
The QR Decomposition

•We have seen one major decomposition of a matrix which is A = LU (and its
variants) or more generally PA = LU for a permutation matrix P . This was

valid for a square matrix and aided us in solving the linear system A~x = ~b.

• The QR decomposition is valid for rectangular matrices as well as square ones.
We will first state the decomposition for square matrices.

•We will see that this decomposition can be used for solving n × n linear
systems but is also useful in solving overdetermined systems such as those in
linear least squares. The decomposition will be used in a general algorithm
for finding all eigenvalues and eigenvectors of a matrix.



The QR Decomposition of a square matrix Let A be an n×n matrix
with linearly independent columns. Then A can be uniquely written as
ATA = QR where Q is orthogonal (unitary in general) and R is an
upper triangular matrix with positive diagonal entries.

Outline of Proof

• The n × n matrix ATA is symmetric and positive definite and thus it can
be written uniquely as A = LLT where L is lower triangular with positive
diagonal entries.

• Let Q = A(LT )−1 and show that Q is an orthogonal matrix.

• Then A = QLT so set R = LT and we are done because L has positive
diagonal entries.

• Uniqueness is demonstrated by assuming we have two such decompositions
and getting a contradiction.



So all we have to do to show existence is demonstrate that Q = A(LT )−1 is an
orthogonal matrix which means we have to demonstrate that QQT = I . Using
the fact that ATA = LLT we have

QTQ = (A(LT )−1)T (A(LT )−1) = L−1ATA(LT )−1 = L−1LLT (LT )−1 = I

All that remains is to verify uniqueness which should rely on the fact that the
Cholesky decomposition is unique once we choose the sign of the diagonal entries.
We assume there are two such decompositions and get a contradiction. Let

A = Q1R1 and A = Q2R2

where QT
1Q1 = I and QT

2Q2 = I and R1 6= R2. Now writing ATA with each of
these two decompositions gives

ATA = (Q1R1)
T (Q1R1) = RT

1Q
T
1Q1R1 = RT

1R1

and
ATA = (Q2R2)

T (Q2R2) = RT
2Q

T
2Q2R2 = RT

2R2

Thus
ATA = RT

1R1 = RT
2R2



But this says that there are two different LLT decompositions of ATA where
each L has positive diagonal entries and thus we have a contradiction and the
decomposition is unique.

• The proof of this theorem actually gives us a way to construct a QR decom-
position of a matrix. We first form ATA, do a Cholesky decomposition and
thus have R and form Q = AR−1. This can be done by hand, but is NOT a
good approach computationally.

• The QR decomposition can be used to solve a linear system A~x = ~b. We
have

A~x = ~b =⇒ QR~x = ~b =⇒ QTQR~x = QT~b =⇒ R~x = QT~x

which is an upper triangular matrix. So once we have the factorization we
have to do a matrix vector multiplication and solve an upper triangular system;
both operations are O(n2).

How can we obtain a QR decomposition?

•We saw two ways to obtain the LU factorization of a matrix. We can’t take



the approach of equating elements of the matrix in the expression A = QR
because we need Q to be orthogonal so we turn to the other approach we
used in finding the LU decomposition – we premultiplied by matrices which
had the desired property (unit lower triangular in the LU) and were easy to
multiply and invert.

•We will take an analogous approach here. Our goal is to find orthogonal
matrices Hi such that

Hp · · · H2H1A = R =⇒ A =
(

H1
)T(H2

)T · · ·
(

Hp
)T
R

where R is upper triangular. The matrices Hi will play the same role that
the Gauss transformation matrices played, i.e., they zero out entries before
the main diagonal; however, we need Hi to be orthogonal. We must also
demonstrate that the product of two orthogonal matrices is orthogonal.



Let ~u ∈ IRn, ‖~u‖2 6= 0. The n× n matrix

H = I − 2
~u~uT

~uT~u
is called a Householder transformation or a Householder reflector or an
elementary reflector.

Exercise Verify that H is symmetric and orthogonal.

If the vector ~u is chosen correctly, then H has the effect of zeroing out the first
column of A below the diagonal when we premultiply A by it. If we know how
to choose ~u so that H~x = (x̂, 0, 0, · · · , 0)T then we will know how to choose H
to zero out any column of A below the diagonal.



Lemma Let ~x = (x1, x2, . . . , xn)
T ∈ IRn where ~x 6= ~0. Define

α = ‖~x‖2β where β =

{

1 if x1 = 0
x1/|x1| if x1 6= 0 .

Then the choice ~u = ~x+α~e1 in the definition of the Householder matrix
gives

H~x = −α~e1 ,

where ~e1 = (1, 0, 0, . . . , 0)T ∈ IRn.

Example Let ~x = (0,−3, 4)T . Construct a Householder matrix H such that
H~x = c~e1.

From the lemma we set β = 1 and because ‖~x‖2 = 5 we have α = 5. Then
~u = ~x + 5~e1 = (0,−3, 4)T + (5, 0, 0)T = (5,−3, 4)T and ~uT~u = 50. Thus our
Householder matrix is



H =





1 0 0
0 1 0
0 0 1



− 2

50





25 −15 20
−15 9 −12
20 −12 16



 =
1

25





0 15 −20
15 16 12

−20 12 9





As a check we compute H~x to get (−25/5, 0, 0)T = −5(1, 0, 0)T

So now we know how to compute an orthogonal matrix such that HA has zeros
below the main diagonal in the first column. What do we do on the second and
subsequent steps?

On the second step we want H2H1A to have zeros below the main diagonal in
the second column but we don’t want to modify the first column or row. So we
simply choose

H2 =









1 0 · · · 0
0

Ĥ2

0











where Ĥ2 is chosen from our lemma such that Ĥ2~x = c~e1 where now ~e1 ∈ IRn−1

and ~x is the n−1 vector consisting of the (2,2) entry of H1A and the remainder
of the column. For H3 we choose a matrix where it is the 2× 2 identity and an
(n− 2)× (n− 2) matrix Ĥ3 chosen from our lemma. We make the analogous
choices for each Hk as we proceed to transform A.

Thus we have

Hp · · ·H2H1A = R where R is upper triangular

and because each Hk is symmetric and orthogonal we have

A = H1H2 · · ·HpR

Now all we need to demonstrate is that the product of the Hk form an orthogonal
matrix which we set to Q and we have A = QR. To see this, let U, V be
orthogonal matrices so UUT = I and V V T = I . Now the product UV is
orthogonal because (UV )(UV )T = UV V TUT = UUT = I .

