAt) = z — (1 + AAt) which has a single root 1 + AA¢; thus the region of
absolute stability is |1 + AA¢| < 1 which is the condition we got before by analyzing the
method as a single step method.

For the backward Euler method ag =1, bp = 0, b1 = 1 and so p(z) = z — 1 which has the
root z = 1 and so the root condition is satisfied. To find the region of absolute stability
we have Q(AAt) = z(1 — AA¢t) — 1 which has a single root 1/(1 — AAt) and we get the
same restriction that we got before by analyzing the method as a single-step method.

Example 3.10. In this example we want to show that the 2-step Adams-Bashforth

method A
yrt —ym 4 5> [Bf(tn,Y™) = f(tn—1,Y")]

is stable.

For this Adams-Bashforth method we have m =2, ag =0, a1 =1, bo = —1/2, by = 3/2,
and bz = 0. The characteristic polynomial is p(z) = 2? — z = z(z — 1) whose two roots
are z = 0,1 and the root condition is satisfied.

78 CHAPTER 3. A SURVEY OF METHODS

In summary, we have seen that some methods can be unstable if the step size
At is too large (such as the forward Euler method) while others are stable even
for a large choice of At (such as the backward Euler method). In general, explicit
methods have stability restrictions whereas implicit methods are stable for all step
sizes. Of course, one must have a small enough step size for accuracy. We have
just touched on the ideas of stability of numerical methods for IVPs; the interested
reader is referred to standard texts in numerical analysis for a thorough treatment
of stability. The important concept is that we need a consistent and stable method
to guarantee convergence of our results.

3.3 Extrapolation methods

Richardson extrapolation is a technique used throughout numerical analysis. The
basic idea is that you take a sequence of approximations which are generated by a
method whose error can be expanded in terms of powers of a discretization param-
eter and then combine these approximations to generate a more accurate solution.
Recall that when we calculate the local truncation error we expand the error in terms
of the step size At so the methods we have studied can be used with Richardson
extrapolation. This approach can also be viewed as interpolating the approxima-
tions and then extrapolating to the point where the parameter is zero. A currently
popular method for solving an IVP where high accuracy is required is the Burlisch-
Stoer algorithm which refines this extrapolation concept to provide a robust and
efficient algorithm.

In this section we demonstrate the basic idea of how extrapolation can be used
with approximations generated by methods we already have. Then we briefly discuss
the modifications needed to develop the Burlisch-Stoer method.

3.3.1 Richardson extrapolation

As a simple example consider the forward Euler method which we know is a first
order approximation. To simplify the notation we set h to be the time step or grid
spacing. From the Taylor Series expansion for f(t+h) we have the forward difference
approximation to f’(t) which we denote by N (h) where N(h) = (f(t+h)—f(t))/h.
We have

! h‘ 1 h2 " h‘3 "
P = N) = 5170+ 5 "0+ "+ (330)
Now if we generate another approximation using step size h/2 we have

ro-NO =t s B @y
4 4-3! 8- 4! ' ’

The goal is to combine these approximations to eliminate the O(h) term so that

the approximation is O(h?). Clearly subtracting (3.30) from twice (3.31) eliminates

3.3. EXTRAPOLATION METHODS 79

the terms involving h so we get

2 2 3 3
PO~ NG = NOY] = [~ S0+ g — 50
_ h2 " t 3h3 " t
= —Ef()—STf)+

(3.32)
Thus the approximation 2N (h/2) — N(h) for f'(x) is second order. This process
can be repeated to eliminate the O(h?) term. To see this, we use the approximation
(3.32) with h halved again to get

by h

h? 3h3
Z) 7N(2)] T 412

7'(t) = [2N(U - S e (333)
To eliminate the h? terms we need to take four times (3.33) and subtract (3.32)
so that 3f(t) — BN (%) — 4N (%) — 2N (%) + N(h)] = O(h3). This yields the
approximation %N(%) —2N(%) + LN (h) which is a third order approximation to
F'(¢). In theory, this procedure can be repeated to get as accurate an approximation
as possible for the given computer precision. In this simple example we have used
approximations at h, h/2,h/4, ... but a general sequence hg, h1, ha, ... where hy >
hy > ho > --- can be used. The following example takes first order approximations
generated by the forward Euler method and produces approximations of a specified
order.

Example 3.11. FORWARD EULER WITH RICHARDSON EXTRAPOLATION

Return to Example 2.5 where we have tabulated the approximate solution obtained by
the forward Euler method for the IVP y/(t) = —5y(t) with y(0) = 2. The exact solution
at t = 1 is 0.0134759. We tabulate the results from the problem below and then use
Richardson extrapolation to obtain a sequence of solutions which converge quadratically.
Note that no extra computations are performed except to take the linear combination of
two previous results.

