
Chapter 5
Introduction to Boundary Value
Problems

When we studied IVPs we saw that we were given the initial value of a function
and a differential equation which governed its behavior for subsequent times. Now
we consider a different type of problem which we call a boundary value problem
(BVP). In this case we want to find a function defined over a domain where we are
given its value or the value of its derivative on the entire boundary of the domain
and a differential equation to govern its behavior in the interior of the domain; see
Figure 5.1.

In this chapter we begin by discussing various types of boundary conditions that
can be imposed and then look at our prototype BVPs. A BVP which only has one
independent variable is an ODE but when we consider BVPs in higher dimensions
we need to use PDEs. We briefly review partial differentiation, classification of
PDEs and examples of commonly encountered PDEs. We discuss the implications
of discretizing a BVP as compared to an IVP and give examples of different types
of grids. We will see that the solution of a discrete BVP requires the solution of a
linear system of algebraic equations Ax = b so we end this chapter with a review
of direct and iterative methods for solving Ax = b for a square invertible matrix A.

5.1 Types of boundary conditions

In the sequel we will use Ω to denote the domain for a BVP and Γ to denote its
boundary. In one dimension, the only choice for a domain is an interval. However, in
two dimensions there are a myriad of choices; common choices include a rectangle,
a circle, a portion of a circle such as a wedge or annulus, or a polygon. Likewise in
three dimensions there are many choices for domains. We will always assume that
our domain is bounded; e.g., we will not allow the right half plane in R2 defined
by Ω = {(x, y) | x > 0} to be a domain. In addition, we will assume that our
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Figure 5.1: Sample domain of a BVP with a differential equation governing
the unknown in the interior of the domain and boundary values specified on all
boundaries.

boundary is sufficiently smooth.
The conditions that we impose on the boundary of the domain are called bound-

ary conditions. The most common boundary condition is to specify the value of the
function on the boundary; this type of constraint is called a Dirichlet1 bound-
ary condition. For example, if we specify Dirichlet boundary conditions for the
interval domain [a, b], then we must give the unknown at the endpoints a and b;
this problem is then called a Dirichlet BVP. In two dimensions we have to specify
the boundary values along the entire boundary curve and in three dimensions on
the entire boundary surface.

A second type of boundary condition is to specify the derivative of the unknown
function on the boundary; this type of constraint is called a Neumann2 boundary
condition. For example, if we specify u′(a) = α then we are imposing a Neumann
boundary condition at the right end of the interval domain [a, b]. If we specify only
Neumann boundary conditions, then the problem is a purely Neumann BVP.

A third type of boundary condition is to specify a weighted combination of
the function value and its derivative at the boundary; this is called a Robin3

boundary condition or mixed boundary condition. For example, for the

1Named after the German mathematician Gustav Lejeune Dirichlet (1805-1859)
2Named after the German mathematician Carl Neumann (1832-1925)
3Named after the French mathematician Victor Gustave Robin (1855-1897)
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unknown u(x) on [a, b] we might specify the Robin condition u(a)−2u′(a) = 0. We
can have a mixed BVP by specifying one type of boundary condition on a portion
of the boundary and another type on the remainder of the boundary. For example,
on the interval [a, b] we might specify a Dirichlet condition for the unknown u(x) at
x = a by setting u(a) = α and a Neumann boundary condition at x = b by setting
u′(b) = β.

We say a boundary condition is homogeneous if its value is set to zero; oth-
erwise it is called inhomogeneous. For example, consider a purely Dirichlet BVP
on [0, 1] where we specify u(0) = 5 and u(1) = 0. Then the boundary condition
on the left at x = 0 is inhomogeneous and the boundary condition on the right at
x = 1 is homogeneous. Thus if someone tells you they have a purely Dirichlet (or
Neumann) BVP on [a, b] with homogeneous boundary data, then you completely
know the boundary conditions without explicitly writing them.

5.2 Prototype BVPs in one dimension

We begin with the simplest scenario which is a linear second order BVP in one
spatial dimension so the domain is an interval [a, b]. This is often called a two-point
BVP because we must specify boundary conditions at the two points x = a and
x = b. Because our unknown must satisfy two boundary conditions we know that
the governing differential equation can’t be first order as in the case of the IVP
where only one auxiliary condition was imposed; rather it must be second order.
For example, a Dirichlet BVP for u(x) on the domain Ω = [0, 3] is

−u′′(x) = 2x 0 < x < 3

u(0) = 0 u(3) = 9 .

From inspection, we know that u(x) must be a cubic polynomial because its second
derivative is a linear polynomial. To find the analytic solution we simply integrate
the equation twice and then apply the boundary conditions to determine the two
arbitrary constants to get u(x) = −x3/3 + 6x. If we have the purely Neumann
problem

−u′′(x) = 2x 0 < x < 3

u′(0) = 0 u′(3) = −9

we have a different situation. The general solution to the differential equation is
u(x) = −x3/3+C1x+C2 so u′(x) = −x2 +C1. Satisfying the boundary condition
u′(0) = 0 gives C1 = 0 and the other condition is also satisfied with this choice
of C1. Then the solution to the BVP is −x3/3 + C2 i.e., it is not unique but
rather only unique up to a constant! We can see this from the BVP because neither
the differential equation nor the boundary conditions impose any condition on u(x)
itself. If the boundary condition at the right was u′(3) = 1 then this could not have
been satisfied and there would have been no solution to the BVP. Consequently
care must be taken in using a purely Neumann problem.
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These BVPs are specific examples of a more general class of linear two-point
boundary value problems governed by the differential equation

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) a < x < b , (5.1)

where p(x), q(x) and f(x) are given functions. Clearly if p = 1, q = 0, a = 0,
b = 3 and f(x) = 2x then we have our specific example. For a general second order
BVP which may be linear or nonlinear we write the differential equation as

y′′(x) = f(x, y, y′) a < x < b . (5.2)

Before we attempt to approximate the solution to a given BVP we want to know
that the continuous problem has a unique solution. For (5.1) it is well known that
under specific conditions on p(x), q(x) and f(x) there is a unique solution to the
Dirichlet BVP. In particular we assume that

0 < pmin ≤ p ≤ pmax and qmin = 0 ≤ q(x) ≤ qmax .

The coefficient p(x) is not allowed to be zero otherwise we would not have a
differential equation. For existence and uniqueness we require that f and q be
continuous functions on the domain [a, b] and that p has a continuous first derivative
there in addition to the given bounds. For the general nonlinear equation (5.2) the
theory is more complicated; in the sequel we will concentrate on the linear two-point
BVP.

We can also consider a higher order equation in one dimension. For example
consider the fourth order linear equation

d2

dx2

(
r(x)

d2u

dx2

)
− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) a < x < b

u(0) = u(1) = 0 u′′(0) = u′′(1) = 0 .
(5.3)

This equation can either be solved as a fourth order equation or written as two
second order equations.

5.3 Prototype BVPs in higher dimensions

In the last section we looked at a two-point BVP which is just an ODE. When we
consider BVPs in higher dimensions the unknown will be a function of more than
one variable so the differential equation will be a PDE. In this section we first review
differentiation in higher dimensions and then look at the classification of PDEs and
some commonly encountered examples. Then we proceed to consider our prototype
equation which is the Poisson equation; in one dimension it is just −u′′(x) = f(x).

5.3.1 Partial differential equations

Partial differential equations (PDEs) are differential equations where the unknown
is a function of more than one independent variable; this is in contrast to ODEs
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where the unknown is a function of only one independent variable. For example, in
two spatial dimensions we could have a function u = u(x, y) or in three dimensions
u = u(x, y, z); in the case of time dependent problems we could have u = u(x, t)
in one spatial dimension, u = u(x, y, t) in two dimensions and u = u(x, y, z, t) in
three dimensions. Of course equations can depend upon other variables than time
and space.

Recall from calculus that if a function depends on two or more independent
variables then to differentiate it we must take partial derivatives. For example, if
u = u(x, y) then we can determine its two first partial derivatives denoted ux, uy
or equivalently ∂u

∂x , ∂u
∂y . The definition of ux where u = u(x, y) is

ux ≡ ux = lim
h→0

u(x+ h, y)− u(x, y)

h
.

Thus a partial derivative gives the change in the function in the direction of the
coordinate axis so when we take a partial derivative with respect to x it gives the
change in the horizontal direction; thus y is held constant. Therefore if u(x, y) =
y3e2x, we have ux = 2y3e2x and uy = 3y2e2x. Higher partial derivatives are
determined in an analogous manner. We will assume continuity of the derivative so
that the order of differentiation does not matter, e.g., uxy = uyx. For example, if
u(x, y) = y3e2x then uxx = 4y3e2x, uyy = 6ye2x, uxy = 6y2e2x = uyx.

Differential operators

There are three differential operators that we will use extensively. Recall that in
calculus we learned that we take the gradient of a scalar and get a vector field. So
the magnitude of the gradient of u is the magnitude of the change in u, analogous
to the magnitude of the slope in one dimension. The standard notation used is
the Greek symbol nabla, ∇ or simply “grad”. Remember that it is an operator
and so just writing ∇ does not make sense but rather we must write, e.g., ∇u.
The ∇ operator is the vector of partial derivatives so in three dimensions it is
(∂/∂x, ∂/∂y, ∂/∂z)T .

One use we will have for the gradient is when we want to impose a flux boundary
condition. Clearly there are times when we want to know the rate of change in
u(x, y) in a direction other than parallel to the coordinate axis; remember that the
standard partial derivative gives the change in the coordinate axis. When this is the
case we define a unit vector in the direction of the desired change and we use the
gradient of u. If n̂ is the unit vector giving the direction then the derivative and
the notation we use is

∂u

∂n̂
≡ ∇u · n̂ . (5.4)

Note that if n̂ = (1, 0)T , i.e., in the direction of the x-axis, then we just get ux
which is the standard partial derivative in the direction of the x-axis; similarly if
n̂ = (0, 1)T then we get uy. We will have a particular use for this notation when
we specify a boundary condition such as the flux on the boundary. In one dimension
the flux is just u′(x) but in higher dimensions it is the change in u along the normal
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to the boundary. So in higher dimensions we will specify ∂u/∂n̂ as a Neumann
boundary condition.

The next differential operator that we need is the divergence. Recall that the
divergence is a vector operator. It is also represented by ∇ or simply “div” but
typically we use a dot after it to indicate that it operates on a vector; other sources
will use a bold face ∇. So if w = (w1, w2, w3) then the divergence of w, denoted
∇ ·w, is the scalar ∂w1/∂x+ ∂w2/∂y + ∂w3/∂z.

The last differential operator that we need is called the Laplacian.4 It combines
the gradient and the divergence to get a second order operator but of course the
order is critical. If u(x, y, z) is a scalar function then we can take its gradient to get
a vector function, then the divergence may be applied to this vector function to get
a scalar function. Because this operator is used so extensively in PDEs it is given
a special notation, ∆ which is the Greek symbol for capital delta. In particular we
have ∆ = ∇ · ∇ so if u = u(x, y, z) then

∆u ≡ ∇ · ∇u = uxx + uyy + uzz (5.5)

because

∇·∇u = ∇·
[
(ux, uy, , uz)

T
]

= (
∂

∂x
,
∂

∂y
,
∂

∂z
)T · (ux, uy, uz)T = uxx +uyy +uzz .

In the sequel we will typically use the notation ∆u instead of ∇ · ∇u. In some
contexts ∇2u is used for ∆u but we will not use this notation.