It is wasteful to explicitly compute and store each matrix Hk; instead there is an
efficient way to form the product of Hk (without forming it) and a matrix.



When should we use the QR factorization instead of an LU (or its variants) to

solve A~x = ~b?

One can demonstrate that the QR factorization requires O(n3) just as the LU
factorization does; however, the coefficient in front of the n3 is considerably larger
so that it is more expensive to compute. This is why the LU factorization is much
more popular for solving linear systems. However, because the decomposition uses
orthogonal matrices (and we will show that K2 of an orthogonal matrix is 1), it
is often less sensitive to ill-conditioning than the LU factorization.

We can also perform a QR decomposition of an m × n matrix. In this case R
is an m× n upper trapezoidal matrix and Q is an m×m orthogonal matrix.



Theoretical Results for the Eigenvalue Problem

Among problems in numerical linear algebra, the determination of the eigenvalues
and eigenvectors of matrices is second in importance only to the solution of
linear systems. Moreover, we need to have an understanding of their properties
to fully understand our last decomposition, the Singular Value Decomposition
as well as iterative methods for linear systems. Here we give some theoretical
results relevant to the resolution of algebraic eigenvalue problems and defer the
algorithms for calculating eigenvalues and eigenvectors to a later date. Recall
our algebraic eigenvalue problem.

Eigenvalue problem Given an n × n matrix A, find a scalar λ (an
eigenvalue) and a nonzero vector ~x (an eigenvector) such that

A~x = λ~x

• Eigenvectors are sometimes called principal directions. Why? Typically when



we multiply a vector ~y by a matrix A the resulting vector is different from
~y in direction and magnitude. But when ~y is an eigenvector of A the result
A~y is in the same direction as ~y and is just scaled by λ, the corresponding
eigenvalue.

•We note that if ~x is an eigenvector of A then so is c~x for any nonzero constant
c. Thus eigenvectors will only be determined up to a multiplicative constant.

• If (λ, ~x) is an eigenpair of A then ~x ∈ N (A− λI) because A~x = λ~x implies
~0 = A~x− λI~x = (A− λI)~x .

• Clearly, λ is an eigenvalue of A if and only if the matrix A − λI is singular,
i.e., if and only if the determinant det(A− λI) = 0.

• A has a zero eigenvalue if and only if it is singular.

• The equation det(A − λI) is a polynomial of degree n and is called the
characteristic polynomial of A.

• Because the characteristic polynomial is a polynomial of degree n we know
that it has n roots, counted according to multiplicity; that is, some of the
roots may be repeated. In addition, even if the coefficients of the polynomial



are real, the roots may occur in complex conjugate pairs. This means that a
real matrix may have complex eigenvalues and thus complex eigenvectors.

Exercise Find the characteristic polynomial for the matrix A. Then determine
its eigenvalues.

A =

(

−2 2
2 1

)

• Because the characteristic polynomial is a polynomial of degree n we know
that there is no formula for its solution when n ≥ 5; moreover it is a non-
linear equation in λ. What does this tell us? It says that our algorithms for
determining eigenvalues must be iterative in nature.

• General nonlinear equations can not be solved by direct methods but must be
solved iteratively with methods such as Newton’s method. However, finding
the roots of the characteristic polynomial is NOT a good algorithm for finding
eigenvalues for large n.



• The set of eigenvalues for a matrix A is called its spectrum and the largest
eigenvalue in magnitude is its spectral radius, denoted ρ(A). This says that
if we plot the eigenvalues in the complex plane and draw a circle of radius ρ,
then all eigenvalues are contained within that circle.

• If A is invertible with eigenpair {λ, ~x} then {1/λ, ~x} is an eigenpair of A−1.

• If A has an eigenpair {λ, ~x} then {λk, ~x} is an eigenpair of Ak.

Exercise Let

A =

(

−2 2
2 1

)

Determine the eigenvalues of A2, A−1, A + 4I .

•We say that an eigenvalue λ has algebraic multiplicity (a.m.) m if it is repeated
m times as a root of the characteristic polynomial. The sum of the algebraic
multiplicities of the distinct eigenvalues of an n× n matrix is equal to n.



•We say that an eigenvalue λ has geometric multiplicity (g.m.) p if it has
p linearly independent eigenvectors associated with it. The geometric multi-
plicity of an eigenvalue must less than or equal to the eigenvalue’s algebraic
multiplicity; g.m. ≤ a.m. The sum of the geometric multiplicities must be
≤ n.

• If the geometric multiplicity of an eigenvalue of A is less than its algebraic
multiplicity we call the eigenvalue and the matrix A defective. If A has
n linearly independent eigenvectors then it is called nondefective; thus the
eigenvectors of a nondefective n× n matrix form a basis for IRn.

We know that if the a.m. of an eigenvalue is m > 1 then it may have 1, . . . , m
linearly independent eigenvectors corresponding to it. But what do we know
about eigenvectors corresponding to different eigenvectors?

Eigenvectors corresponding to distinct eigenvalues are linearly indepen-
dent.

Why is this true? To understand this result we look at what would happen if two



eigenvectors corresponding to different eigenvalues were linearly dependent. Let
{λ1, ~v1} and {λ2, ~v2} be eigenpairs of A where we assume λ1 6= λ2. Because ~v1
and ~v2 are linearly dependent there are nonzero c1, c2 such that c1~v1 + c2~v2 = ~0
Now multiplying this equation by A gives

c1A~v1 + c2A~v2 = ~0 =⇒ c1λ1~v1 + c2λ2~v2 = ~0

Multiplying our original equation by λ1 and subtracting gives

c1λ1~v1 + c2λ2~v2 − λ1c1~v1 − λ1c2~v2 = ~0 =⇒ c2(λ2 − λ1)~v2 = 0 =⇒ c2 = 0

because λ2 − λ1 6= 0 and ~v2 6= ~0 by assumption. If c2 = 0 then c1~v1 = 0 and
because ~v1 6= ~0, c1 = 0 and we get our contradiction.

Example Consider the matrix

A =









3 1 0 0
0 3 0 0
0 0 2 0
0 0 0 2









.

Determine the eigenvalues of A and the algebraic and geometric multiplicities of
each. Determine eigenvectors.



The characteristic polynomial is given (3 − λ)2(2 − λ)2 and the eigenvalues are
2 and 3, each having algebraic multiplicity 2. Also

A− 2I =









1 1 0 0
0 1 0 0
0 0 0 0
0 0 0 0









A− 3I =









0 1 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1









so that N (A − 2I) = span {(0 0 1 0)T , (0 0 0 0 1)T} and N (A −
3I) = span{ ( 1 0 0 0 )T }. We conclude that the geometric multiplicity of the
eigenvalue 2 is 2, and that of the eigenvalue 3 is 1. Thus, the eigenvalue 3 is
defective, the eigenvalue 2 is nondefective, and the matrix A is defective.