Euler — N(At) 2N (At/2) — N(At)
At YY" Rate y" Rate

1/10 1.953 1073

1/20 6.342107* 0.692 1.073 1072

1/40 9.580107% 0.873 1.2821072 2.09
1/80 1.1451072 0.942 1.3321072 2.05
1/160 1.244107% 0.973 1.3431072 2.03
1/320 1.295107% 0.986 1.346 1072 2.01

Note that to get the rates in the last column more accuracy in the solution had to be used
than the recorded values in the table.

80 CHAPTER 3. A SURVEY OF METHODS

This procedure of taking linear combinations is equivalent to polynomial interpo-
lation where we interpolate the points (h;, N(h;)), i =0,1,...,s and then evaluate
the interpolation polynomial at h = 0. For example, suppose we have a first order
approximation as was the case for the forward difference approximation and use hg
and hy = hg/2 . Then the linear polynomial which interpolates (hO,N(hO)) and
(hl, N(hl)) is
h—hy h — hg
ho — hy h1 — ho

Setting h1 = ho/2 and evaluating the polynomial at h = 0, i.e., extrapolating to
zero, we get —N (hg) + 2N (hg/2) which is exactly the approximation we derived in
(3.32) by taking the correct linear combination of (3.30) and (3.31).

N(ho) + N(h1)

3.3.2 Burlisch-Stoer method

The Burlisch-Stoer method is an extrapolation scheme which takes advantage of the
error expansion of certain methods to produce very accurate results in an efficient
manner. In order for the extrapolation method to work we must know that the error
in approximating w(x) is of the form

w(z) — N(h) = K1h + Kyh® + Ksh® + Kyh* + -+ - . (3.34)

However, if all the odd terms in this error expansion are known to be zero then this
greatly enhances the benefits of repeated extrapolation. For example, suppose we
have a second order approximation where all the odd powers of h are zero, i.e.,

w(z) — N(h) = K1h? + Koh* + - + K;h* + O((h)20HD) (3.35)

Then, when we obtain a numerical approximation N(h/2) the linear combination
which eliminates the h? term is

[4w(x)—=4N (h/2)]=[w(z)=N(h)] = 3w(z)-[4N(h/2)=N(h)] = —K2%+0(h6)

so that the approximation 3N (h/2) — N (h) is fourth order accurate after only one
extrapolation step. Although extrapolation methods can be applied to all methods
with an error expansion of the form (3.34), the most efficient methods, such as
the Burlisch-Stoer method, use an underlying method which has an error expansion
such as (3.35).

A common choice for the low order method is the two-step midpoint method

Y2 = Y 4 2At f(tyyr, YL

The error expansion for this method does not contain odd terms; see the exercises.
The other modification that the Burlisch-Stoer method incorporates to improve
the extrapolation process is to use rational interpolation rather than polynomial
interpolation. A link to an implementation of this method can be found on its
Wikipedia page.

3.4. PREDICTOR-CORRECTOR METHODS 81

3.4 Predictor-Corrector Methods

We have considered several implicit schemes for approximating the solution of an
IVP. However, when we implement these schemes the solution of a nonlinear equa-
tion is necessary unless f(t,y) is linear in y. This requires extra work and moreover,
we know that methods such as the Newton-Raphson method for nonlinear equa-
tions are not guaranteed to converge globally. Additionally, we ultimately want to
develop variable time step methods so we need methods which provide an easy way
to estimate errors. For these reasons, we look at predictor-corrector schemes.

In predictor-corrector methods an implicit scheme is implemented explicitly be-
cause it is used to improve (or correct) the solution that is first obtained (or pre-
dicted) by an explicit scheme. The implicit scheme is implemented as an explicit
scheme because instead of computing f(t,41,Y™"!) we use the known predicted
value at ¢,,41. One can also take the approach of correcting more than once. You
can view this approach as being similar to applying the Newton-Raphson method
where we take the predictor step as the initial guess and each corrector is a New-
ton iteration; however, the predictor step gives a systematic approach to finding an
initial guess.

We first consider the Euler-trapezoidal predictor-corrector pair where the explicit
scheme is forward Euler and the implicit scheme is the trapezoidal method (3.11).
Recall that the forward Euler scheme is first order and the trapezoidal is second
order. Letting the result of the predicted solution at t,1 be Yp"‘H, we have the
following predictor-corrector pair.