Classification

Like ODEs, PDEs can be broadly classified by

• their order

• linearity.

The order is determined by the highest derivative occurring in the equation. For
linearity the equation must be linear in the unknown and its derivatives; nonlinearity
in the independent variables such as x, y do not affect the linearity of the equation.
We may have a single PDE or a coupled system of PDEs. For example, for u =
u(x, y), v = v(x, y) we have the single PDE

−∆u = f(x, y)

or a system of PDEs for (u, v)

−∆u+ v(x, y) = f(x, y)

−∆v + 3u(x, y) = g(x, y) .

4Named after the French mathematician Pierre-Simon de Laplace (1749-1827).
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A second order linear PDE in two independent variables (ξ, η) has the general
form

auξξ + buξη + cuηη + duξ + euη + gu = f(ξ, η) (5.6)

where a, b, c, d, e, g are given coefficients (they can be constants or functions of
(ξ, η) ) and f(ξ, η) is a given right hand side or source term. The equation is called
homogeneous if f ≡ 0; otherwise inhomogeneous.

The second order linear PDE (5.6) is classified as elliptic, parabolic, or hy-
perbolic in a domain based upon the sign of the discriminant b2 − 4ac. We have
the equation classified as

elliptic if b2 − 4ac < 0 for all points in the domain

parabolic if b2 − 4ac = 0 for all points in the domain

hyperbolic if b2 − 4ac > 0 for all points in the domain

The names elliptic, parabolic, and hyperbolic come from the classification of conic
sections ax2 + bxy+ cy2 +dx+ ey+ g which is classified as elliptic if b2− 4ac < 0,
etc. For example, for the unit circle x2 + y2 = 1 we have b2 − 4ac = −4 < 0 so it
is elliptic.

Different types of phenomena are modeled by each type of equation. Throughout
this course we will consider prototype equations for each type of equation. It is
important to know if a given PDE is elliptic, parabolic or hyperbolic because this
tells us a lot about how to solve it.

Example 5.1. Classify each equation by order and linearity. If the equation is a
linear second order equation in two independent variables classify it as elliptic,
parabolic or hyperbolic.

1. Let u = u(x, y), then

−∆u = −(uxx + uyy) = f(x, y) .

This equation is called the Poisson equation for f 6= 0; if f ≡ 0, it is called
the Laplace equation. This is a second order linear PDE and is elliptic
because b = 0, a = c = −1 so b2 − 4ac < 0.

2. Let u = u(x, t), then
ut − uxx = f(x, t) .

This is called the heat or diffusion equation in one space variable. It is a
second order linear PDE and is parabolic because a = −1, b = c = 0 so
b2 − 4ac = 0.

3. Let u = u(x, y, t), then

ut −∆u = f(x, y, t)

is called heat or diffusion equation in two space variables. It is parabolic
although it doesn’t fit into the framework above because it is a function
of three independent variables.
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4. Let u = u(x, t), then
utt − uxx = f(x, t)

is called the wave equation. It is a second order linear PDE and is hyper-
bolic because a = 1, b = 0, c = −1 so b2 − 4ac > 0.

5. Let u = u(x, y), then

∆(∆u) = f(x, y) where ∆∆u = uxxxx + 2uxxyy + uyyyy

is called the biharmonic equation. It is a fourth order linear equation.

6. Let u = u(x, t), then

ut + uux − uxx = f(x, t)

is called the Burger equation in one space variable. It is a second order
nonlinear equation due to the uux term.

7. Let u = u(x, y), then
uxx = xuyy

is called the Tricomi equation. It is a second order linear equation and it
changes type depending on the value of x. Here a = 1, b = 0 and c = −x
so b2− 4ac = 4x. If x = 0 then it is parabolic (we just have uxx = 0), it is
elliptic in the left half plane x < 0 and hyperbolic for the right half plane
x > 0.

8. Let u = u(x, y, t) which is a vector with components (u, v); then

ut −∆u + u : ∇u +∇p = f(x, y)

∇ · u = 0

is a second order system. It is called the incompressible Navier-Stokes
equations and is nonlinear.

5.3.2 The Poisson equation

The Poisson5 equation is the prototype equation for BVPs. The differential operator
is the laplacian denoted ∆u which we defined by (5.5). The Poisson equation in
three dimensions is

−∆u = f(x, y, z) (x, y, z) ∈ Ω (5.7)

and in two dimensions we have the analogous definition without the dependence on
z. When f = 0 it is typically called the Laplace equation.

The Poisson equation (5.7) is an elliptic equation. If we specify a Dirichlet BVP
then we must specify u on the boundary Γ. If we have a purely Neumann BVP, i.e.,
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u = x

Γ1u = 0

Γ3 ∂u

∂n̂
= 0

−uxx − uyy = 0

Figure 5.2: A sample mixed BVP for u(x, y) where Γ = Γ1 ∪ Γ2 ∪ Γ3. Here
Dirichlet boundary conditions are specified on Γ1∪Γ2 and a Neumann boundary

condition is specified on Γ3. The notation
∂u

∂n̂
represents ∇u · n̂ where n̂ is the

unit outer normal to the given boundary.

we specify
∂u

∂n̂
then our solution is not unique, just like in the one dimensional case.

An example of a mixed BVP for the Laplace equation is illustrated in Figure 5.2.
If we add homogeneous Dirichlet boundary conditions (i.e., u = 0 on Γ) and set

the domain to be the unique square, i.e., Ω = (0, 1)× (0, 1), then an exact solution
can be found:

u(x, y) =

∞∑
n,m=1

γn,m sin(nπx) sin(mπy)

where

γn,m =
4

n2(m2 + n2)

∫ 1

0

∫ 1

0

f(x, y) sin(nπx) sin(nπy) dxdy .

This is an infinite series where the coefficients are approximated by integrals and
convergence may be slow. So even in this case it may be faster to use numerical

5Named after the French mathematician, geometer and physicist Siméon-Denis Poisson
(1781-1840).
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techniques to approximate the PDE. If the domain becomes more complicated, then
even these types of solutions are typically not available.

There are various techniques for finding the solution to PDEs such as separation
of variables, Greens functions, series expansions, integration, etc. For example,
separation of variables was used to find the infinite series solution to the above
Dirichlet BVP. However these usually only work for simple domains and constant
coefficient problems. Consequently we need to look at methods for approximating
their solution.

When we do need an exact solution for verifying that our computer code is
working properly we can use a simple technique called method of manufactured
solutions which was introduced for IVPs in §1.3. For example, suppose we want to
solve the Poisson equation on the unit square and we want to satisfy homogeneous
Dirichlet boundary conditions, i.e., u(x, 0) = u(x, 1) = 0 and u(0, y) = u(1, y) = 0.
Then we choose a u(x, y) that satisfies these boundary conditions and then plug it
into ∆u to get a particular f(x, y) and then we solve that problem with the given
right hand side. For homogeneous Dirichlet boundary conditions we could choose
u(x, y) = y(y−1) sin(πx) (of course there are lots of other choices for u) and then
f(x, y) = −∆u = −(−π2 sin(πx) + 2) and we solve the BVP

−∆u = π2 sin(πx)− 2, (x, y) ∈ Ω, u = 0 on Γ.

5.4 Discretization

When we approximated the solution to IVPs our goal was to determine an approx-
imation at a set of discrete times using a step size ∆t and if everything was done
correctly as ∆t → 0 our approximate solution converged to our exact solution.
In developing algorithms for the IVPs we typically obtained algorithms where we
“march in time”, i.e., we computed the value at t1, then used that to get the solu-
tion at t2, etc. In a BVP like our two-point BVP the boundary conditions influence
the solution at the interior so we can’t hope to simply start at one end of the do-
main and march to the other. Rather in most methods we will have to solve for the
solution at all the discrete points at once. This means that discretization of a BVP
results in solving a linear algebraic system of equations of the form Ax = b if the
BVP is linear; otherwise we have a system of nonlinear algebraic equations to solve.

As in the case of IVPs, when we turn to approximating the solution to the BVP
we give up having an analytic solution everywhere and instead seek an approximate
solution at a finite number of discrete points or regions (typically called elements
or cells) in the domain. So our first task in approximating the solution to a BVP is
to discretize the spatial domain using a grid or mesh.

In one dimension, discretization of the domain is clear cut. We partition the
interval [a, b] into n+ 1 subintervals [xi, xi+1] where

x0 = a, x1 = x0 + ∆x1, · · · xi = xi−1 + ∆xi, · · · xN+1 = b .

If ∆xi = ∆x for all i = 1, n+ 1 then the grid is uniform. The points xi are called
the grid points or nodes of the mesh.
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For a second order differential equation we know either the value of the unknown,
its derivative or a combination of the two at x = a and x = b. For example, if
we have Dirichlet boundary conditions then there are n interior nodes where we
approximate the solution. If the problem is a purely Neumann BVP then we must
approximate the solution at all n+ 2 points in the domain.

It is important to realize that obtaining a discrete approximation on a fixed grid
is somewhat meaningless. Our convergence results apply in the case that ∆x→ 0
so we need to approximate the solution on a set of grids where the spacing tends to
zero in a uniform sense; that is, we must refine our grid several times. If the grid
is nonuniform, we can’t refine in only one portion of the domain but rather must
refine throughout the domain. It is possible to get reasonable looking results on a
single grid but as ∆x → 0, the results do not converge. Once a computer code
has been developed to approximate the solution of a problem, one typically solves a
problem whose exact solution is known; results are then produced on a sequence of
refined grids and it is verified that the results converge at the predicted theoretical
rate.

In higher dimensions generation of grids is much more involved but luckily there
are many available software packages to assist the user. In one dimension we divided
the domain into intervals but in two dimensions we can use rectangles, triangles,
hexagons, curved regions, etc. and in three dimensions we can use prisms, quadrilat-
erals, tetrahedrons, etc. If the domain is a rectangular region then a Cartesian grid
can easily be generated by taking the tensor product of a uniform one-dimensional
grid in each direction. In many instances we will simply use a rectangular domain
so the grid generation will be easy.

The grid one uses can have a significant impact on convergence, accuracy and
CPU time required. Some desirable properties for grids include the ability to cor-
rectly mimic the shape of the domain (e.g., a square is easy but a car is not); ease
in refining the grid, ability to grade smoothly from fine to coarse mesh; the ability to
control the quality of the mesh (e.g., if we are using triangles we want to maintain
a minimum angle condition).

5.5 Review of solving linear algebraic systems

Because discretization of BVPs typically reduces to solving a linear system, we
review some topics from linear algebra here. Even if the BVP is nonlinear, we solve
the resulting nonlinear algebraic system by iteration where each iteration typically
requires the solution of a linear system; for example, when we use a method like the
Newton-Raphson method.

5.5.1 Classes of matrices

In this section we review some of the basic definitions for matrices. We say that A
is an m× n matrix if it has m rows and n columns. We will refer to the entries of
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A as aij where i refers to the row and j to the column. For our purposes we are
mainly concerned with square n× n matrices which are invertible, i.e., there exists
an n× n matrix B such that AB = BA = I where I is the n× n identity matrix
(a diagonal matrix with Iii = 1); we denote the inverse of A by A−1.

Matrices are classified by their structure of zeros and by certain properties they
possess. It is important to take advantage of the attributes of the matrix when we
solve systems because we can often save work. We first recall the terminology used
for the structure of zero entries in the matrix.

Definition 1. Let A be an n× n matrix with entries aij .

A is a diagonal matrix if aij = 0 for all i 6= j.