• In general, if an eigenvalue λ of a matrix is known, then a corresponding
eigenvector ~x can be determined by solving for any particular solution of the
singular system (A − λI)~x = ~0. A basis for this null space gives a set of
linearly independent eigenvectors. Once again, this is not a procedure that is
implemented on a computer.

• If an eigenvector ~x of a matrix A is known then the corresponding eigenvalue



may be determined from the Rayleigh quotient

λ =
~xTA~x

~xT~x
.

which is found from the equation ~xTA~x = λ~xT~x, i.e., multiplying the eigen-
value equation by ~xT .

Can we characterize the eigenvalues of specific classes of matrices?

It would be great if you could guarantee that certain matrices always have real
eigenvalues, then we would know that we wouldn’t have to use complex arith-
metic. We summarize below some results for special classes of matrices.



If A is a symmetric matrix, then it has real eigenvalues.

If A is symmetric positive definite, then its eigenvalues are real and > 0.

If A is orthogonal then its eigenvalues have magnitude 1.

If A is diagonal, then its eigenvalues are its diagonal entries.

If A is upper or lower triangular, then its eigenvalues are its diagonal
entries.

Exercise Demonstrate that the eigenvalues of a symmetric, positive semi-
definite matrix are ≥ 0.

Because we can “read off” the eigenvalues of a diagonal or triangular matrix,
then we might ask if there is some way we can transform our eigenvalue problem
into an equivalent triangular or diagonal one. First we have to determine what
types of transformations preserve eigenvalues.



Two matrices A,B are similar if there is an invertible matrix P such
that

A = P−1BP

Lemma Let A and B be similar and let (λ, ~x) be an eigenpair of A
then (λ, P~x) is an eigenpair of B.

This can be easily shown by noting that if A~x = λ~x then

P−1BP~x = λ~x =⇒ BP~x = λP~x =⇒ B~y = λ~y where ~y = P~x

Now we want to know if we can make our matrix A similar to a triangular or
diagonal matrix so we immediately know the eigenvalues. Theoretically this is
possible as the next two results tell us.



Schur’s Theorem. Let A be a given n × n matrix. Then there exists
an n× n orthogonal matrix Q such that

QTAQ = U ,

where U is an upper triangular matrix whose diagonal entries are the
eigenvalues of A. Furthermore, Q can be chosen so that the eigenvalues
of A appear in any order along the diagonal of U . (Equivalently A =
QUQT)



Lemma. Let A be an n × n matrix. Then there exists an n × n
invertible matrix P such that

P−1AP = Λ ,

if and only if A is nondefective. Here Λ is a diagonal matrix whose
diagonal entries are the eigenvalues of A. Furthermore, P can be chosen
so that the eigenvalues of A appear in any order along the diagonal of
Λ. (Equivalently A = PΛP−1).

How can we find the matrix that makes a nondefective matrix A similar to a
diagonal matrix (i.e., diagonalizes it)? Unfortunately, it turns out that if A is
nondefective then the columns of P are the eigenvectors of A. But remember
if we have the eigenvectors of a matrix, then we can use the Rayleigh quotient
to get the corresponding eigenvalues so computationally this doesn’t help us but
theoretically it does.

Proof of Lemma Assume first that A is nondefective so it has a complete set of
n linearly independent eigenvectors say ~vi so that A~vi = λi~vi. Let the columns of



P be the eigenvectors of A; we know that P is invertible because it has linearly
independent columns. Moreover

P−1AP = P−1(A~v1 A~v2 · · · A~vn) = P−1(λ1~v1 λ2~v2 · · · λn~vn)

=⇒ P−1AP = (λ1P
−1~v1 λ2P

−1~v2 · · · λnP
−1~vn) = Λ

where Λ is an n× n diagonal matrix containing the eigenvalues λi of A because
P−1~vi is the ith column of the identity matrix. Conversely if there exists an
invertible P such that P−1AP = D where D is a diagonal matrix then AP =
PD. If the diagonal entries of D are di and the columns of P are denoted
~pi then AP = PD implies A~pi = di~pi and the di are thus eigenvalues of A
corresponding to the eigenvector ~pi.

What type of matrices have a complete set of linearly independent eigenvectors,
i.e., are nondefective?

• Every diagonal matrix is nondefective because we can just choose ~ei as its
eigenvectors.

•We know that if A has distinct eigenvalues it is nondefective, because eigen-



vectors corresponding to different eigenvalues are linearly independent.

• If A has repeated eigenvalues then their geometric multiplicities must equal
their algebraic multiplicities in order for A to be nondefective.

• A symmetric matrix is guaranteed to be nondefective. This makes symmetric
matrices especially nice because they have real eigenvalues and have a com-
plete set of linearly independent eigenvectors. In fact, the following theorem
gives a stronger statement about a symmetric matrix.

A symmetric n×n matrix has n orthonormal eigenvectors and its eigen-
values are real. Thus there exists an orthogonal matrix Q such that
QTAQ = Λ which implies A = QΛQT .

Recall that a set of vectors {~vi}mi=1 are orthonormal if they are orthogonal and
each has Euclidean length 1; i.e., ~vi · ~vj = 0 for i 6= j and = 1 for i = j. Recall
that there is a procedure, called the Gram Schmidt Method which takes a set of
linearly independent vectors and turns them into an orthonormal set of vectors.



If a matrix is nondefective then that means it has n linearly independent eigen-
vectors. We can then turn them into a set of orthonormal vectors using Gram
Schmidt, but will they still be eigenvectors? The answer is a resounding “no”.
Why?

Exercise We have seen that every diagonal matrix is nondefective. Is every
upper triangular matrix nondefective? Prove or give a counterexample.

The spectral radius and the two-matrix norm

Recall that when we defined our induced matrix norm we gave a result which
told us how to compute the matrix norms induced by the infinity and one vector
norms but we did not have a means for calculating the matrix norm induced by
the standard Euclidean vector norm, i.e., ‖A‖2. The following result gives us a
way to calculate it.



Let A be an n× n matrix. Then

‖A‖2 = max
~x6=0

‖A~x‖2
‖~x‖2

=
√

ρ(ATA)

Recall that ATA is a symmetric positive semi-definite matrix so its eigenvalues
are real and ≥ 0 so the expression makes sense.