Euler-Trapezoidal Predictor-Corrector Method

Yot = Y+ Atf(tn, Y™)

YL = Y B f(t, Yyt o+ (Y7 (3:36)

As can be seen from the description of the scheme, the implicit trapezoidal method
is now implemented as an explicit method because we evaluate f at the known point
(tn41, Y, t) instead of at the unknown point (t,,41,Y"™"!). The method requires
two function evaluations so the work is equivalent to a two-stage RK method. The
scheme is often denoted by PECE because we first predict Yp"‘H, then evaluate
f(tng1, Y,T1), then correct to get Y™ ! and finally evaluate f(t,41, Y™ ") to get
ready for the next step.

The predicted solution Yp’“rl from the forward Euler method is first order but
we add a correction to it using the trapezoidal method and improve the error. We
can view the predictor-corrector pair as implementing the difference scheme

A
ynHl —yn ?t [f(th,Yn + ALf(tn, Y™)) + f(tn, Y™)

which uses an average of the slope at (t,,Y™) along with ¢,41 and the Euler ap-
proximation there. To analytically demonstrate the accuracy of a predictor-corrector

82 CHAPTER 3. A SURVEY OF METHODS

method it is helpful to write the scheme in this manner. In the exercises you are
asked to show that this predictor-corrector pair is second order. Example 3.12
demonstrates that numerically we get second order.

One might believe that if one correction step improves the accuracy, then two
or more correction steps are better. This leads to methods which are commonly
denoted as PE(CE)" schemes where the last two steps in the correction process
are repeated r times. Of course it is not known a priori how many correction
steps should be done but since the predictor step provides a good starting guess,
only a small number of corrections are typically required. The effectiveness of the
correction step can be dynamically monitored to determine r. The next example
applies the Euler-trapezoid rule to an IVP using more than one correction step.

Example 3.12. EULER-TRAPEZOIDAL PREDICTOR-CORRECTOR PAIR

In this example we first perform a step of the Euler-trapezoidal predictor-corrector pair by
hand to demonstrate how it is implemented and then compare the numerical results when
a different number of corrections are used. Specifically we consider the IVP

, ty?
y(t) = ———
V9 —1t2—2
which has an exact solution y(t) = 1/4/9 — 2 found by separating variables and integrat-
ing.
Using Y = 1 and At = 0.1 we first predict the value at 0.1 using the forward Euler
method with f(t,y) = ty?/(v/9 — 2 — 2) to get

P: V) =Y% 4 .1f(to,Y°) =1+0.1(0) = 1.0;

0<t<2 y0)=1

then evaluate the slope at this point

E: £(0.1,1.0) = (\/9('17).(11:)2) = 0.03351867

and finally correct to obtain the approximation at ¢; = 0.1
Nl
C:y'=v"+ 07 [f(O.l, 1)+ f(0, 1)] == 1.03351867

with
E :f(0.1,1.8944272) = 0.03356667 .

To perform a second correction we have

Cy'=v"+ %1 [£(0.1,1.03351867) + f(0,1)] = 1.00167316

where
E:f(.1,1.) = 0.03463567 .

The results for the approximate solutions at ¢ = 2 are given in the table below using
decreasing values of At; the corresponding results from just using the forward Euler method

3.4. PREDICTOR-CORRECTOR METHODS 83

are also given. As can be seen from the table, the predictor-corrector pair is second order.
Note that it requires one additional function evaluation, f(t,+1,Y;"), than the Euler
method. The Midpoint rule requires the same number of function evaluations and has
the same accuracy as this predictor-corrector pair. However, the predictor-corrector pair
provides an easy way to estimate the error at each step.

PECE PE(CE)?
At Error rate Error rate
1/10 | 2.62432 1072 3.93083 102

1/20 | 7.66663 1072 1.75 | 1.16639 1072 1.75
1/40 | 3.18110107* 1.87 | 3.1811010™® 1.87
1/80 | 8.31517107* 1.94 | 8.31517107* 1.94
1/160 | 2.1265310~* 1.97 | 2.1265310~* 1.97

In the previous example we saw that the predictor was first order, the corrector
second order and the overall method was second order. It can be proved that if the
corrector is O(At™) and the predictor is at least O(At"~1) then the overall method
is O(At™). Consequently the PC pairs should be chosen so that the corrector is
one degree higher accuracy than the predictor.

Higher order predictor-corrector pairs often consist of an explicit multistep method
such as an Adams-Bashforth method and a corresponding implicit Adams-Moulton
multistep method. The pair should be chosen so that the only additional function
evaluation in the corrector equation is at the predicted point. To achieve this one
often chooses the predictor and corrector to have the same accuracy. For example,
one such pair is an explicit third order Adams-Bashforth predictor coupled with an
implicit third order Adams-Moulton. Notice that the corrector only requires one
additional function evaluation at (t,41,Y,"t").