A is an upper triangular matrix if aij = 0 for all i > j.

A is a lower triangular matrix if aij = 0 for all j > i.

A is a unit upper triangular matrix if it is upper triangular and aii = 1
for i = 1, 2, . . . , n .

A is a unit lower triangular matrix if it is lower triangular and aii = 1 for
i = 1, 2, . . . , n .

A is a tridiagonal matrix if aij = 0 for all |i− j| > 1.

A is a banded matrix of bandwidth q if aij = 0 for all |i− j| > q/2.

A is a permutation matrix if it can be formed by interchanging rows or
columns of the identity matrix.

A is called a sparse matrix if it has a large portion of zero entries even if
there is no pattern to the zero entries.

A is called a dense or full matrix if there are no or only a few zero entries.

Another important way to classify matrices is by their inherent properties. First
recall that the transpose of a matrix A, denoted AT is a matrix found by reflecting
A along its main diagonal, i.e., the (i, j) entry of AT is aji.

Definition 2. Let A be an n× n matrix with real entries aij .

A is a symmetric matrix if aij = aji for all i, j.

A is positive definite matrix if xTAx > 0 for all x 6= 0.

A is positive semi-definite matrix if xTAx ≥ 0 for all x 6= 0.

A is an orthogonal matrix if A−1 = AT , i.e., AAT = ATA.

When multiplying two matrices together (where the procedure is defined) it is
important to remember that matrix multiplication is not commutative. By this we
mean that in general

AB 6= BA.



CHAPTER 5. INTRODUCTION TO BOUNDARY VALUE PROBLEMS112

5.5.2 Gauss elimination

The first method that one typically learns for solving a linear system is Gauss elim-
ination. The basic idea is to transform the system Ax = b into an equivalent
system Ux = c where U is an upper triangular matrix. Then this upper triangular
system can be solved by a method called back solving. We will describe the matrix
form of Gauss elimination but when implementing the method we do not actually
construct the transformation matrices and multiply the system by them. However,
this approach illustrates that LU factorization and Gauss elimination are equivalent
methods “on paper”. However there are applications when LU factorization is more
efficient.

We define a special type of matrix called an elementary matrix or Gauss trans-
formation matrix. This type of matrix is unit lower triangular and differs from the
identity matrix in only one column below the diagonal. In addition, its inverse is
easily attainable. These matrices are used to “zero out” entries in A below the
diagonal; of course if we premultiply A by a matrix we must do the same thing
to the right hand side of the equation. The goal is to find Gauss transformation
matrices Mi such that

MqMq−1 · · ·M2M1A = U

where U is upper triangular. If we can do this then we have the system

MqMq−1 · · ·M2M1Ax =MqMq−1 · · ·M2M1b = c⇒ Ux = c .

The upper triangular system Ux = c can be solved by a process called back solving.
To determine the equations for x we equate corresponding entries of Ux and c.
Doing this, we get the following equations.

Set xn =
cn
unn

For i = n− 1, n− 2, . . . , 1

xi =

ci −
n∑

j=i+1

ui,jxj

uii
.

So all that is left to solve Ax = b is to determine the matrices Mi and their
inverse. We will explicitly give M1 and the remaining matrices are determined in
an analogous way. We will illustrate with an example. If we have an n× n system
then M1 has the form

M1 =


1 0 0 · · · 0

m1
21 1 0 · · · 0

m1
31 0 1 · · · 0

...
...

...
. . .

...
m1
n1 0 0 · · · 1
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where
m1

21 = −a21/a11 m1
31 = −a31/a11 m1

i1 = −ai1/a11 .

The inverse of M1 is just

(M1)−1 =


1 0 0 · · · 0

−m1
21 1 0 · · · 0

−m1
31 0 1 · · · 0

...
...

...
. . .

...
−m1

n1 0 0 · · · 1


Example 5.2. Find the Gauss transformation matricesM1 andM2 which con-
verts

A =

 1 0 0
−3 1 0

2 0 1


to an upper triangular matrix. We have

M1A =

 1 0 0
−3 1 0

2 0 1

 1 −1 0
3 4 7
−2 0 1

 =

 1 −1 0
0 7 7
0 −2 1


and

M2(M1A) =

 1 0 0
0 1 0
0 2/7 1

 1 −1 0
0 7 7
0 −2 1

 =

 1 −1 0
0 7 7
0 0 3

 = U .

When we have transformed a general system to an upper triangular system by
using Gauss transformation matrices then we have essentially performed an LU
decomposition of A, i.e., written A as the product of a unit lower triangular matrix
and an upper triangular matrix. To see this note that because

MqMq−1 · · ·M2M1A = U

where U is an upper triangular matrix and because each Mi has an inverse which
is unit lower triangular we have

A =
[(
M1

)−1(M2
)−1 · · ·

(
Mq−1

)−1(Mq
)−1
]
U .

Because the product of two unit lower triangular matrices is also unit lower trian-
gular, then we have A = LU where

L =
(
M1

)−1(M2
)−1 · · ·

(
Mq−1

)−1(Mq
)−1

.
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5.5.3 LU factorization

The process of GE essentially factors a matrix A into LU where L is unit lower
triangular and U is upper triangular. Now we want to see how this factorization
allows us to solve linear systems and why in many cases it is the preferred algo-
rithm compared with GE. Remember on paper, these methods are the same but
computationally they can be different.

First, suppose we want to solve Ax = b and we are given the factorization
A = LU . It turns out that the system LUx = b is “easy” to solve because we do
a forward solve followed by a backward solve.

Forward Solve: Ly = b Back Solve: Ux = y .

We have seen that we can easily implement the equations for the back solve and
it is straightforward to write out the equations for the forward solve.

Example 5.3. If

A =

 2 −1 2
4 1 9
8 5 24

 = LU =

 1 0 0
2 1 0
4 3 1

 2 −1 2
0 3 5
0 0 1


solve the linear system Ax = b where b = (0,−5,−16)T .

We first solve Ly = b to get y1 = 0; 2y1 + y2 = −5 implies y2 = −5 and
4y1 + 3y2 + y3 = −16 implies y3 = −1. Now we solve Ux = y = (0,−5,−1)T .
Back solving yields x3 = −1, 3x2 + 5x3 = −5 implies x2 = 0 and finally
2x1 − x2 + 2x3 = 0 implies x1 = 1 giving the solution (1, 0,−1)T .

If GE and LU factorization are equivalent on paper, why would one be compu-
tationally advantageous in some settings? Recall that when we solve Ax = b by
GE we must also multiply the right hand side by the Gauss transformation matrices.
Often in applications, we have to solve many linear systems where the coefficient
matrix is the same but the right hand side vector changes. If we have all of the right
hand side vectors at one time, then we can treat them as a rectangular matrix and
multiply this by the Gauss transformation matrices. However, in many instances we
solve a single linear system and use its solution to compute a new right hand side,
i.e., we don’t have all the right hand sides at once. This will be the case when we
solve time dependent BVPs, i.e., initial boundary value problems. When we perform
an LU factorization then we overwrite the factors onto A and if the right hand side
changes, we simply do another forward and back solve to find the solution.

One can easily derive the equations for an LU factorization by writing A = LU
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and equating entries. Consider the matrix equation A = LU written as
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

...
an1 an2 an3 · · · ann



=


1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

...
...

`n1 `n2 `n3 · · · 1




u11 u12 u13 · · · u1n

0 u22 u23 · · · u2n

0 0 u33 · · · u3n

...
...

...
...

...
0 0 0 · · · unn


Now equating the (1, 1) entry gives

a11 = 1 · u11 ⇒ u11 = a11

In fact, if we equate each entry of the first row of A, i.e., a1j we get

u1j = a1j for j = 1, . . . , n.

Now we move to the second row and look at the (2,1) entry to get a21 = `21 · u11

which implies `21 = a21/u11. Now we can determine the remaining terms in the
first column of L by

`i1 = ai1/u11 for i = 2, . . . , n.

We now find the second row of U . Equating the (2,2) entry gives a22 = `21u12+u22

implies u22 = a22 − `21u12. In general

u2j = a2j − `21u1j for j = 2, . . . , n.

We now obtain formulas for the second column of L. Equating the (3,2) entries
gives

`31u12 + `32u22 = a32 ⇒ `32 =
a32 − `31u12

u22

and equating (i, 2) entries for i = 3, 4, . . . , n gives

`i2 =
ai2 − `i1u12

u22
i = 3, 4, . . . , n

Continuing in this manner, we get the following algorithm.

Theorem 5.1. Let A be a given n × n matrix. Then if no pivoting is needed,
the LU factorization of A into a unit lower triangular matrix L with entries
`ij and an upper triangular matrix U with entries uij is given by the following
equations.
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Set u1j = a1j for j = 1, . . . , n

For k = 1, 2, 3 . . . , n− 1
for i = k + 1, . . . , n

`i,k =

ai,k −
k−1∑
m=1

`imum,k

uk,k

for j = k + 1, . . . , n

uk+1,j = ak+1,j −
k∑

m=1

`k+1,mum,j .

Note that this algorithm clearly demonstrates that you can NOT find all of L
and then all of U or vice versa. One must determine a row of U , then a column of
L, then a row of U , etc.

Does LU factorization work for all systems that have a unique solution? The
following example demonstrates that not every invertible matrix has an LU factor-
ization without row or column interchanges. The following theorem states that if
we interchange rows of a matrix and then find an LU factorization.

Example 5.4. Consider Ax = b where

Ax =

(
0 1
1 1

)(
1
1

)
=

(
1
2

)
which has the unique solution x = (1, 1)T . Can you find an LU factorization of
A? Just like in GE the (1,1) entry is a zero pivot and so we can’t find u11.

Theorem 5.2. Let A be an n×n matrix. Then there exists a permutation matrix
P such that

PA = LU

where L is unit lower triangular and U is upper triangular.

There are several variants of LU factorization which we briefly describe.

• A = LU where L is lower triangular and U is unit upper triangular.

• A = LDU where L is unit lower triangular, U is unit upper triangular and D
is diagonal.

• If A is symmetric and positive definite then A = LLT where L is lower
triangular. This is known as Cholesky decomposition. If the diagonal entries
of L are chosen to be positive, then the decomposition is unique. This is an
important decomposition for us because our matrices will often be symmetric
and positive definite.
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To see the equations for the Cholesky decomposition we equate entries on each
side of the matrix equation:

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

...
an1 an2 an3 · · · ann



=


`11 0 0 · · · 0
`21 `22 0 · · · 0
`31 `32 `33 · · · 0
...

...
...

...
...

`n1 `n2 `n3 · · · `nn




`11 `21 `31 · · · `n1

0 `22 `32 · · · `n2

0 0 `33 · · · `n3

...
...

...
...

...
0 0 0 · · · `nn

 .

Equating the (1,1) entry gives
`11 =

√
a11 .

Clearly, a11 must be ≥ 0 which is guaranteed by the fact that A is positive definite
(just choose x = (1, 0, . . . , 0)T ). Next we see that

`11`i1 = a1i = ai1 ⇒ `i1 =
ai1
`11

, i = 2, 3, . . . , n

Then to find the next diagonal entry we have

`221 + `222 = a22 ⇒ `22 =
(
a22 − `221

)1/2
and the remaining terms in the second row are found from

`i2 =
ai2 − `i1`21

`22
i = 3, 4, . . . , n .

Continuing in this manner we have the following algorithm.

Theorem 5.3. Let A be a symmetric, positive definite matrix. Then the Cholesky
factorization A = LLT is given by the following algorithm.