IfA is a symmetric matrix we can simplify this expression further because A = AT

implies
√

ρ(ATA) =
√

ρ(A2) = ρ(A)

This means that for a symmetric matrix we have the following result.



Let A be an n×n symmetric invertible matrix with eigenvalues ordered
0 < |λ1| ≤ |λ2| ≤ · · · ≤ |λn|. Then

‖A‖2 = ρ(A) and K2(A) =
|λn|
|λ1|

Exercise Show that if A is an n×n symmetric invertible matrix with eigenvalues
ordered 0 < |λ1| ≤ |λ2| ≤ · · · ≤ |λn| and ‖A‖2 = ρ(A) then K2(A) =

|λn|
|λ1| .



The Singular Value Decomposition

We saw that symmetric matrices were special in that they have real eigenvalues
and a complete set of orthonormal eigenvectors; this told us that there is an
orthogonal matrix Q such that

QTAQ = Λ =⇒ A = QΛQT .

We can view this as a decomposition of our matrix A into the product QΛQT

where Λ is an n × n diagonal matrix with the eigenvalues of A on its diago-
nal. Note that in this decomposition for symmetric matrices we only need one
orthogonal matrix Q.

However, this decomposition is only guaranteed for symmetric matrices. What
kind of decomposition is guaranteed for nonsymmetric matrices? The answer is
given by the Singular Value Decomposition (SVD) Theorem. In this theorem we
will see that, in general, two orthogonal matrices are needed to accomplish the
decomposition of A.



The SVD is our third decomposition of a matrix and it holds for a general m×n
matrix. In the past twenty-five years researchers have come to realize that it is
extremely valuable in many applications. In the lab we will see how it can be
used in image compression.

We will see that the SVD of A gives us information about the four fundamental
spaces associated with A. In addition it will provide us with information on the
relative importance of the columns of A. Remember that it holds for rectangular
as well as square matrices.



The Singular Value Decomposition Theorem (SVD). Let A be an m×n
matrix. Then A can be factored as

A = UΣV T

where

• U is an m×m orthogonal matrix

• Σ is an m× n diagonal matrix (Σij = 0 for i 6= j) with entries σi

• V is an n× n orthogonal matrix

The diagonal entries of Σ, σi, are called the singular values of A and
σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0 where k = min{m,n}.

Note that our decomposition of a symmetric matrix into A = QΛQT is a special
case of this decomposition when U = V .

If A is square, then so is Σ but if A is rectangular, so is Σ. For example, the



following matrices illustrate some possible forms for Σ;





10 0 0
0 4 0
0 0 2



 ,





10 0 0
0 4 0
0 0 0



 ,





10 0
0 4
0 0



 ,





10 0
0 0
0 0



 ,

(

10 0 0
0 4 0

)

Exercise Show how the SVD can be used to solve a linear system A~x = ~b.
However, this is an extremely expensive approach and is not recommended.

The SVD will be used in the efficient solution of the linear least squares problem
which will be done later in the course.

The SVD can also be used to calculate A−1 if A is square or the so-called pseudo
inverse A† = (ATA)−1AT if A is rectangular.

Exercise Show that if A is square and invertible, then A−1 = A†.



Let’s look at what the SVD decomposition tells us. To do this, we first form the
matrices ATA and AAT and use the SVD of A to get the following.

ATA = (UΣV T )TUΣV T = V ΣTUTUΣV T .

Now U is orthogonal and thus UTU = Im×m implies

ATA = V ΣTUTUΣV T = V (ΣTΣ)V T .

This says that ATA is orthogonally similar to ΣTΣ; here ΣTΣ is an n×n diagonal
matrix with entries σ2

i . Recall that this means they have the same eigenvalues.

Now consider the matrix AAT

AAT = UΣV T (UΣV T )T = UΣV TV ΣTUT = U (ΣΣT )UT

which says that AAT is orthogonally similar to ΣΣT ; here ΣΣT is an m × m
diagonal matrix with entries σ2

i .

Now we partition the n × n matrix V as V = (V1|V2) where V1 is n × p and
V2 is n × (n − p) where p is the index of the last nonzero singular value σi;
i.e., σp+1 = σp+2 = · · · = σk = 0 where k = min{m,n}. Likewise partition
U = (U1|U2)



We now want to use these results to interpret the meaning of each matrix in the
SVD.

1. The columns of V are the orthonormal eigenvectors of ATA and are called
the right singular vectors of A because AV = UΣ.

Clearly ATA is symmetric and thus has a complete set of orthonormal eigen-
vectors. Also ATA = V (ΣTΣ)V T which implies V T (ATA)V = ΣTΣ so
V is the matrix which diagonalizes ATA and thus the columns of V are its
orthonormal eigenvectors.

2. The columns of U are the orthonormal eigenvectors of AAT and are called
the left singular vectors of A because UTA = ΣV T .

Clearly AAT is symmetric and thus has a complete set of orthonormal eigen-
vectors. From above AAT = U (ΣΣT )UT which implies UT (AAT )U = ΣΣT

so U is the matrix which diagonalizes AAT and each of the columns of U is
an orthonormal eigenvector of AAT .

3. The singular values of A, σi, are the positive square roots of the eigenvalues
of ATA and AAT and are ≥ 0.



V is the matrix which diagonalizes ATA V T (ATA)V = ΣTΣ where ATA has
eigenvalues σ2. U is the matrix which diagonalizes AAT UT (AAT )U = ΣΣT

where AAT has eigenvalues σ2.

4. An orthonormal basis for the null space of A, N (A), is given in V2.

To see this note that A = UΣV T implies AV = UΣ implies (AV1|AV2) =
UΣ. Because the last (p + 1) through n columns of V correspond to the
diagonal entries of Σ which are zero, then AV2 = 0 and the columns of V2

are in N (A) and are orthonormal because V is orthogonal.

5. An orthonormal basis for the row space of A, R(AT ), is given in V1.

The first p columns of V denoted by V1 are orthonormal to the columns of V2

and form a basis for R(AT ) because R(AT ) is the orthogonal complement of
N (A).

6. An orthonormal basis for the range of A, R(A), is given in U1.

As above, the SVD implies AV = UΣ implies A(V1|V2) = (U1|U2)Σ. The
first p columns of U denoted by U1 form a basis for the range of A.



7. An orthonormal basis for the left nullspace of A, N (AT ), is given in U2.

The columns of U denoted by U2 are orthogonal to U1 and form a basis for
the orthogonal complement R(A)⊥ = N (AT ).