Third order Adams-Moulton predictor-corrector pair

Yl = Y 223 f (b, Y™) — 16f(tn—1, Y1) + 5 f(tia, Y"72)]
Y™l = Y 4 Q5 f (b, Yo) + 8f(tn, Y™) — fltn—1,Y"1)]
(3.37)

Example 3.13. THIRD ORDER ADAMS-MOULTON PREDICTOR CORRECTOR PAIR

In the table below we compare the errors and rates of convergence for the PC pair (3.37)
and the third order Adams-Bashforth method defined in (3.27). Note that both numerical
rates are approaching three but the error in the PC pair is almost an order of magnitude
smaller at a fixed At.

Predictor only PC pair
At Error rate Error rate
1/10 | 2.0100 102 1.5300 10~ °

1/20 | 3.6475107 2.47 | 3.3482107* 2.19
1/40 | 5.451810~* 2.74 | 5.5105107° 2.60
1/80 | 7.4570107° 2.87 | 7.9035107°% 2.80
1/160 | 9.7513107% 293 | 1.0583107° 2.90

84 CHAPTER 3. A SURVEY OF METHODS

3.5 Comparison of single-step and multistep meth-
ods

We have seen that single-step schemes are methods which essentially have no “mem-
ory". That is, once y(t,) is obtained they perform approximations to y(t) in
the interval (t,,t,+1] as a means to approximate y(t,11); these approximations
are discarded once y(t,11) is computed. On the other hand, multistep methods
“remember” the previously calculated solutions and slopes because they combine
information that was previously calculated at points such as t,,t,_1,tp_2... to
approximate the solution at ¢,1.

There are advantages and disadvantages to both single step and multistep meth-
ods. Because multistep methods use previously calculated information, we must
store these values; this is not an issue when we are solving a single IVP but if we
have a system then our solution and the slope are vectors and so this requires more
storage. However multistep methods have the advantage that f(¢,y) has already
been evaluated at prior points so this information can be stored and no new func-
tion evaluations are needed for explicit multistep methods. Consequently multistep
methods require fewer function evaluations per step than single-step methods and
should be used where it is costly to evaluate f(¢,y).

If we look at methods such as the Adams-Bashforth schemes given in (3.27) then
we realize another shortcoming of multistep methods. Initially we set Yy = y(¢o)
and then use this to start a single-step method. However, if we are using a two-step
method we need both Y; and Yone to implement the scheme. How can we get
an approximation to y(¢;)? The obvious approach is to use a single step method.
So if we use m previous values (including ¢,,) then we must take m — 1 steps of a
single-step method to start the simulations; it is m — 1 steps because we have the
value Yy. Of course care must be taken in the choice of which single step method
to use and this was discussed in Example ?7. We saw that if our multistep method
is O(At") then we should choose a single step method of the same accuracy or
one power less; a scheme which converges at a rate of O(A#"~2) or less would
contaminate the accuracy of the method.

In the next chapter we investigate variable time step and variable order methods.
It is typically easier to do this with single-step rather than multistep methods. How-
ever, multivariable methods have been formulated which are equivalent to multistep
methods on paper but are implemented in a different way which allows easier use
of a variable time step.

Older texts often recommend multistep methods for problems that require high
accuracy and whose slope is expensive to evaluate and Runge-Kutta methods for
the rest of the problems. However, with the advent of faster computers and more
efficient algorithms, the advantage of one method over the other is less apparent. It
is worthwhile to understand and implement both single-step and multistep methods.

3.5. COMPARISON OF SINGLE-STEP AND MULTISTEP METHODS 85
EXERCISES

1. Each of the following Runge-Kutta schemes is written in the Butcher tableau
format. ldentify each scheme as explicit or implicit and then write the scheme
as

Y=Yy b f(tn + e Y K)
i=1
where the appropriate values are substituted for b;, ¢;, and k;.

oll _1 1
1| f 57 S
a. b. 12 ¢ 42 12

63 G

‘ 12 1

6 3 6

2. Modify the derivation of the explicit second order Taylor series method in
§ 3.1.1 to derive an implicit second order Taylor series method.