For i = 1, 2, 3, . . . , n

`ii =
(
aii −

i−1∑
j=1

`2ij

)1/2

for k = i+ 1, . . . , n

`ki = `ik =
1

`ii

[
aki −

i−1∑
j=1

`kj`ij

]
One can show that if A is a symmetric matrix, then it is positive definite if and only if

A = LLT . So this means that if we have a symmetric matrix and want to determine
if it is positive definite we can attempt to perform a Cholesky decomposition. If
it is not positive definite the algorithm will fail when a square root of a negative
number is attempted.
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Operation Count

One way to compare the work required to solve a linear system by different methods
is to determine the number of operations required to find the solution. In Table 5.1
we summarize the operation counts for various operations. So that you can see how
these values are obtained, we provide the details for the operation count of a back
solve in the following example.

Example 5.5. operation count Suppose we are given an n× n upper trian-
gular matrix U with entries uij and an n-vector b with components bi then we
know that the solution of Ux = b is given by the following steps.

Set xn =
bn
unn

For i = n− 1, n− 2, . . . , 1

xi =
bi −

∑n
j=i+1 ui,jxj

uii
.

Provide the number of multiplication/divisions and additions/subtractions to
solve an n× n upper triangular system using these equations.

For xn we require one division; we will count multiplications and divisions
the same. For xn−1 we have one multiplication, one division and one addition.
For xn−2 we have two multiplications, one division and two additions. We have

entry multiplications divisions additions
xn 0 1 0

xn−1 1 1 1
xn−2 2 1 2
xn−3 3 1 3
...

...
...

...
x1 n 1 n-1

So counting multiplications and divisions as the same we have

(n) + (1 + 2 + 3 + · · ·+ n) = n+

n∑
i=1

i multiplications/divisions

and
n−1∑
i=1

i additions.

Now we would like to have the result in terms of O(nr) for some r. If you recall
from calculus

p∑
i=1

i =
p(p+ 1)

2

p∑
i=1

i2 =
p(p+ 1)(2p− 1)

6
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Using this first expression we obtain

n+
n2 + n

2
= O(n2) multiplications/divisions

and
(n− 1)2 + (n− 1)

2
= O(n2) additions

So we say that performing a back solve requires O(n2) operations.

procedure # multiplications/divisions # square roots

dot product of two vectors n
matrix times vector n2

back solve n2

2

forward solve n2

2

LU factorization n3

3

LLT factorization n3

6 n
LU factorization where
A is tridiagonal 4n

LU factorization where
A has bandwidth q q2n

Table 5.1: Operation count for various calculations in linear algebra. We assume
that the given matrix is n× n and any vectors are of length n.

It is important to realize that solving a full n × n matrix requires O(n3) oper-
ations. This means that if we double the size of the matrix to 2n × 2n the work
does not double but rather goes up by a factor of eight!

5.5.4 Iterative methods

There are basically two broad classes of methods for solving Ax = b. The first is
direct methods such as GE and LU factorization and its variants. If we used exact
arithmetic then direct methods find the exact solution in a finite number of steps.
Iterative methods form a sequence of approximations x0,x1,x2, . . .xk to the exact
solution x and we hope that this sequence converges to the exact solution but it will
typically never reach the exact solution even if we do exact arithmetic. However,
we perform iterations until the approximation is within a desired tolerance.

Why do we want to look at solvers other than direct solvers? The main reason
is storage. Oftentimes (especially in 3D calculations) we have a working code
but we are unable to store our coefficient matrix when we attempt to do fine grid
calculations even when we take advantage of the structure of our matrix. In addition,
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sometimes iterative methods may take less work than a direct method if we have
a good initial guess. For example, if we are solving a time dependent problem for
a sequence of time steps, ∆t, 2∆t, 3∆t, . . . then we can use the solution at k∆t
as a starting guess for our iterative method at (k + 1)∆t and if ∆t is sufficiently
small, the method may converge in just a handful of iterations. If we have a large
sparse matrix (the structure of zeros is random or there are many zeros inside the
bandwidth) then one should use a method which only stores the nonzero entries in
the matrix. There are direct methods for sparse matrices but they are much more
complicated than iterative methods for sparse matrices.

A good (free) online source for iterative methods for solving Ax = b is given in
the description of a set of iterative solvers called templates found at netlib:

http : //www.netlib.org/linalg/html templates/Templates.html

There are complications to implementing iterative methods that do not occur
in direct methods. When we use an iterative method, the first thing we realize is
that we have to decide how to terminate our method; this was not an issue with
direct methods. Another complication is that many methods are only guaranteed
to converge for certain classes of matrices. We will also find in some methods that
it is straightforward to find a search direction but determining how far to go in that
direction is not known. Lastly we need a starting guess for the iterative method;
in many applications such as time dependent problems we will have a ready initial
guess. However, unlike iterative methods for nonlinear equations, if an iterative
method for a linear system converges, then it will do so for any initial guess.

There are two basic types of iterative methods:

1. Stationary methods. These are methods where the data in the equation
to find xk+1 remains fixed; they have the general form

xk+1 = Pxk + c for a fixed matrix P and a fixed vector c

We call P the iteration matrix and its dominant eigenvalue dictates whether
the method will converge or not.

2. Nonstationary methods. These are methods where the data changes at
each iteration; they have the form

xk+1 = xk + αkp
k

Note here that the data, αk and pk change for each iteration k. Here pk is
called the search direction and αk the step length.

Stationary Iterative Methods

The basic idea is to split (not factor) A as the sum of two matrices

A = M −N
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where M is easily invertible. Then we have

Ax = b⇒ (M −N)x = b⇒Mx = Nx + b⇒ x = M−1Nx +M−1b

This suggests the iteration

Given x0 then xk+1 = M−1Nxk +M−1b, k = 0, 1, 2, . . .

which is a stationary method with P = M−1N and c = M−1b. There are three
basic methods which make different choices for M and N . We will look at all three.

The simplest choice for M is a diagonal matrix because it is the easiest to
invert. This choice leads to the Jacobi Method. We write

A = L+D + U

where here L is the lower portion of A, D is its diagonal and U is the upper part.
For the Jacobi method we choose M = D and N = −(L+ U) so A = M −N is

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
...

...
an1 an2 an3 · · · ann



=


a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

...
...

0 0 0 · · · ann

−


0 −a12 −a13 · · · −a1n

−a21 0 −a23 · · · −a2n

−a31 −a32 0 · · · −a3n

...
...

...
...

...
−an1 −an2 −an3 · · · 0


Then our iteration becomes

xk+1 = −D−1(L+ U)xk +D−1b with iteration matrix P = −D−1(L+ U)

However, to implement this method we don’t actually form the matrices rather
we look at the equations for each component. The point form (i.e., the equation
for each component of xk+1) is given by the following:

Jacobi Method: Given x0, then for k = 0, 1, 2, . . . find

xk+1
i = − 1

aii

( n∑
j=1
j 6=i

aijx
k
j

)
+

1

aii
bi

This corresponds to the iteration matrix PJ = −D−1(L+ U) .
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Example 5.6. Apply the Jacobi Method to the system Ax = b where

A =

 1 2 −1
2 20 −2
−1 −2 10

 b =

 2
36
25


with an exact solution (1, 2, 3)T . Use x0 = (0, 0, 0)T as a starting guess. We
find each component by our formula above.

x1
1 = −1

1

(
0
)

+
2

1
= 2

x1
2 = − 1

20

(
0
)

+
36

20
= 1.8

x1
3 = − 1

10

(
0
)

+
25

10
= 2.5

Continuing in this manner we get the following table

k xk1 xk2 xk3
0 0 0 0
1 2 1.8 2.5
2 0.9 1.85 3.06
3 1.36 2.016 2.96
5 1.12 2.010 2.98

10 0.993 1.998 3.00

The Gauss-Seidel method is based on the observation that when we calcu-
late, e.g., xk+1

1 , it is supposedly a better approximation than xk1 so why don’t we
use it as soon as we calculate it. The implementation is easy to see in the point
form of the equations.

Gauss-Seidel Method: Given x0, then for k = 0, 1, 2, . . . find

xk+1
i = − 1

aii

( i−1∑
j=1

aijx
k+1
j

)
− 1

aii

( n∑
j=i+1

aijx
k
j

)
+

1

aii
bi

This corresponds to the iteration matrix PGS = −(D + L)−1U .

We now want to determine the matrix form of the method so we can determine
the iteration matrix P . We note that the point form becomes

xk+1 = −D−1
(
Lxk+1

)
−D−1

(
Uxk

)
+D−1b .

Now grouping the terms at the (k+1)st iteration on the left and multiplying through
by D we have

Dxk+1 +
(
Lxk+1

)
= −

(
Uxk

)
+ b

or
(D + L)xk+1 = −Uxk + b⇒ P = −(D + L)−1U .
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Example 5.7. Apply the Gauss-Seidel method to the system in the previous
example, i.e.,

A =

 1 2 −1
2 20 −2
−1 −2 10

 b =

 2
36
25


with an exact solution (1, 2, 3)T . Use x0 = (0, 0, 0)T as a starting guess. We
find each component by our formula above.

x1
1 = −1

1

(
0
)

+
2

1
= 2

x1
2 = − 1

20

(
2 ∗ 2

)
+

36

20
= −.2 + 1.8 = 1.6

x1
3 = − 1

10

(
(−1)2− 2(1.6)

)
+

25

10
= .52 + 2.5 = 3.02

Continuing in this manner we get the following table

k xk1 xk2 xk3
0 0 0 0
1 2 1.6 3.02
2 1.82 1.92 3.066
3 1.226 1.984 3.0194
5 1.0109 1.99 3.001

So for this example, the Gauss-Seidel method is converging much faster be-
cause remember for the fifth iteration of Jacobi we had (1.12, 2.01, 2.98)T as our
approximation.

The Successive Over Relaxation (SOR) method takes a weighted average
between the previous iteration and the result we would get if we took a Gauss-Seidel
step. For one choice of the weight, it reduces to the Gauss-Seidel method.

SOR Method: Given x0, then for k = 0, 1, 2, . . . find

xk+1
i = (1− ω)xk + ω

[
− 1

aii

( i−1∑
j=1

aijx
k+1
j

)
− 1

aii

( n∑
j=i+1

aijx
k
j

)
+

1

aii
bi

]
where 0 < ω < 2. This corresponds to the iteration matrix PSOR = (D +

ωL)−1
(

(1− ω)D − ωU
)
.

We first note that if ω = 1 we get the Gauss-Seidel method. If ω > 1 then we
say that we are over-relaxing and if ω < 1 we say that we are under-relaxing. Of
course there is a question as to how to choose ω which we will address shortly.

We need to determine the iteration matrix for SOR. From the point form we
have

Dxk+1 + ωLxk+1 = (1− ω)Dxk − ωUxk + b
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which implies

xk+1 = (D + ωL)−1
(

(1− ω)D − ωU
)
xk + (D + ωL)−1b

so that P = (D + ωL)−1
(

(1− ω)D − ωU
)
.

Example 5.8. Let’s return to our example and compute some iterations using
different values of ω. Recall that

A =

 1 2 −1
2 20 −2
−1 −2 10

 b =

 2
36
25


We find each component by our formula above. Using ω = 1.1 and ω = 0.9

we have the following results.