8. The rank of A is given by the number of nonzero singular values in Σ.

If we multiply a matrix by an orthogonal matrix it does not change its rank.

9. Let A be square and invertible then K2(A) is defined to be σ1/σk where σk is
the smallest singular value > 0. This definition can also be used for general
matrices.

Recall that ‖B||2 =
√

ρ(BTB) so
(

K2(B)
)2

= ‖B||22‖B−1||22 and thus
(

K2(B)
)2

= ρ(BTB)ρ
(

(BTB)−1
)

Example Let

A =





4 −1 1
1 4 0
5 3 1







and where its SVD is given by

A =





−.4256 .6968 −.5774
−.3906 −.7170 −.5774
−.8162 −.0202 .5774









7.247 0 0
0 4.1807 0
0 0 0









−.8520 .4710 −.2287
−.4948 −.8671 .0572
−.1714 .1618 .9718





T

Find the singular values of A, the rank of A, a basis for the four fundamental
spaces and their dimension using the SVD.

The singular values ofA are the diagonal entries of Σ so here they are {7.2472, 4.1807, 0}.
Clearly the rank of A is 2 because it has 2 nonzero singular values which of course
means that A is singular. To find the basis for R(A) we partition U where U1

denotes the first 2 columns of U and U2 the last column. Then the columns
of U1 {(−.4256,−.3906,−.8162)T , (.6968,−.7170,−.0202)T} form a basis for
R(A) with dimension 2 and the column of U2 form a basis for its orthogonal
complement, N (AT ) (dimension 1). We partition V in the same way so its first
two columns {(−.8520,−.4949,−.1714)T , (.4710,−.8670, .1618)T} form a basis
for N (A)⊥ = R(AT ) (dimension 2) and the last column (−.2287, .0572, .9718)T

forms a basis for N (A) (dimension 1). Note that in the decomposition we have
given V , not V T .



Exercise If A is symmetric, relate its eigenvalues and its singular values.

The fact that the eigenvectors of ATA are the columns of V and the eigenvectors
of AAT are the eigenvectors of U suggest that a possible means of obtaining the
SVD would be to calculate the eigenvectors of ATA and AAT , but it turns out
that that approach does not lead to a robust algorithm.

The SVD provides another important piece of information about A concerning
the relative importance of its columns. Suppose that we have n vectors in IRm

and we form an m× n matrix A with rank ≤ m. Note that we can rewrite the
SVD of A in an alternate form to get

A = σ1~u1~v
T
1 + σ2~u2~v

T
2 + · · · + σk~uk~v

T
k

where ~ui represents the ith column of U and ~vi the ith column of V and k is the
last nonzero singular value of A. Recall that the singular values are ordered from
largest to smallest and that the vectors ~ui, ~vj have length 1. Thus the largest
contribution to A occurs in the first term, the second largest in the next term,
etc. Now suppose we want to approximate our matrix A by a matrix of rank



ℓ <rank(A); call it Aℓ. Then we take

Aℓ =

ℓ
∑

i=1

σi~ui~v
T
i .

Example Consider the following rank 3 matrix and its SVD. Use this to find
rank 1, rank 2, and rank 3 approximations of A.

A =













2. 1. 1.
10. 3. 4.
8. 1. 4.
6. 0. 8.
4. 6. 8.













where the UΣV T is












−0.122 0.045 0.141 0.268 −0.944

−0.552 0.468 0.415 0.469 0.289
−0.448 0.400 −0.057 −0.783 −0.154

−0.486 −0.125 −0.821 0.272 0.012
−0.493 −0.777 0.361 −0.149 0.038

























19.303 0.000 0.000

0.000 6.204 0.000
0.000 0.000 4.111

0.000 0.000 0.000
0.000 0.000 0.000

















−0.738 0.664 0.121
−0.269 −0.453 0.850

−0.619 −0.595 −0.512





T



To determine a rank 1 approximation we have

A1 = 19.3













−.122
−.552
−.448
−.486
−.493













(

−.7238 −.269 −.619
)

=













1.743 0.635 1.464
7.864 2.864 6.603
6.379 2.323 5.356
6.920 2.520 5.811
7.021 2.557 5.895













In the same way a rank two approximation can be found to be












1.930 0.508 1.297
9.794 1.548 4.875
8.028 1.199 3.880
6.407 2.870 6.270
3.821 4.738 8.760













The rank 3 approximation is A itself because A is rank three.



Model Order Reduction – An Application of the SVD

Suppose that you have a set of differential equations which model some physical,
chemical, biological, etc. phenomena and when you discretize your model you
get a large system of either linear or nonlinear equations. Further suppose that
you either need a solution in real time or perhaps you need to do a parameter
study which involves solving your system for a large range of parameters.

Suppose we have in hand a code that solves this problem but either you can not
get the solution in real time or the number of studies you need to complete are
prohibitively time consuming.

In reduced order modeling one generates a set of snapshots by

• solving the discretized PDEs for one or more specific sets of values of the
parameters

• and/or sampling the approximate solutions at several instants in time



We want to use this set of snapshots as a reduced basis in which to seek our
solution.

However, the snapshots contain a lot of redundant information. How can we
distill these snapshots to remove the redundancy? The answer is found with the
aid of the SVD.

Our hope is that we can use a small number of these basis vectors and seek the
solution to the differential equation as a linear combination of these basis vectors.
If the number of basis vectors is small, e.g., < 20 then we will have a small dense
system to solve instead of a very large banded or sparse system.



Proper Orthogonal Decomposition

The technique of using the SVD to remove the redundancy in the snapshots is
called Proper Orthogonal Decomposition (POD). There are other methods such
as clustering to do this too.

The steps of POD can be briefly described as follows:

• we start with a snapshot set {~uj}Nj=1

• we form the snapshot matrix A whose colums are the snapshots, i.e., A =
(~u1 ~u2 · · · ~uN)

• we compute A = UΣV T , the SVD of A

• the K-dimensional POD basis is given by the first K left singular vectors of
A, i.e., the first K columns of U

Recall that the singular vectors are associated with the singular values which
occur in nonincreasing order so that we might take the first m vectors where m
is chosen so that σm is less than some tolerance.



Flow in a prototype public building determined using a finite element code with
≈ 36,000 of degrees of freedom (top) and with a reduced-order model with 8
degrees of freedom (bottom)



Algorithms for Finding Eigenvalues and Eigenvectors

Recall that we said that algorithms for determining eigenvalues and eigenvectors
must be iterative.