3. Use a Taylor series to derive a third order accurate explicit difference equation
for the IVP (2.2).

4. Gauss quadrature rules are popular for numerical integration because one
gets the highest accuracy possible for a fixed number of quadrature points;
however one gives up the “niceness” of the quadrature points. In addition,
these rules are defined over the interval [—1,1]. For example, the one-point
Gauss quadrature rule is

1
[9t) de = 500
-1
and the two-point Gauss quadrature rule is
1
1, -1 1
z)der =-|9(—=) + 9(—=
[@) de = 3la(=) +(52)
Use the one-point Gauss rule to derive a Gauss-Runge-Kutta method. Is
the method explicit or implicit? Does it coincide with any method we have
derived?
5. Simpson’s numerical integration rule is given by

[ot e =" gtar 440 (5 + 000

86

CHAPTER 3. A SURVEY OF METHODS

If g(z) > 0 on [a,] then it approximates the area under the curve g(x) by the
area under a parabola passing through the points (a, g(a)), (b, g(b)) and ((a+
b)/2,g((a+b)/2)). Use this quadrature rule to approximate fttn"“ f(t,y) dtto
obtain an explicit 3-stage RK method. When you need to evaluate terms such
as f at t,, + At/2 use an appropriate Euler step to obtain an approximation
to the corresponding y value as we did in the Midpoint method. Write your
method in the format of (3.15) and in a Butcher tableau.

. In § 7?7 we derived a second order BDF formula for uniform grids. In an

analogous manner, derive the corresponding method for a nonuniform grid.

. Use an appropriate interpolating polynomial to derive the multistep method

Y =yl L oAt f(t,, YY) .

Determine the accuracy of this method.

. Determine the local truncation error for the 2-step Adams-Bashforth method

(3.26).

.1. NORMS 87

APPENDIX

.1 Norms

If we have an approximate solution at a given point and we want to calculate
the absolute error, then we simply take the magnitude of the difference between
the exact solution and the approximation. However, many times the approximate
solution is represented by a vector. This occurs if we have a boundary value problem,
an initial boundary value problem or a system of initial value problems. If we want
to assign a number to the error then we have to use the concept of a norm. The
Euclidean length of a vector which you learned in algebra is actually a norm.

We want to generalize this concept to include other measures of a norm. We can
view the Euclidean length as a map (or function) whose domain is R™ and whose
range is all scalars i.e., f: R® — R'. What properties does this Euclidean length
have? We know that the length is always > 0 and only equal to zero if the vector is
identically zero. We know what multiplication of a vector by a scalar k£ does to the
length; i.e., it changes the length by |k|. Also, from the triangle inequality we know
that the length of the sum of two vectors is always < the sum of the two lengths.
We combine these properties into a formal definition of a vector norm.

A vector norm, denoted ||x||, is a map from R™ to R! which has the properties

1. |x[| >0and =0onlyifx=0

2. [[kx|| = [kl

3. Ixll + Iyl < 1]l + llyll (triangle inequality)

There are other ways to measure the length of vectors. All we have to do is find

a map which satisfies the above three conditions; however, practically it should be
useful. Three of the most useful vector norms are defined below.

1/2
t=("3)

2. maximum or infinity norm, denoted ||x|| s and defined by ||x||cc = max |z
<i<n

1. Euclidean norm, denoted ||x||2 and defined by ||Z||2 =

3. one-norm, denoted ||x||; and defined by ||x||; = Z ;]
i=1

Although these are the standard definitions for the vector norms, when we output
the error norm we need to normalize it. For example, suppose you compute an error
vector, all of whose components are 0.1. Clearly we expect the Euclidean norm to

88 CHAPTER 3. A SURVEY OF METHODS

be 0.1 for a vector of any length but if we compute the norm using the definition
above for a vector of length 10 then the result is 0.316 and for a vector of length
100 it is 1. So what we need to do is either normalize by the vector of the exact
solution evaluated at the same grid points to give a relative error or use an alternate
definition; for example for the Euclidean norm we use

xs
1

1 1/2
Ixlls = [> a?]
n

n
1=

which gives the answer of 0.1 for a vector all of whose components are 0.1 no matter
what its length.

Example .14. CALCULATING NORMS OF A GIVEN VECTOR
Let x = (—3,2,4,—7)T. Determine ||x]|

1 [[x[l2 and [|x]jo -

Ixlh =1=3[+2+4+[-7=16
Ix[l2 = vV9+4+16 449 = V78
[xlloo = max{| —3|,2,4,[= 7]} =7

Many times we use a norm to measure the length of an error vector. In the
previous example we saw that different norms give us different numbers for the
same vector. Each norm actually measures a different attribute of a norm. We
might ask ourselves how different these norms can be for the same vector. This is
important to us because if we can show a particular norm of the error goes to zero,
then we would like to know that the error measured in another norm goes to zero
too. For vector norms (and all norms defined on finite dimensional spaces) one can
demonstrate that all norms are norm-equivalent. This means that if we have two
vector norms || - ||, and || - ||g then there exists constants Cy, C5 greater than zero
such that

Cilxlls < lIxlla < Callx[|s for all . (38)

Note that if this inequality holds, we also have the equivalent statement
*1 [%lla < [Ixls < *1 x| f Iz
X X X orall
CQ * = A= Cl @

If two norms are norm-equivalent and we have that ||Z||s3 — 0 then clearly ||Z]|, —
0. In the following example we determine the particular constants to demonstrate
that ||x||s and ||x||2 are norm-equivalent.