ω = 1.1 ω = 0.9
k xk1 xk2 xk3 xk1 xk2 xk3
0 0 0 0 0 0 0
1 2.2 1.738 3.3744 1.8 1.458 2.6744
2 1.862 1.9719 3.0519 1.7626 1.8479 3.0087
3 1.0321 2.005 2.994 1.3579 1.9534 3.0247
5 0.9977 2.0000 2.9999 1.0528 1.9948 3.0051

Example 5.9. As a last example consider the system Ax = b where

A =

 2 1 3
1 −1 4
3 4 5

 b =

 13
13
26


and apply Jacobi, Gauss-Seidel and SOR with ω = 1.1 with an initial guess of
(1, 1, 1). The exact solution is (1, 2, 3)T .

Jacobi Gauss-Seidel SOR
k xk1 xk2 xk3 xk1 xk2 xk3 xk1 xk2 xk3
1 1 1 1 1 1 1 1 1 1
1 4.5 -8.0 3.8 4.5 -4.5 6.1 4.85 -4.67 6.52
2 4.8 6.7 8.9 -.4 11 -3.36 -1.53 13.18 -5.52
3 -10.2 27.4 -3.04 6.04 -20.4 17.796 9.16 -29.84 26.48

As you can see from these calculations, all methods fail to converge even though
A was symmetric.

One complication with iterative methods is that we have to decide when to
terminate the iteration. A criteria that is often used is to make sure that the
residual rk = b − Axk is sufficiently small. Of course, the actual size of ‖rk‖ is
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not as important as its relative size. If we have a tolerance τ , then one criteria for
termination is

‖rk‖
‖r0‖

< τ ,

where ‖r0‖ is the initial residual b−Ax0.
The problem with this criterion is that it depends on the initial iterate and may

result in unnecessary work if the initial guess is too good and an unsatisfactory
approximation xk if the initial residual is large. For these reasons it is usually better
to use

‖rk‖
‖b‖

< τ .

Note that if x0 = ~0, then the two are identical.
Another stopping criteria is to make sure that the difference in successive iter-

ations is less than some tolerance; again the magnitude of the actual difference is
not as important as the relative difference. Given a tolerance σ we could use

‖xk+1 − xk‖
‖xk+1‖

≤ σ

Often a combination of both criteria are used.

5.5.5 Nonstationary Iterative Methods

Recall that nonstationary iterative methods have the general form

xk+1 = xk + αkp
k

The vector pk is called the search direction and the scalar αk is called the step
length. Unlike stationary methods, nonstationary methods do not have an iteration
matrix.

The classic example of a nonstationary method is the Conjugate Gradient
(CG) method. However, CG only works for symmetric positive definite matrices
but there have been many variants of it (e.g., bicg, bicgstab) developed which
handle even indefinite matrices. Another example of a nonstationary method is
the Steepest Descent method which is based on the following simple fact from
calculus. If we want to minimize a function f then we know that −∇f points in the
direction of the maximum decrease in f . So a simple iterative method to minimize
a function is to start at a point, compute the gradient of the function at the point
and take a step in the direction of minus the gradient. But what does minimizing
a function have to do with solving a linear system? The following proposition gives
us the answer in the case of a symmetric positive definite matrix.

Proposition 5.1. If A is an n × n symmetric positive definite matrix then the
solution x = A−1b of the linear system Ax = b is equivalent to

x = min
y∈Rn

φ(y) where φ(~y) =
1

2
yTAy − bTy .
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To understand the CG method it is advantageous to analyze the method of steepest
descent. Due to time constraints we will not go into these methods here but the
interested reader is referred to standard texts in numerical analysis.



Chapter 6
Finite Difference Methods for
Boundary Value Problems

In this chapter we look at finite difference methods for boundary value problems
(BVPs). The main idea in the finite difference approach to solving differential
equations is to replace the derivatives in the equation with difference quotients. The
first step is to overlay the domain with a grid or mesh and then a difference equation
is written at the appropriate nodes. As mentioned in the last chapter discretization
of BVPs requires the solution of a system of algebraic equations unlike IVPs where
we “marched in time.”

In this chapter we begin by looking at a BVP in one dimension which is often
called a two-point BVP. We consider different difference quotients to approximate
first and second derivatives and determine their accuracy. We will see how to
implement different boundary conditions in the context of finite difference methods.
In finite difference methods one often refers to a method’s stencil which we will
define and depict in a diagram. Our results in one dimension will allow us to easily
move to approximating our prototype equation, the Poisson equation, in two or
three dimensions. We want to see the difference in the structure of our coefficient
matrix as we move from one dimension to higher dimensions. Numerical results will
be presented.

6.1 The two-point BVP

We first want to develop finite difference schemes for a BVP which is governed by
the differential equation

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) a < x < b , (6.1)
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plus boundary conditions at x = a and x = b. Here p(x), q(x) are required to
satisfy the bounds

0 < pmin ≤ p ≤ pmax and qmin = 0 ≤ q(x) ≤ qmax . (6.2)

When p = 1 and q = 0 we have the Poisson equation −u′′(x) = f(x) in one
dimension.

For existence and uniqueness we require that f and q be continuous functions
on the domain [a, b] and that p has a continuous first derivative there in addition to
the given bounds (6.2). This equation always contains the second derivative u′′(x)
because p(x) > 0; thus it is second order. If p(x) is not a constant the equation
also includes the first derivative u′(x) because when we use the product rule for
differentiation we have

d

dx

(
p(x)

du

dx

)
= p(x)

d2u

dx2
+ p′(x)

du

dx
.

Consequently to solve the general equation we need difference quotients to approx-
imate both the first and second derivatives. In Chapter 1 we obtained both the
forward and backward difference quotients for the first derivative and saw that each
was first order accurate. Specifically we have

Forward Difference: u′(x) =
u(x+ h)− u(x)

h
+O(h)

Backward Difference: u′(x) =
u(x)− u(x− h)

h
+O(h)

Before we decide if either of these difference quotients are appropriate for this
problem, we first derive our difference quotient for the second derivative.

Recall that Taylor series are useful in deriving difference quotients. A Taylor
series expansion for u(x+ h) is

u(x+ h) = u(x) + h u′(x) +
h2

2!
u′′(x) +

h3

3!
u′′′(x) +O(h4) . (6.3)

Now we want an approximation for u′′(x) but if we solve for it in (6.3) then we still
have the u′(x) term. However, if we add (6.3) to the expansion for u(x− h) given
by

u(x− h) = u(x)− h u′(x) +
h2

2!
u′′(x)− h3

3!
u′′′(x) +O(h4) (6.4)

then we can eliminate the u′(x) term by adding the two expansions; we have

u(x+ h) + u(x− h)− 2u(x) = h2u′′(x) +O(h4)

which gives

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2) .
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Note that the terms involving h3 cancel. This difference quotient is called a second
centered difference quotient or a second order central difference approximation
to u′′(x) and is second order accurate.

Second centered difference: u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2)

(6.5)

Another way to derive this approximation is to difference the forward and back-
ward approximations to the first derivative, i.e.,

1

h

(
u(x+ h)− u(x)

h
− u(x)− u(x− h)

h

)
;

hence the name second difference.
Finite difference approximations are often described in a pictorial format by

giving a diagram indicating the points used in the approximation. These are called
finite difference stencils and this second centered difference is called a three point
stencil for the second derivative in one dimension.

kk k
xi−1 xi xi+1

-21 1

Now that we have an approximation for u′′(x) we need to decide which difference
quotient to use to approximate the first derivative. Because our approximation to
u′′(x) is second order, we would like to use the same accuracy for approximating
the first derivative. However, both the forward and backward difference quotients
are only first order. Consequently, if we use either of these two then the error
in approximating u′(x) will dominate and make the overall error first order. A
reasonable approach is to find a second order approximation to u′(x). Returning
to our Taylor series expansions (6.3) and (6.4) we see that if we subtract these
expansions, then we obtain

u(x+ h)− u(x− h) = 2hu′(x) +O(h3)

which gives the (first) centered difference

First centered difference: u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2) (6.6)
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and thus if we use this difference quotient both approximations are second order
accurate. It is described by the stencil

kk
xi−1 xi xi+1

-1 1

Now that we have chosen the difference quotients to approximate u′′(x) and
u′(x) we now discretize the domain. Suppose that we subdivide our domain [a, b]
into n+1 subintervals using the (n+2) uniformly spaced points xi, i = 0, 1, . . . n+1
with

x0 = a, x1 = x0 + h, . . . , xi = xi−1 + h, . . . , xN+1 = xn + h = b (6.7)

where h = (b− a)/(n+ 1). The points xi are called the grid points or nodes. The
nodes x1, x2, . . . , xn are interior nodes (denoted by open circles in the diagram
below) and the two nodes x0, xn+1 are boundary nodes (denoted by solid circles in
the diagram).

e e e e e e e e eu u
x0 x1 x1 xi−1 xi xi+1 xn xn+1

a bh-�

We now have the machinery to write a difference equation for (6.1) at the point
xi using the two difference quotients (6.5) and (6.6). If we let Ui ≈ u(xi) then our
finite difference equation at the node xi is

p(xi)

(
−Ui+1 + 2Ui − Ui−1

h2

)
−p′(xi)

(
Ui+1 − Ui−1

2h

)
+q(xi)Ui = f(xi) . (6.8)

Suppose now that we have homogeneous Dirichlet boundary conditions u(a) =
u(b) = 0; clearly this implies U0 = 0 and Un+1 = 0 so we have n unknowns Ui,
i = 1, . . . , n and an equation of the form (6.8) at each of the n interior grid points
x1, x2, . . . , xn. Let’s write the difference equation at the first interior node x1; we
have

p(x1)

(
−U2 + 2U1

h2

)
− p′(x1)

(
U2

2h

)
+ q(x1)U1 = f(x1) ,

where we have used the boundary condition to set U0 = 0. We immediately realize
that this equation contains two unknowns U1 and U2 and so we can’t solve it. When
we write the difference equation at the next point x2, it contains three unknowns
U1, U2 and U3

p(x2)

(
−U3 + 2U2 − U1

h2

)
− p′(x2)

(
U3 − U1

2h

)
+ q(x2)U2 = f(x2) .
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In fact, when we look at the equation at the point xi we see that it will always have
three unknowns Ui−1, Ui and Ui+1 except at the nodes adjacent to the boundary. It
makes sense that we can’t solve for U1 and then U2, etc. because the right boundary
condition must affect the solution too. Consequently, we must solve for all of the
unknowns at one time by writing the n difference equations as a linear system of
algebraic equations which can be represented by a matrix problem Ax = b.

For simplicity of exposition, let’s look at the case where p(x) is a constant, say
p(x) = 1, and q = 0. Then we have the simplified difference equation

−Ui+1 + 2Ui − Ui−1

h2
= f(xi) i = 1, . . . , n

at each interior grid point x1, x2, . . . , xn. Multiplying by h2 produces

−Ui−1 + 2Ui − Ui+1 = h2f(xi) i = 1, . . . , n .

The corresponding matrix problem is AU = f where A is the matrix

2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · · · · 0 −1 2 −1
0 · · · · · · · · · 0 −1 2


(6.9)

and U =
(
U1, U2, · · · , Un

)T
, f = h2

(
f(x1), f(x2), . . . , f(xn)

)T
for homogeneous

Dirichlet boundary data. Clearly this matrix is symmetric and tridiagonal; in addi-
tion, it can be shown to be positive definite so the Cholesky factorization A = LLT

for a tridiagonal matrix can be used. Recall that tridiagonal systems require only
O(n) operations to solve and only three vectors must be stored to specify the ma-
trix. In our case the matrix is symmetric and so only two vectors are required; this
should be contrasted with a full n× n matrix which requires n2 storage and O(n3)
operations to solve.