In general, the method for finding all eigenvalues and eigenvectors is more ex-
pensive than solving a linear system.

In many problems (such as for stability analysis), we are only interested in finding
a single eigenvalue such as the spectral radius.

We will begin by looking at techniques for finding a single eigenpair. Because
symmetric matrices have real eigenvalues, we will first concentrate on that special
case.

Before we look at the algorithms, we give a localization theorem for eigenvalues
which could be used to get an initial guess for an algorithm.



Gerschgorin’s Circle Theorem Let A be an n × n matrix and define
the disks (i.e., circles) in the complex plane by

Di =







z : |aii − z| ≤
∑

j 6=i

|aij||







i = 1, 2, . . . , n.

Then all the eigenvalues of A lie in the union of the disks ∪n
i=1Di.

Moreover, if k disks are disjoint then there are exactly k eigenvalues
lying in the union of these k disks.

Exercise Apply Gerschgorin’s theorem to the matrix

A =





2 2 2
2 4 1
1 1 10







The Power Method and its Variants

We now look at algorithms for determining a specific eigenvalue; for example
the spectral radius of a matrix, the minimum eigenvalue (in magnitude) or the
eigenvalue nearest a specific value.

The Power Method is an iterative method for find ρ(A) which simply takes powers
of the original matrix A. The assumption for the method to work is that A must
have a complete set of linearly independent eigenvectors.

We will assume that A is symmetric so that it is guaranteed to have real eigen-
values and a complete set of linearly independent eigenvectors.

The method will give us an approximation to the eigenvector corresponding to
ρ(A) and we will use the Rayleigh Quotient or even a simpler method to obtain
an approximation to the corresponding eigenvalue.



Power Method - Case 1

Let A be symmetric. Assume that the dominant eigenvalue is unique
(not repeated) and the eigenvalues are ordered as follows

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|
and the associated eigenvectors are denoted ~vi, i = 1, . . . , n.

Given ~x0; generate a sequence of iterates ~xk from

xk = δkAx
k−1

where δk is a suitably chosen scaling factor.

Then xk → C~v1 as k → ∞ with rate (|λ2/λ1|)k.

In this algorithm we are simply multiplying the previous iterate by the matrix A
and scaling the result. We have to scale because otherwise the entries in the
resulting vectors could become unbounded or approach zero. We now want to



see why this method converges to the eigenvector corresponding to the dominant
eigenvalue and at what rate it converges.

Note that for each iteration we need to do a matrix times vector multiplication
which is O(n2).

To see why xk → C~v1, we note that

~x1 = δ1A~x
0, ~x2 = δ2A~x

1 = δ1δ2A
2~x0

Continuing in this manner we see that

~xk = δkA~x
k−1 = δkδk−1A

2~xk−2 = · · · =
(

Πk
i=1δi

)

Ak~x0 .

Because we have assumed that A has a complete set of linearly independent
eigenvectors these vectors can be used as a basis for IRn. Consequently there are
constants ci such that

x0 =
n

∑

i=1

ci~vi



Using this expression in our formula for xk and the fact that Ak~vi = λk
i~vi gives

~xk =
(

Πk
i=1δi

)

Ak~x0 = ǫkA
k
[

n
∑

i=1

ci~vi

]

= ǫk

[

n
∑

i=1

ciA
k~vi

]

= ǫk

[

n
∑

i=1

ciλ
k
i~vi

]

.

where we have written the product of the constants Πk
i=1δi as ǫk for ease of

exposition. We now factor out the dominant eigenvalue term λk
1 to get

~xk = ǫkλ
k
1

[

c1~v1 + c2

(λ2

λ1

)k

~v2 + c3

(λ3

λ1

)k

~v3 + · · · + cn

(λn

λ1

)k

~vn

]

.

As k → ∞ all the terms in the expression except the first approach zero because
we have assumed that λ1 > λi for all i 6= 1. Now if we didn’t scale, then the
first term either approaches ∞ or 0 depending on whether λ1 > 1 or λ1 < 1.

As k → ∞ the largest term in the expression (not counting the first) is a constant
times (λ2/λ1)

k because we have assumed the ordering |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.
Consequently the rate at which we have convergence is governed by (|λ2|/|λ1|)k.
This means, e.g., if λ2 = .5λ1 at the tenth iteration we would have (λ2/λ1)

10 =
(0.5)10 ≈ .000976 but if the eigenvalues are clustered, e.g., λ2 = 0.95λ1 at the
tenth iteration we would have (λ2/λ1)

10 = (.95)10 ≈ 0.5987 and the convergence
would be very slow.



Example Consider the matrix

A =





−4 1 −1
1 −3 2

−1 2 −3



 ,

which has eigenvalues−6, −3 and−1 and ~v1 = k(1,−1, 1)T for any scalar k. We
apply the Power Method to find the eigenvector corresponding to the dominant
eigenvalue and we scale using the infinity norm of the current iterate. The
components of the iterate ~xk are given as well as the eigenvalue approximation
found by using the Rayleight Quotient. Note that the iteration is converging to
a constant times (1,−1, 1)T .



k ~xk λk

0 (1.00000 , .00000 ,.00000)
1 - (1.00000,-.25000, .25000) -4.0000
2 (1.00000,-.50000, .50000) -5.0000
3 -(1.00000,- .70000,.70000) -5.6667
4 (1.00000, -.83333,.83333) -5.9091
5 -(1.00000,-.91176,.91176) -5.9767
6 (1.00000, -.95455,.95455) -5.9942
7 -(1.00000,- .97692,.97692) -5.9985
8 (1.00000, -.98837,.98837) -5.9996
9 -(1.00000, -.99416,.99416) -5.9999
10 (1.00000, -.99708,.99708) -6.0000

How do we compute the corresponding eigenvalues?

The obvious way, of course, is to use the Rayleigh quotient
(

~xk
)T
A~xk

(

~xk
)T
~xk

=

(

~xk
)T
~xk+1

δk+1

(

~xk
)T
~xk



Note that this last expression is how it should be implemented because we need
to form A~xk anyway.