.2. POLYNOMIAL INTERPOLATION 89

Example .15. NORM EQUIVALENCE

The norms ||X||oc and ||x||2 are equivalent.

We have .
)13 =2 > max|z:|* = |x]|%
i=1
so Ch = 1.
Also

n
%3 = @i < nmax|a;|* = nllx||%
=1

so C> = y/n. Summarizing

[x]loe < [[x]l2 < v/nllx[loc for all x

.2 Polynomial interpolation

Polynomial interpolation can be used to approximate a discrete set of data points or
a function. In polynomial interpolation we find a polynomial which passes through
all data points; this is in contrast to an approximation such as linear least squares
which minimizes the £5-norm of the error. If we only interpolate function values then
the interpolation is called Lagrange interpolation and if we interpolate derivative
values then it is called Hermite interpolation. We will describe Lagrange inter-
polation here and we will assume we are given data points which could be from
experimental data or from evaluating a function at a point. Specifically, if we are
given n + 1 distinct points

(33173/1), ($27y2)7 e ($n+17 yn+1)

we seek a polynomial of degree less than or equal to n, say p,, such that
(i) =y, fori=1,2,... n+1

The reason the polynomial can be of degree less than n is, for example, if all the
points happen to lie on a line then a first degree polynomial works even if we have
more than two points. Interpolation means that the graph of the polynomial passes
through our n + 1 distinct data points. The general polynomial of degree n looks
like
ap + a1z + asx® + -+ ap_12" ' + a2

It can be proved that there is a unique polynomial which satisfies this interpolation
problem.

An obvious way to find p, is to solve n + 1 equations. For example, if we want
the quadratic that passes through the 3 points (1, 10), (2, 19), (-1,-14) then clearly
Pa = ag + a1x + asx? must satisfy

p2(1) =10 p2(2) =19 po(-1)=-14

90 CHAPTER 3. A SURVEY OF METHODS

or equivalently
ap+ar(1)4azx(1)> =10 ag+2-a1+(2)%az =19 ap+ai(—1)+az(—-1)* = —14.

Solving these three equations we get the polynomial po = —x2 + 122 — 1. Al-
though this approach is straightforward, there are more efficient ways to obtain an
interpolating polynomial.

There are basically two main efficient approaches for determining the interpo-
lating polynomial. Each has advantages in certain circumstances. Since we are
guaranteed that we will get the same polynomial using different approaches (since
the polynomial is unique) it is just a question of which is a more efficient imple-
mentation.

The Lagrange form of the interpolating polynomial is used in most situations.
However, its drawback is that if you have n + 1 points and decide to add a point,
then the computations must all be redone. The Newton form of the interpolating
polynomial has the advantage that adding a point reuses previous computations so
it is much more efficient. For our needs, the Lagrange form is adequate.

To motivate this form of the interpolating polynomial, let’s revisit our example
where we found that the quadratic interpolating polynomial which interpolates the
points (1,10), (2,19), (—=1,—14) is p» = —2? + 12z — 1. Instead of writing this
polynomial in terms of the monomials 1, x, 22 lets rewrite it as

p2 =10 % L1 (z) + 19Ly(z) — 14L3(z)
where L;(z), i = 1,3 are quadratic polynomials which have the properties

Li1(2) = L1(-1) =0, Li(1)=1

Ly(1) = Ly(—1) =0, Ly(2) =1

L3(1) = L3(2) = 0, L3(-1)=1.
If we can do this, then clearly p2(1) = 10, p2(2) = 19 and pa(—1) = —14. Once
we have the L;(x) we have found our interpolating polynomial, just not reduced to
its simplest form. At first it may seem that we have traded finding one quadratic

polynomial for finding three others. However, let's look at what L;(z), i = 1,3 are
in our example.

Ly(2) = (x —2)(z+1) _ (x—2)(x+1)
(1-2)(1+1) -2
Clearly because we have the factor (z — 2) in the numerator, L;(2) = 0. Similarly
the factor (z + 1) in the numerator makes Li(—1) = 0. When we evaluate the
numerator at = 1 we get the denominator which is just -2 so it satisfies L1 (1) = 1.
Similarly

C(z-D(+1) (z—-1)(z+1)
L) = a—9a+n = 3

and
o (-D(@-2) (z—-1)(x—-2)
Lw) = o=y ~ 6

.3. PARTIAL DERIVATIVES 91

The numerator is easily determined because for L; we simply use factors of (z —x;)
for j # 4. How do we get the denominator? Because we want L;(z;) = 1, we
simply choose the denominator to equal the numerator evaluated at z;.