Example 6.1. Suppose we want to use finite differences to approximate the
solution of the BVP

−u′′(x) = π2 sin(πx) 0 < x < 1
u(0) = 0, u(1) = 0

using h = 1/4. Our grid will contain five total grid points x0 = 0, x1 = 1/4,
x2 = 1/2, x3 = 3/4, x4 = 1 and three interior points x1, x2, x3. Thus we have
three unknowns U1, U2, U3. We will write the equation at each interior node to
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demonstrate that we get the tridiagonal system. We have

2U1 − U2 =
π2

16
sin(

π

4
)

−U1 + 2U2 − U3 =
π2

16
sin(

π

2
)

−U2 + 2U3 =
π2

16
sin(

3π

4
) .

Writing these three equations as a linear system gives 2 −1 0
−1 2 −1

0 −1 2

 U1

U2

U3

 =
π2

16

 sin(π4 )
sin(π2 )

sin( 3π
4 )

 =

 0.436179
0.61685

0.436179

 .

Solving this system gives U1 = 0.7446, U2 = 1.0530 and U3 = 0.7446; the exact
solution to this problem is u = sin(πx) so at the interior nodes we have the
exact solution (0.7071, 1, 0.7071).

Example 6.2. In this example we modify our boundary conditions to be inho-
mogeneous Dirichlet so we can see how to handle these; we will discuss other
boundary conditions in detail in § 6.2.1. Consider the BVP

−u′′(x) = π2 cos(πx) 0 < x < 1
u(0) = 1, u(1) = −1

whose exact solution is u(x) = cos(πx). Using the same grid as in the previous
example, we still have three unknowns so we write the equations at the three
interior nodes

−U0 + 2U1 − U2 =
π2

16
cos(

π

4
)

−U1 + 2U2 − U3 =
π2

16
cos(

π

2
))

−U2 + 2U3 − U4 =
π2

16
cos(

3π

4
))

Now U0 = 1 and U4 = −1 so we simply substitute these values into the equations
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and move the terms to the right hand side to get

2U1 − U2 =
π2

16
cos(

π

4
) + 1)

−U1 + 2U2 − U3 =
π2

16
cos(

π

2
))

−U2 + 2U3 =
π2

16
cos(

3π

4
)− 1)

Writing these three equations as a linear system gives 2 −1 0
−1 2 −1

0 −1 2

 U1

U2

U3

 =

 1.4362
0.0

−1.4362

 .

Solving this system gives U1 = 0.7181, U2 = 0 and U3 = −0.7181; the exact
solution at these interior nodes is (0.7071, 0.0,−0.7071).

In the numerical examples in the next section we will verify that our results are
second order. What if we want a scheme that is more accurate than second order.
What can we do? In the previous difference quotient for approximating u′′(xi) we
used xi−1, xi and xi+1 so to get a higher order approximation it makes sense that
we would have to use more points. The natural thing to do is to include a point to
the right of xi+1 and one to the left of xi−1 so we can keep the terms symmetrically.
Thus we want to use a combination of u at the points xi−2, xi−1, xi, xi+1 and
xi+1. The correct linear combination is given by

u′′(x) =
1

h2

[
− 1

12
u(x−2h)+

4

3
u(x−h)−5

2
u(x)+

4

3
u(x+h)− 1

12
u(x+2h)

]
+O(h4)

(6.10)
which is fourth order accurate. This can be verified by taking the appropriate linear
combination of the Taylor series expansions for u(x− 2h), u(x− h), u(x+ h) and
u(x+2h). Thus for the differential equation −u′′(x) = f(x) we have the difference
equation

1

12
Ui−2 −

4

3
Ui−1 +

5

2
Ui −

4

3
Ui+1 +

1

12
Ui+2 = h2f(xi) .

This is called a five point stencil in 1D and is often displayed pictorially as the
following.

������������ ���
xi−1 xi xi+1xi−2 xi+2

− 5
2

4
3

4
3− 1

12 − 1
12
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Before proceeding further, we summarize the finite difference approximations
that we have derived along with their accuracy for future reference in Table 6.1.
When we move to higher dimensions we will typically just use these approximations
but in directions other than x.

u′(x) forward difference
u(x+ h)− u(x)

h
O(h)

difference height

u′(x) backward difference
u(x)− u(x− h)

h
O(h)

u′(x) centered difference
u(x+ h)− u(x− h)

2h
O(h2)

u′′(x) second centered difference
u(x+ h)− 2u(x) + u(x− h)

h2
O(h2)

u′′(x) five-point stencil (1D)
1

12h2

[
− u(x− 2h) + 16u(x+ h)

−30u(x) + 16u(x− h)− u(x+ 2h)
]
O(h4)

Table 6.1: Finite difference approximations in one dimension and their order of
accuracy.

6.1.1 Numerical results

In this section we look at two specific two point BVPs and demonstrate that we
get second order accuracy when we use the three point stencil. Note that in the
text we have labeled the grid points starting at x0 through xn+1 because when
we have Dirichlet boundary data we then have an n × n system. Some compilers
such as C or Fortran 90 allow the use of an array starting at zero whereas Matlab
requires arrays to start at one. Consequently you may have to adjust the indices of
the arrays to account for this; for example, the first interior point might be labeled
x2 if you are using Matlab.

We want to calculate the numerical rate of convergence for our simulations as
we did for IVPs. However, in this case our solution is a vector rather than a single
solution. To calculate the numerical rate we need a single number which represents
the error so we use a vector norm. A commonly used norm is the standard Euclidean
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norm defined by

‖x‖2 =
[ n∑
i=1

x2
i

]1/2
for a vector in x ∈ Rn. Other choices include the maximum norm ‖ · ‖∞ or the
one-norm ‖ · ‖1 defined by

‖x‖∞ = max
1≤i≤n

|xi| and ‖x‖1 =

n∑
i=1

|xi| .

Although these are the standard definitions for the vector norms, when we output
the error norm we need to normalize it. For example, suppose you compute an error
vector, all of whose components are 0.1. Clearly we expect the Euclidean norm to
be 0.1 for a vector of any length but if we compute the norm using the definition
above for a vector of length 10 then the result is 0.316 and for a vector of length
100 it is 1. So what we need to do is either normalize by the vector of the exact
solution evaluated at the same grid points to give a relative error or use an alternate
definition; for example for the Euclidean norm we use

‖x‖2 =
[ 1

n

n∑
i=1

x2
i

]1/2
which gives the answer of 0.1 for a vector all of whose components are 0.1 no matter
what its length.

Before presenting results of our numerical simulations for specific problems we
briefly outline a possible structure for a program to solve the two-point Dirichlet
BVP on and interval [a, b] using a finite difference approach with a uniform grid. In
this outline, we use the notation introduced in this section. First, the user needs to
provide the following:

• n, the number of interior grid points (alternately the grid spacing h);

• a, b the right and left endpoints of interval;

• the boundary value at x = a and x = b, e.g., uleft and uright;

• a routine for the forcing function f(x) and the exact solution, if known.

Then the code can be structured as follows:

• compute h = (b− a)/(n+ 1);

• compute grid points x(i), i = 0, 1, 2, . . . , n+ 1;

• set up the coefficient matrix and store efficiently; for example, for the three-
point stencil the matrix can be stored as two vectors;

• set up the right hand side for all interior points;
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• modify the first and last entries of the right hand side to account for inhomo-
geneous Dirichlet boundary data;

• solve the resulting linear system using an appropriate solver;

• output solution to file for plotting, if desired;

• compute the error vector and output a norm of the error (normalized) if the
exact solution is known.

Example 6.3. We return to the homogeneous Dirichlet BVP we solved by hand
in the first example of this chapter; recall that the BVP is given by

−u′′(x) = π2 sin(πx) 0 < x < 1
u(0) = 0, u(1) = 0

and has an exact solution of u(x) = sin(πx). For our hand calculation we only
solved it using a coarse grid so now we want to refine our mesh and demonstrate
that the solution is converging with accuracy O(h2). In the table below we give
the `2 norm (i.e., the standard Euclidean norm) of the error normalized by the
`2 error of the exact solution. As can be seen from the table, the numerical rate
of convergence is two as predicted by theory.

h
‖E‖2
‖u‖2

numerical rate

1
4 5.03588×10−2

1
8 1.27852×10−2 1.978

1
16 3.20864×10−3 1.994

1
32 8.02932×10−4 1.999

1
64 2.00781×10−4 2.000

Example 6.4. The next example we look at is

−u′′(x) = −2 0 < x < 1
u(0) = 0, u(1) = 0

whose exact is u(x) = x2−x. We modify our code to incorporate the new right
hand side f(x) = −2 and the exact solution. The computations give us the
following results.
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h
‖E‖2
‖u‖2

numerical rate

1
4 3.1402×10−16

1
8 3.1802×10−16

Why are we getting essentially zero for the error whereas in the previous example
we got errors of approximately 10−2 for these grids? The reason is that our exact
solution is a quadratic and the third and higher derivatives of the solution are
zero so we should be able to obtain it exactly if we didn’t have roundoff. To
see this, recall that when we derived the three point approximation to u′′(x) we
combined Taylor series for u(x+ h) and u(x− h) to get

u(x+ h) + u(x− h)− 2u(x) = h2u′′(x) + 2
h4

4!
u′′′′(x) +O(h5)

Thus the first term in the Taylor series that didn’t cancel is O(h4) and for this
example, it is zero so the approximation is exact.

6.1.2 Systems

Suppose now that we have two coupled BVPs in one dimension, e.g.,

−u′′(x) + v(x) = f(x) a < x < b
−v′′(x) + u(x) = g(x) a < x < b
u(a) = 0 u(b) = 0
v(a) = 0 v(b) = 0 .

We use the three point stencil to approximate each equation to get the following
equations for i = 1, 2, . . . , n using the discretization x0 = a, xi = xi−1 + h, and
xn+1 = b

−Ui−1 + 2Ui − Ui+1 + Vi = f(xi)
−Vi−1 + 2Vi − Vi+1 + Ui = g(xi)

for i = 1, 2, . . . , n. So at grid point (or node) xi we have two unknowns Ui and
Vi. This means we have a choice of how we want to number the unknowns. For
example, we could number all of the Ui, i = 1, . . . , n and then the Vi or we could
mix them up, e.g., U1, V1, U2, V2, . . ., Un, Vn. Now we will get the same solution
either way but one leads to a matrix problem which is easier to solve.

First we will look at the resulting system if our solution vector is numbered as

(U1, U2, · · · , Un, V1, V2, · · · , Vn)T

In this case we write all the equations for U in the first half of the matrix and then
all the equations for V in the second half. For example,

2U1 − U2 + V1 = f(x1)
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−U1 + 2U2 − U3 + V2 = f(x2)
...

−Un−1 + 2Un + Vn = f(xn)
2V1 − V2 + U1 = g(x1)

−V1 + 2V2 − V3 + U2 = g(x2)
...

−Vn−1 + 2Vn + Un = g(xn) .

We have the coefficient matrix in block form

A =

(
S I
I S

)
where I is the n× n identity matrix and

S =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

This is a block matrix and there are ways to efficiently solve it but if one was using a
library package, then typically a banded solver would be used and the matrix would
be 2n× 2n with a total bandwidth of n+ 1.

Another choice for numbering the unknowns is to have

(U1, V1, U2, V2, · · · , Un, Vn)T .