An alternate way to calculate the approximate eigenvalue is to take the ratio of
components of successive iterates, e.g.,

(

A~xk
)

ℓ
(

~xk
)

ℓ

Example Let A be given by

A =





−8.1 10.4 14.3
4.9 −5. −7.9

−9.05 10.4 15.25



 ,

for which the spectrum of A is {1, .95, .2}; note that k(1,−.5, 1)T is an eigen-
vector corresponding to the eigenvalue λ = 1. Since |λ2/λ1| = .95, the iterates
theoretically converge at a rate of O(.95k). The approximations λk to the eigen-
value λ1 are computed using the Rayleigh quotient.



k x
(k)
1 x

(k)
2 x

(k)
3 λk |λ2

λ1
|
k

|λ1 − λk|
0 1.00000 .00000 .00000
1 .89503 -.54144 1.00000 -.27000E+01 .95000E+00 .37000E+01
2 .93435 -.53137 1.00000 .15406E+01 .90250E+00 .54064E+00
3 .95081 -.52437 1.00000 .12747E+01 .85737E+00 .27473E+00
4 .96079 -.51957 1.00000 .11956E+01 .81451E+00 .19558E+00
5 .96765 -.51617 1.00000 .11539E+01 .77378E+00 .15389E+00
6 .97267 -.51366 1.00000 .11264E+01 .73509E+00 .12645E+00
7 .97651 -.51175 1.00000 .11066E+01 .69834E+00 .10661E+00
8 .97953 -.51023 1.00000 .10915E+01 .66342E+00 .91515E-01
9 .98198 -.50901 1.00000 .10797E+01 .63025E+00 .79651E-01
10 .98399 -.50800 1.00000 .10701E+01 .59874E+00 .70092E-01
20 .99359 -.50321 1.00000 .10269E+01 .35849E+00 .26870E-01
30 .99680 -.50160 1.00000 .10132E+01 .21464E+00 .13234E-01
40 .99825 -.50087 1.00000 .10072E+01 .12851E+00 .71610E-01
50 .99901 -.50050 1.00000 .10041E+01 .76945E-01 .40621E-02
75 .99974 -.50013 1.00000 .10011E+01 .21344E-01 .10736E-02
100 .99993 -.50004 1.00000 .10003E+01 .59205E-02 .29409E-03



The Power Method also works for the case when the dominant eigenvalue is
repeated but A still has a complete set of linearly independent eigenvectors. In
this case, ~xk approaches a linear combination of the eigenvectors corresponding
to the dominant eigenvalue.

Exercise Verify that the Power Method converges to a linear combination of
the eigenvectors corresponding to the dominant eigenvalue when the dominant
eigenvalue is repeated but A is not defective.

When the dominant eigenvalue is not unique, e.g., ±ρ(A), then the results os-
cillate between the eigenvector corresponding to +ρ and −ρ.

Example Let A be the matrix

A =





57 153 144
−30 −84 −84

9 27 30



 ,

where λ(A) = {6,−6, 3}, i.e., A does not have a unique dominant eigenvalue. As
expected, in this case the computed iterates show no tendency towards converging
rather they oscillate.



k x
(k)
1 x

(k)
2 x

(k)
3

0 1.00000 1.00000 1.00000
1 1.00000 -.55932 .18644
2 1.00000 -.76470 .29412
3 1.00000 -.54000 .16000
4 1.00000 -.74418 .30232
5 1.00000 -.53403 .15183
6 1.00000 -.74033 .30387
7 1.00000 -.53245 .14967
8 1.00000 -.73943 .30423
9 1.00000 -.53205 .14912
10 1.00000 -.73921 .30432



Inverse Power Method

Suppose we want to determine the smallest eigenvalue in magnitude. We know
that if λi is an eigenvalue of A then 1/λi is an eigenvalue of A−1; thus one over
the smallest eigenvalue of A in magnitude is the largest eigenvalue of A−1.

Consequently we can simply use the Power Method with the matrix A−1 to
determine the eigenvector corresponding to the smallest eigenvalue of A.

Inverse Power Method Let A have real eigenvalues and a complete set of
linearly independent eigenvectors. Assume that the smallest eigenvalue in mag-
nitude is unique (not repeated) and the eigenvalues are ordered as follows

|λ1| ≥ |λ2| ≥ · · · ≥ |λn−1| > |λn| =⇒ 1

|λn|
>

1

|λn−1|
≥ 1

|λn−2|
≥ · · · ≥ 1

|λ1|
and the associated eigenvectors are denoted ~vi, i = 1, . . . , n.

Given ~x0 then we generate a sequence of iterates ~xk from

xk = δkA
−1xk−1



where δk is a suitably chosen scaling factor.

How do we implement this method? We don’t want to compute A−1 so instead
we turn it into the problem of solving a linear system; we have

Axk = δkx
k−1

To implement this algorithm we determine A = LU or if A is symmetric either
LLT (A must be positive definite) or LDLT and for each iteration we perform
a back and forward solve. Convergence is analogous to the Power Method.
Specifically we form A = LU before the iteration starts then for each iteration
we must do the following.

• solve L~y = ~xk−1 using a forward solve

• solve U~z = ~y using a back solve

• set ~xk = ~z/δk for a scaling δk

The original factorization requires O(n3) operations but each iteration is O(n2).



Shifted Inverse Power Method

Sometimes we might want to find the eigenvalue nearest some number, say µ.
In addition, we might want to determine a way to speed up slow convergence of
the Power or Inverse Power Methods.

First note that if A~x = λ~x then for the shifted matrix A− µI we have

A~x = λ~x =⇒ A~x− µI~x = λ~x− µI~x =⇒ (A− µI)~x = (λ− µ)~x

so the eigenvalues of A− µI are just λ − µ and the eigenvectors are the same
as A.

Suppose now that we want to find the eigenvalue of A that is nearest to µ. This
means that we are looking for the smallest eigenvalue of A−µI so we just apply
the Inverse Power Method using the matrix A− µI .

When we use the Rayleigh Quotient we are finding an approximation to an eigen-
value of (A−µI)−1 so we first take the reciprocal to get an approximation of an
eigenvalue of A−µI and then shift the result by µ because if σ is an eigenvalue



of A− µI then σ = λ− µ =⇒ λ = σ + µ.

Rayleigh Quotient Iteration

The last variant of the Power Method which we describe converges very rapidly
(cubically for symmetric matrices) but requires more work than the Inverse Power
Method. In addition, it is in generally impossible to predict to which eigenvector
the iteration will converge. The basic idea is that we use the Shifted Inverse
Power Method but we keep updating the shift. We can think of the initial value
of µ as a guess for our eigenvalue.

When we get ~x1 = δ1(A − µ0I)
−1~x0 we can obtain an approximation to the

eigenvalue of A and call it µ1. Then to get ~xk we use

~xk = δk(A− µk−1I)
−1~xk−1



Example The matrix

A =





4 −1 1
−1 3 −2
1 −2 3





has eigenvalues λ1 = 6, λ2 = 3, and λ3 = 1 and corresponding orthonormal
eigenvectors

~v1 =
1√
3





1
−1
1



 ~v2 =
1√
6





2
1

−1



 ~v3 =
1√
2





0
1
1



 .