Given n + 1 distinct points

(mla 91)7 (l‘g, y2)a e (xn+15 yn+1)
The Lagrange form of the interpolating polynomial is

n+1

(@ —x1)(@—m2) - (@ —@i1)(@ = Tig1) - (T — Tng)

LZ(w) = (xi _ $1)($i _ 332) o (xz- — Z'L_l)(:(‘7 — .Z‘i+1) cee (l’z‘ - xn-&-l)

(40)

The important properties of L;(x) are

.3 Partial derivatives

When a function depends on more than one variable, we express its rate of change
with respect to a particular independent variable by using partial derivatives. Let
g =g(x1,x29,...,x,) then the definition and standard notation for the first partial
of g with respect to x; is

— g = lim g(@1, 2o, i+ Ry Tig1,) — G(T1, Ty e Ty)
al'i i h—0 h '

This gives the change in g with respect to x; where all other independent variables
are held fixed. For example, if g = g(x1,22) then g, gives the change in g along
lines parallel to the z-axis since x5 is held fixed.

To calculate higher derivatives we simply apply this formula repeatedly. As long
as the function is continuously differentiable then the order of differentiation does
not matter. The notation used is, for example if g = g(z1,x2),

0%g B 0%g _ 0%g
8x16‘z2 (3'1728331

gI1I1 - 61'2 gmlmg -
1

Calculating partial derivatives is straightforward because we simply hold all other
variables fixed; hence we can use the rules learned for differentiating functions of a
single variable. The following example illustrates how to compute partial derivatives.

92 CHAPTER 3. A SURVEY OF METHODS

Example .16. CALCULATING PARTIAL DERIVATIVES

Let g(z,y, z) = e**y*sin(3z). Compute gz, gy, g=. Then compute g, and g.. and show

that they are the same.

To calculate g, we treat y* and sin(3z) as if they were constants because they are held

fixed. We have g, = 2¢**y* sin(3z). To calculate g, we hold the terms involving = and z

fixed to get g, = 4y°e®*" sin(3z). Finally, to get g, we hold the terms involving = and y
fixed to get g. = 3e**y* cos(3z2).

To calculate g, we take the partial of g, with respect to z. Since g, = 2ezzy4 sin(3z) we
have g.. = 6e*"y* cos(3z). To calculate g., we take the partial of g, = 3¢**y* cos(32)
with respect to z to get g., = 6e**y*cos(3z). Because the given g is continuously

differentiable the order of differentiation does not matter so that g, = g.z.

There are three partial differential operators that we will use extensively. Recall
that in calculus we learned that we take the gradient of a scalar and get a vector
field. So the magnitude of the gradient of u is the magnitude of the change in w,
analogous to the magnitude of the slope in one dimension. The standard notation
used is the Greek symbol nabla, V or simply “grad”. Remember that it is an
operator and so just writing V does not make sense but rather we must write, e.g.,
Vu. The V operator is the vector of partial derivatives so in three dimensions it is
(0/0z,0/0y,0/02)T.

One use we will have for the gradient is when we want to impose a flux boundary
condition. Clearly there are times when we want to know the rate of change in
g(x,y) in a direction other than parallel to the coordinate axis; remember that the
standard partial derivative gives the change in the coordinate axis. When this is the
case we define a unit vector in the direction of the desired change and we use the
gradient of g. If nn is the unit vector giving the direction then the derivative and the
notation we use is

g

on
Note that if i = (1,0)7, i.e., in the direction of the z-axis, then we just get g,
which is the standard partial derivative in the direction of the x-axis; similarly if
n = (0,1)7 then we get g,. We will have a particular use for this notation when we
specify a boundary condition such as the flux on the boundary. In one dimension
the flux is just ¢’(z) but in higher dimensions it is the change in g along the normal
to the boundary. So in higher dimensions we will specify dg/0n as a Neumann
boundary condition.

The next differential operator that we need is the divergence. Recall that the
divergence is a wvector operator. It is also represented by V or simply “div" but
typically we use a dot after it to indicate that it operates on a vector; other sources
will use a bold face V. So if w = (w1, we, ws) then the divergence of w, denoted
V - w, is the scalar dw; /Ox + dws /Oy + Ows/0z.

The last differential operator that we need is called the Laplacian.* It combines
the gradient and the divergence to get a second order operator but of course the
order is critical. If u(z,y, z) is a scalar function then we can take its gradient to get

=Vg-n. (41)

4Named after the French mathematician Pierre-Simon de Laplace (1749-1827).