In this case we write an equation for Ui and then for Vi alternating in this way for
i = 1, 2, . . . , n. For example,

2U1 − U2 + V1 = f(x1)
2V1 − V2 + U1 = g(x1)

−U1 + 2U2 − U3 + V2 = f(x2)
−V1 + 2V2 − V3 + U2 = g(x2)

...
−Un−1 + 2Un + Vn = f(xn)
−Vn−1 + 2Vn + Un = g(xn) .
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In this case the coefficient matrix is

A =



2 1 −1
1 2 0 −1
−1 0 2 1 −1

−1 1 2 0 −1
. . .

. . .
. . .

−1 0 2 1 −1
−1 1 2 0 −1

−1 0 2 1
−1 1 2


.

This is a 2n× 2n matrix but the bandwidth is only five so if we use a banded solver
the procedure of alternating the unknowns is more efficient. One should be aware
of how the unknowns are numbered because this can yield different matrices. Of
course the resulting linear systems are equivalent but one system may be easier to
solve than another.

6.2 The Poisson equation

We now want to use our knowledge gained from approximating u′′(x) in one dimen-
sion to approximate ∆u in two or three dimensions. The first step of the discretiza-
tion process is to overlay the domain with a grid. For simplicity we will begin with
the unit square (0, 1)×(0, 1) and basically we will take the grid defined by (6.7) and
use it in both the x and y directions. For now we set ∆x = ∆y = h = 1/(n + 1)
and set

x0 = 0, x1 = x0 + h, . . . , xi = xi−1 + h, . . . , xN+1 = xn + h = 1
y0 = 0, y1 = y0 + h, . . . , yj = yj−1 + h, . . . , yn+1 = yn + h = 1 .

When we discretized our two-point BVP we first used a three point stencil in
the x direction to approximate u′′(x). We can easily extend this to two dimensions
by differencing in both the x and y directions to obtain a difference equation for
the Poisson equation in two dimensions. Suppose we want to solve

−∆u = −
(
uxx + uyy

)
= f(x, y) ∀(x, y) ∈ (0, 1)× (0, 1)

u = 0 on Γ

with a finite difference scheme that is second order in x and y. We discretize
the domain as in Figure 6.1. We let Ui,j ≈ u(xi, yj) for i, j = 0, 1, 2, . . . , n + 1.
Clearly U0,j = Un+1,j = 0, j = 0, 1, . . . , n + 1 and Ui,0 = Ui,n+1 = 0 for i =
0, 1, 2, . . . , n + 1 from the boundary conditions; these are just the values at the
nodes denoted by a solid circle in Figure 6.1. To write our difference equation we
simply use the second centered difference in x (holding y fixed)

uxx(xi, yj) ≈
Ui−1,j − 2Ui,j + Ui+1,j

h2
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Figure 6.1: Uniform Cartesian grid on a unit square with a total of (n + 2)2

nodes. The boundary nodes are denoted by a solid circle. For a Dirichlet BVP
we only have unknowns at the interior nodes which are marked by an open
circle.

and then use the analogous difference quotient in the y direction

uyy(xi, yj) ≈
Ui,j−1 − 2Ui,j + Ui,j+1

h2
.

Combining these results we have the finite difference equation for −∆u(x, y) =
f(x, y) at the point (xi, yj)

−Ui−1,j + 2Ui,j − Ui+1,j

h2
+
−Ui,j−1 + 2Ui,j − Ui,j+1

h2
= f(xi, yj) .

Multiplying by h2 and combining terms yields

−Ui−1,j + 4Ui,j − Ui+1,j − Ui,j−1 − Ui,j+1 = h2f(xi, yj) i, j = 1, 2, . . . , n .
(6.11)

This is called the five point stencil for the Laplacian in two dimensions because
it uses the five points (xi−1, yj), (xi, yj), (xi+1, yj), (xi, yj−1), and (xi, yj+1); it
is illustrated schematically in the diagram below.
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In one dimension the resulting matrix had a bandwidth of three so we want to
see what structure the matrix has in two dimensions. We choose to number our
unknowns across each horizontal row. It really doesn’t matter in this case because
our domain is a square box. We have the unknown vector(

U1,1, U2,1, · · · , Un,1
∣∣∣ U1,2, U2,2, · · · , Un,2

∣∣∣ · · · ∣∣∣ U1,n, U2,n, · · · , Un,n
)T

because we only have unknowns at interior nodes. The first n values are the un-
knowns at the interior nodes on the first horizontal grid line y = h, the second set
of n values are the unknowns at the interior nodes on the second horizontal grid
line y = 2h, etc. To see the structure of the matrix we write the first few equations
and then we can easily see the structure; for j = 1, 2 we have the equations

4U1,1 − U2,1 − U1,2 = h2f(x1, y1)
−U1,1 + 4U2,1 − U3,1 − U2,2 = h2f(x2, y1)

...
−Un−1,1 + 4Un,1 − Un,2 = h2f(xn, y1)

4U1,2 − U2,2 − U1,3 − U1,1 = h2f(x1, y2)
−U1,2 + 4U2,2 − U3,2 − U2,3 − U2,1 = h2f(x2, y2)

...
−Un−1,2 + 4Un,2 − Un,3 − Un,1 = h2f(xn, y2),

where we have used the homogeneous boundary conditions. Thus, we see that the
matrix has the block structure

A =



S −I
−I S −I

−I S −I
. . .

. . .
. . .

−I S −I
−I S
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where S is an n× n matrix defined by

S =


4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4


and I is the n×n identity matrix. So the coefficient matrix is now n2×n2 whereas
in one dimension it was n × n. As in one dimension it is a symmetric positive
definite matrix. There are efficient ways to solve this block tridiagonal matrix such
as using a block tridiagonal solver, a banded Cholesky solver or an iterative solver.

6.2.1 Handling boundary conditions

We have seen that when we have homogeneous Dirichlet boundary data then we
have an unknown at each interior grid point because the solution is zero at all
boundary points; even if the Dirichlet boundary data is inhomogeneous we will still
only have unknowns at the interior nodes. We will often have BVPs with Neumann
boundary conditions or even Robin boundary conditions which specify a combination
of the unknown and its derivative. So we need to figure out how to impose different
conditions. It turns out that it is easy to impose Dirichlet boundary conditions with
finite difference methods but imposing a derivative boundary condition introduces
some difficulty.

If we specify u(x, y) = g(x, y), g 6= 0, on the boundary of our domain then we
still only have unknowns at the interior grid points. There are two common ways
that inhomogeneous boundary conditions are satisfied. We saw in an example that
one way was to just modify the right hand side vector; the other way is to add an
equation for each boundary node and set it equal to g evaluated at that boundary
node. We will look at both approaches.

First suppose we are using the five point stencil to approximate the Poisson
equation with inhomogeneous Dirichlet boundary data u = g on Γ = (0, 1)× (0, 1).
Suppose that we number our nodes along each horizontal line and we write the
difference equation at the first interior horizontal line, i.e., at (xi, y1). At the first
interior grid point (x1, y1) we have

−U0,1 + 4U1,1 − U2,1 − U1,0 − U1,2 = h2f(x1, y1) .

Now two of these terms are known due to the boundary condition; in fact any term
where i = 0 or j = 0 is known. We have U0,1 = g(x0, y1) which is a boundary
node on the left side of the domain and U1,0 = g(x1, y0) which is a boundary node
on the bottom of the domain. We can move these terms to the right-hand side to
get

4U1,1 − U2,1 − U1,2 = h2f(x1, y1) + g(x0, y1) + g(x1, y0) .

For i = 2, 3, . . . , n − 1 and j = 1 we will only have one boundary term to move
to the right hand side; at i = n we will have a point from the right and bottom
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boundaries. Writing the difference equation at j = 2 and i = 2, 3, 4, . . . , n− 1 we
have

−Ui−1,2 + 4Ui,2 − Ui+1,2 − U(i, 1)− Ui,3 = h2f(xi, y2)

and there are no boundary terms. At i = 1 or i = n there will be two boundary
terms, U0,2 on the right and Un+1,2 on the left boundary. So for each difference
equation that we write that contains a known boundary term we move it to the
right hand side. In this approach, the matrix is not modified.

A second approach is to add an equation for each boundary node and “pretend”
to have an unknown at every grid point. So if we have a Cartesian grid for (0, 1)×
(0, 1) with n + 2 points on a side we have a total of 2(N + 2) + 2(N) = 4N + 4
boundary nodes. For each boundary node we add an equation; for example along
the bottom of the domain we have

Ui,0 = g(xi, y0), i = 0, 1, . . . , n+ 1 .

This adds a diagonal entry to the matrix so it does not affect the bandwidth of the
matrix but of course it increases the size.

Imposing derivative boundary conditions in the context of finite difference meth-
ods is often viewed as a shortcoming of the method because they have to be imple-
mented with care and often require the addition of “fictitious” grid points. Remem-
ber that when we impose a Neumann or Robin boundary condition the unknown
itself is not given at the boundary so we have to solve for it there. Suppose for
example, that we have a domain (0, 1)× (0, 1) and wish to impose a flux condition
which is represented by a Neumann boundary condition. To be concrete, we assume
∂u/∂n̂ = g(x, y) along the sides x = 0 and x = 1. Because the outer normal is ±î
this flux condition is just ±ux = g. This means that we have to replace ux with
a difference quotient and write this equation at the boundary node. We can use a
one-sided difference such as

ux(x0, yj) =
U1,j − U0,j

h
= g(x0, yj)

at the left boundary. The problem with this is that it is a first order accurate approx-
imation whereas in the interior we are using a second order accurate approximation.
We have seen that the centered difference approximation

ux(xi, yj) ≈
u(xi+1, yj)− u(xi−1, yj)

2h

is second order accurate. But if we write this at the point (x0, yj), then there is no
grid point to its left because (x0, yj) lies on the boundary. To see how to implement
this centered difference approximation for the Neumann boundary condition first
consider the simplified case where ∂u/∂n̂ = 0. The finite difference equation at
the point (x0, yj) is

U−1,j + 4U0,j − U1,j − U0,j+1 − U0,j−1 = h2f(x0, yj)

and the centered difference approximation to −ux = 0 at (x0, yj) is

U1,j − U−1,j

2h
= 0 ⇒ U−1,j = U1,j .
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We then substitute this into the difference equation at (x0, yj) to get

U1,j + 4U0,j − U1,j − U0,j+1 − U0,j−1 = h2f(x0, yj)

or
4U0,j − U0,j+1 − U0,j−1 = h2f(x0, yj) .

So we need to modify all the equations written at x = 0 or x = 1 where the
Neumann boundary condition is imposed.

If the Neumann boundary condition is inhomogeneous we have

U1,j − U−1,j

2h
= g(x0, yj) ⇒ U−1,j = U1,j − 2hg(x0, yj)

and we substitute this into the difference equation for U−1,j . Of course if the domain
is not a rectangle then the procedure is more complicated because the Neumann
boundary condition ∂u/∂n̂ does not reduce to ux or uy.

6.3 Summary

In this chapter we saw how we could obtain approximations to the differential equa-
tion by replacing derivatives with finite difference quotients; so the method is called
the finite difference method. These difference quotients are easy to derive using
Taylor series. The finite difference method has the advantage that it is easy to
understand and straightforward to program. Although one may claim that finite
differences go back to the time of Newton, it was actually in the 1920’s that they
were first used to solve differential equations in mathematical physics. So historically
the finite difference method was the first method used to solve PDEs extensively.