We apply the inverse power method having a fixed shift and the Rayleigh quotient
iteration for which the shift is updated. For two different initial vectors, we give
results for three choices of the inverse power method shift; the initial shift for
the Rayleigh quotient iteration was chosen to be the same as that for the inverse
power method.



Inverse Power Method Rayleigh Quotient Iteration

µ k x
(k)
1 x

(k)
2 x

(k)
3 k µk x

(k)
1 x

(k)
2 x

(k)
3

-1.0 5 .15453 -.60969 -.77743 2 3.00023 .82858 .37833 -.41269
-1.0 21 .00000 -.70711 -.70711 3 3.00000 .81659 .40825 -.40825
3.5 3 -.81945 -.40438 .40616 1 3.04678 -.88302 -.30906 .35321
3.5 7 -.81650 -.40825 .40825 3 3.00000 -.81650 -.40825 .40825
8.0 7 .56427 -.58344 .58411 3 5.99931 .56494 -.58309 .58382
8.0 17 .57735 -.57735 .57735 4 6.00000 .57735 -.57735 .57735
-1.0 5 .00053 .70657 .70765 2 1.00004 .00158 .70869 .70552
-1.0 10 .00000 .70711 .70711 3 1.00000 .00000 .70711 .70711
3.5 15 .25400 -.88900 -.38100 2 1.06818 .06742 .63485 .76969
3.5 30 -.81647 -.40821 .40834 4 1.00000 .00000 .70711 .70711
8.0 5 -.57735 .57459 -.58009 3 5.99970 -.57733 .57181 -.58285
8.0 11 -.57735 .57735 -.57735 4 6.00000 -.57735 .57735 -.57735

The first six rows of the table are for the initial vector 1√
29
(2, 3,−4)T and the

three shifts µ = −1, 3.5, and 8. We give results for certain iteration numbers k.
The last six rows are analogous results for the initial vector 1√

74
(7, 3, 4)T .



Notice that the Rayleigh Quotient Iteration is sensitive to the choice of the initial
vector, not the shift.

Exercise How does the amount of work for each iteration for the Rayleigh
Quotient Method differ from the work for the Inverse Power Method?

What if we want, e.g., the two largest eigenvalues of A? Can we use the Power
Method to obtain these?

There is a way to “deflate” your n×nmatrix A to convert it to an (n−1)×(n−1)
matrix which has the same eigenvalues of A except for the one you just found.
However, this deflation technique can only be used a couple of times before too
many errors are introduced. One approach would be to use these approximations
to the eigenvalues as a starting guess in the Inverse Power Method.



The QR Algorithm for Finding All Eigenvalues & Eigenvectors

The methods we have described allow us to calculate a few eigenvalue and cor-
responding eigenvectors of a matrix. If one desires all or most of the eigenvalues,
then the QR method is prefered. The basic QR method is very simple to de-
scribe. Starting with A(0) = A, the sequence of matrices A(k), k = 1, 2, . . . , is
determined by

For k = 0, 1, 2, . . ., set

A(k) = Q(k+1)R(k+1) and A(k+1) = R(k+1)Q(k+1) .

Thus, one step of the QR method consists of performing a QR factorization
of the current iterate A(k) and then forming the new iterate by multiplying the
factors in reverse order. Remarkably, as the following example illustrates, often
A(k) tends to an upper triangular matrix which is unitarily similar to the original
matrix.



Example The following are some iterates of the QR method applied to

A = A(0) =

















3 −1 2/3 1/4 −1/5 1/3
4 6 −4/3 2 4/5 −1/3
6 −3 −3 −3/4 9/5 1/2
4 8 −4/3 −1 8/5 4/3
5 5 5 5/2 3 5/2
12 −3 2 3 18/5 5

















A(10) =

















9.086 −.2100 −2.101 7.536 −.9124 −10.06
.7445 9.338 2.686 −2.775 −1.029 −5.386
.0955 .0611 −5.711 .3987 −5.218 −6.456
.0002 .0004 −.0024 −3.402 −.5699 −1.777
− 4 −4 .0051 .0850 2.885 3.257
−9 −10 −8 −6 −6 .8045



















A(30) =

















9.694 .3468 −3.383 6.294 .4840 −.6447
.1614 8.727 −.5014 5.005 −1.290 −11.44
−5 −4 −5.705 .4308 −5.207 −6.370
∗ −11 −7 −3.395 −.6480 −1.814
∗ ∗ −8 .0031 2.875 3.230
∗ ∗ ∗ ∗ ∗ .8045

















A(60) =

















9.637 .4494 −3.254 5.380 .6933 1.255
.0088 8.784 −1.054 5.977 −1.190 −11.39

∗ ∗ −5.705 .4333 −5.207 −6.370
∗ ∗ ∗ −3.395 −.6511 −1.815
∗ ∗ ∗ −4 2.874 3.229
∗ ∗ ∗ ∗ ∗ .8045

















The entry −4 , for example, indicates that that entry is less than 10−4 in mag-
nitude; the entry ∗ indicates that that entry is less than 10−12 in magnitude. It
takes over 90 iterations for all the diagonal entries to approximate eigenvalues to
four significant figures; it takes over 300 iterations for all the subdiagonal entries
to become less than 10−12 in magnitude.



The QR method as defined above is impractical for two reasons. First, each step
of the method requires a QR factorization costs O(n3) multiplications and a like
number of additions or subtractions. Second, we have only linear convergence
of the subdiagonal entries of A(k+1) to zero. Thus, the method described here
requires too many steps and each step is too costly. Fortunately, the approach
has been modified to make it more computationally feasible.

The three essential ingredients in making the QR method practical are:

• the use of a preliminary reduction to upper Hessenberg form in order to reduce
the cost per iteration;

• the use of a deflation procedure whenever a subdiagonal entry effectively van-
ishes, again in order to reduce the cost per iteration;

• and the use of a shift strategy in order to accelerate convergence.

We do not have time to go into the QR algorithm or its variants in detail but if
you are interested, Dr. Gallivan in the Mathematics Department gives a course
in Numerical Linear Algebra.



If by now you are thinking that you will never need eigenvalues, below is a
discussion of the PageRank algorithm which is a patented Google algorithm for
ranking pages. Note the next to last sentence where it describes what they are
really doing is finding an eigenvector. Eigenvalues and eigenvectors occur in
applications that you might not realize!