4. TAYLOR SERIES EXPANSIONS 93

a vector function, then the divergence may be applied to this vector function to get
a scalar function. Because this operator is used so extensively in PDEs it is given
a special notation, A which is the Greek symbol for capital delta. In particular we
have A =V -V soif g = g(x,y,) then

Ag=V-Vg=gus+ gyy + g2z (42)
because
o 0 0
V.-Vg=V. [(g:cvgyagz)T] = (%a (’Ty’ E)T : (gxagyagz)T = Gzz + Gyy + 9zz -

In the sequel we will typically use the notation Ag instead of V- Vg. In some texts
V2g is used for Ag but we will not use this notation.

.4 Taylor series expansions

Expanding a function in a Taylor series is a useful tool in numerical analysis. We
will use Taylor series to derive methods and to obtain estimates for the error in
approximating a solution to a differential equation. Expanding functions of either
one or two variables should be practiced until it becomes second nature.

A Taylor series expansion of a function is an infinite power series although there
is a useful result which combines terms after the nth term into a remainder term.
The function being expanded must be infinitely differentiable and the expansion is
valid in a neighborhood of a point. The Taylor series expansion of a differentiable
function ¢(Z) about Z = a is

9(7) = gla)+g'(a)(@ —a)+ "5~ (F —a)’+

[n] (a), . 3 (43)

Note that we are expanding g(x) in powers of (x — a). Although this is the form
of the Taylor series that is usually given in calculus texts, we typically use this
expansion in the slightly different form

X 2 X 3
ot An) = o)+ Aag(@) + S g (@) + B g) "
s%g[n](x) I

This is easily obtained from (15) by setting z + Ax = Z and z = a so that
Z —a = Ax. Note that this expansions tells us how g behaves in the neighborhood
of a point z.

Even though a Taylor series is an infinite series, there is a result called Taylor
series with remainder which collects all terms after the nth term in a single term

94 CHAPTER 3. A SURVEY OF METHODS

called the remainder. We have

z)? 3
o) = o)+ deg @)+ G @)+ G) 4
+(A7;E!)ng[n}(x) T % [n+1}(§) €€ (matAz).

(45)
Note that the result says that there exists a point £ € (x,z + Az) where the ex-
pansion holds but it does not give a means for determining the specific £. This
makes sense because the usual Taylor series is an infinite series and if we could
find the £ that satisfies the remainder term then we would be converting an in-
finite series into a finite one. If one forgets and writes the remainder term as
g"tH(2)(Az)"*/(n + 1) then this is incorrect because we have converted the
infinite Taylor series into a finite series for all differentiable functions g(z).

In many cases the function we want to expand is in terms of more than one
independent variable. Of course this means that we must use partial derivatives
in the expansion instead of ordinary derivatives. To see how we can use (16) to
derive a Taylor series expansion in two independent variables consider the points
P =(z,y), @ =(x+h,y) and R = (x + h,y + k). Then we want an expansion
which tells us how g(x,y) varies at R given its value at P. From P to @ the
independent variable y is held fixed so we can use (16) to write

Ax)? At)3
0@ = oP)+Ang.(P)+ B)+ B
(Az)™ 9g™]
+ n! Oan P)) e
Now from @ to R the independent variable z is held fixed so we have
Ay)? Ay)3
oB) = 9@+ 2us, (@) + B g0(@) + B 0,0,(Q)
Ay)™ gl
(n!) oy (@) +

Now we can substitute the expression for g(Q) into this and all of those terms will
be evaluated at the known point P; however, we still have terms evaluated at Q.
What we do is expand each of these terms about P = (x,y); for example, expanding
gy(x + h,y) about z gives

Az)? Az)?
(Al.)n 69[71-&-1]
+ n! 0z"0y (P)+

so we get mixed derivative terms. After expanding all the terms about P and
grouping like terms we get the following Taylor series expansion for a differentiable
function g(x,y) of two independent variables

4. TAYLOR SERIES EXPANSIONS 95

g@+h,y+k) = g(x,y) + hg(z,y) + kg, (z,y)
1
+§ [hzgww(xv y) + kQny(xv Y) + 2khgay(z, y)]

1
+§ [hSwax (z,y) + Ingyyy(xa y) + 3k2hgxyy (z,y) + 3h2]‘39m‘y (z, y)]

(46)
Here, for brevity, we have taken the change in = as h and the change in y as k.
Note that this expansion assumes that g(x,y) is continuously differentiable in both
variables so that not only can we differentiate it but the order of differentiation

doesn’t matter.