The main impetus for developing additional methods for approximating the so-
lution of PDEs was the desire to compute on more complex domains. For example,
if one has a polygonal domain in R2 it is much easier to cover it with triangles than
with rectangles which the finite difference method uses. Also, if you recall how we
derived the second centered difference we combined the Taylor series for u(x + h)
and u(x − h) and several terms cancelled to get second order accuracy. However,
this assumed a uniform grid. So if we have a nonuniform grid we do not have second
order accuracy. There have been methods derived for nonuniform grids but they are
not straightforward extensions of the uniform case. Another issue with finite differ-
ence approximations is that it can be more difficult to enforce derivative boundary
conditions or interface conditions which are conditions between two regions where
different equations hold. For these reasons, we want to look at additional methods
to solve PDEs.



Chapter 7
Method of Mean Weighted
Residuals

The finite element method (FEM) and the finite difference method (FDM) are the
two most commonly used methods for approximating the solution of PDEs. Before
we introduce the FEM we consider a technique called the mean weighted residuals
(MWR) method. This approach to solving differential equations existed before the
FEM but, moreover, the FEM can be viewed as a particular MWR method. In
addition, there are several other methods of interest which are MWR methods. We
will introduce the general concept of the FEM in this chapter but will not delve into
the details until the following two chapters.

The MWR method is not a specific method but rather it is a general framework
under which different methods can be described. Theoretically there are an infinite
number of methods that can be described under this framework.

We begin this chapter by giving a general description of the MWR. Then we
look at three methods which can be viewed as an MWR method. The first is a least
squares approach; you have probably encountered the discrete least squares method
when you wanted to fit a polynomial to some discrete data in a least squares sense.
The second approach is the Collocation Method and the final one we consider is
the Galerkin Method. The FEM is a specific Galerkin method.

7.1 Overview

Suppose we have a set of n linearly independent1 functions {φi}, i = 1, . . . , n. We
define the space V = span({φi}ni=1); that is, V is all linear combinations of these
functions. Because the φi are linearly independent they form a basis for V . The
basis functions φi could be polynomials, sines and cosines, wavelets or a myriad of

1A set of vectors {vi}ni=1 are linearly independent provided
∑n

i=1 civi = 0 implies ci = 0
for all i; otherwise they are called linearly dependent.

145
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other choices. At this point we are not saying what we choose for the vectors φi
but rather assuming that we have them “in hand”.

For concreteness let’s assume we are solving the Poisson equation −∆u =
f in two dimensions with homogeneous Dirichlet boundary conditions. We seek
our approximation, say uh to u, the solution of the Poisson equation, as a linear
combination of the basis vectors φi(x, y), i.e.,

uh =

n∑
i=1

ciφi(x, y) .

Once we specify the basis functions φi then our goal is to find the coefficients ci,
i = 1, 2, . . . , n. Now these basis vectors are not discrete functions but typically
continuous functions which can be differentiated like polynomials or trigonometric
functions. If we plug our approximationuh into the original PDE we will not get zero
because it is only an approximation to the exact solution; we call this remainder the
residual R. For the Poisson equation we have

R(x, y) = −∆uh − f(x, y) 6= 0 .

The goal is to try and force the residual to zero in some way. We don’t just
want the residual to be small in one part of the domain and large in another so we
must enforce a condition over the entire domain. The easiest way to do this is with
an integral over the domain. Now the method is called mean weighted residuals so
we know where the residual part comes in and the mean just refers to the integral
over the domain but what about the “weighted” part? It turns out that this part
is what distinguishes different weighted residual methods. We don’t simply take
the integral of R over the domain we “weight” it against weight functions. For
example, in R2 we require∫

Ω

R(x, y)Wi(x, y) dΩ = 0 i = 1, 2, . . . , n .

Note that there are n weight functions which is the same as the number of unknowns
in the expansion uh =

∑n
i=1 ciφi; this is good because if we end up with a linear

system to solve it will have n equations (one for each weight function) and n
unknowns so it will be square.

For our example of the Poisson equation we substitute the expression for the
residual into the above integral equation to get∫

Ω

[
(−∆uh − f)Wi

]
dΩ = 0⇒ −

∫
Ω

∆uhWi dΩ =

∫
Ω

fWi dΩ i = 1, 2, . . . , n .

Remember that our goal is to find uh =
∑n
j=1 cjφj which means we have to find

the scalar coefficients cj . We substitute this expression for uh into the equation
above to get

−
∫

Ω

∆
( n∑
j=1

cjφj

)
Wi dΩ =

∫
Ω

fWi dΩ i = 1, 2, . . . , n
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or

−
n∑
j=1

cj

∫
Ω

∆φjWi dΩ =

∫
Ω

fWi dΩ i = 1, 2, . . . , n .

If we know the basis functions φj(x, y), i = 1, . . . , n and the weight functions
Wi(x, y), i = 1, . . . , n then this equation reduces to the n× n matrix problem

Ac = f

where

Aij = −
∫

Ω

∆φjWi dΩ (f)i =

∫
Ω

fWi dΩ .

Of course we have added the complication that entries in the matrix and right hand
side are integrals but these can always be approximated by a numerical quadrature
rule.

Different choices of the weighting functions Wi result in different methods. We
will look at the three most common choices which are the Least Squares method, the
Collocation method, and the Galerkin2 method. The FEM is a Galerkin method.
Before looking at these methods we consider a concrete problem which we will
approximate by each of the three methods.

Example 7.1. We consider the two point BVP

−u′′(x) + u(x) = −3e2x − xe2 0 < x < 1, u(0) = 1, u(1) = 0

whose exact solution is u(x) = e2x−xe2. We choose to approximate the solution
as a linear combination of polynomials of degree two or less in one independent
variable. The dimension of the space of all polynomials of degree two or less is
three and a basis is

φ1 = 1, φ2 = x, φ3 = x2 .

So our approximate solution is

uh =

3∑
i=1

ciφi(x) = c1 + c2x+ c3x
2

and our goal is to determine c1, c2 and c3. When we satisfy the Dirichlet bound-
ary conditions we get

u(0) = c1 = 1 and u(1) = 1 + c2 + c3 = 0⇒ c3 = −(1 + c2) ≡ c .

Thus c2 = −(1 + c) and we have uh = 1− (1 + c)x+ cx2, i.e., we only have one
unknown. The MWR method requires us to calculate the residual R(x) so for
this BVP we have

R(x) = − d2

dx2
uh + uh + 3e2x + xe2 .

2Named after the Russian mathematician and engineer Boris Galerkin (1871-1945).
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Substituting uh = 1− (1 + c)x+ cx2 and (uh)′′(x) = 2 gives

R(x) = −2c+(1−(1+c)x+cx2)+3e2x+xe2 = c
(
−2−x+x2)+1−x+3e2x+xe2 .

For this problem the MWR method requires∫ 1

0

[
c
(
− 2− x+ x2) + 1− x+ 3e2x + xe2

]
Wi dx = 0 for i = 1 .

We will return to this problem and solve it as we explore different MWR methods
and their choice for the weighting functions Wi.

7.2 Least Squares Method

We begin this section by recalling the discrete least squares method and seeing that
we can generalize this to approximating functions in a least squares sense. We then
use these ideas in the MWR method and see what choice of weight functions this
leads to.

Typically one first encounters the method of least squares when there is a set
of data and we want to fit this data with a line or a higher degree polynomial in a
least squares sense. This is called discrete least squares because you have discrete
data. For example, assume that we have a set of discrete data points (xi, yi),
i = 1, 2, . . . ,m and we want to fit a line a0x + a1 to the data in a least squares
sense. If we have only two points, i.e., m = 2, then we can find the line that passes
through the two points but typically we have m > 2. In this case you want to
minimize the `2-norm (Euclidean length) of the distance between the line evaluated
at each xi and the data yi. Typically we minimize the square of this distance, i.e.,

minimize ρ where ρ(a0, a1) =

m∑
i=1

|yi − (a0xi + a1)|2 .

The coefficients a0, a1 can be found by solving a 2 × 2 system called the normal
equations.

We can also approximate functions in a least squares sense. Remember that
functions are defined over a domain and not just at a set of discrete points. For
concreteness assume that f(x) is a continuous function on [a, b] which we want to
approximate by a polynomial pn(x) of degree n in the least squares sense. For the
discrete least squares method we used the sum of the difference squared so now
we much replace the sum with an integral because we have a function. So in the
continuous least squares method we want to

minimize F where F =

∫ b

a

(
f(x)− pn(x)

)2
dx .

For simplicity we assume n = 1 and p1(x) = a0x + a1; substituting this into our
function to minimize we have

F(a0, a1) =

∫ b

a

(
f(x)− (a0 + a1x)

)2
dx .
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We know from calculus that to minimize a function g(x, y) we find the critical
points by setting gx and gy equal to zero (and check any boundary values). In our
case the variables are a0 and a1 so we have

∂F
∂a0

= 0 and
∂F
∂a1

= 0

which in our case yields

∂F
∂a0

= −2

∫ b

a

(
f(x)− (a0 + a1x)

)
dx = 0⇒

∫ b

a

(a0 + a1x) dx =

∫ b

a

f(x) dx

and

∂F
∂a1

= −2

∫ b

a

x
(
f(x)−(a0+a1x)

)
dx = 0⇒

∫ b

a

(a0x+a1x
2) dx =

∫ b

a

xf(x) dx .

The function f(x) is given to us and we know the interval [a, b] where we are
approximating f(x) so we perform the integration (either exactly or with numerical
quadrature) and have two equations for a0 and a1 to satisfy.

Now we want to see how this approach of least squares can be applied in the
MWR method. The basic idea is to minimize the square of the residual integrated
over the domain, i.e.,

minimize F where F =

∫
Ω

R2(x, y) dΩ .

As in the continuous least squares approach we take the partials of F with respect to
the unknown parameters and set to zero. What are our unknowns in this equation?
Recall that uh =

∑
ciφi and our residual is the result of plugging uh into the

differential equation. Consequently our unknowns are the ci, i = 1, 2, . . . , n so we
differentiate F with respect to each ci and set it to zero

∂F
∂ci

= 0 ∀i = 1, 2, . . . , n .

Using the definition of F we have

∂F
∂ci

= 2

∫
Ω

R(x, y)
∂R

∂ci
dΩ = 0⇒

∫
Ω

R(x, y)
∂R

∂ci
dΩ = 0 .

Now we want to compare this with our general equation∫
Ω

R(x, y)Wi(x, y) dΩ = 0 i = 1, 2, . . . , n

for the MWR method to see what choice of weighting function the Least Squares
method makes. Comparing the equations we see that the weighting function Wi is
chosen as

Wi =
∂R

∂ci
.

That is, each Wi is the derivative of the residual with respect to the unknown
coefficient ci. Note once again that there are n unknown coefficients and so there
are n first partials of R so we have n weighting functions.
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Example 7.2. We return to our example in § 7.1 and solve it using the choice
of weighting function dictated by the Least Squares method. Recall that after
satisfying the boundary conditions we had only one unknown c so the equation
we have to solve is∫ 1

0

RW1 dx =

∫ 1

0

[
c
(
− 2− x+ x2) + 1− x+ 3e2x + xe2

]
W1 dx = 0 .

We now set W1 = ∂R/∂c where

R(x) = c
(
− 2− x+ x2) + 1− x+ 3e2x + xe2

so we have W1 = −2− x+ x2. Substitution into the integral gives

∫ 1

0

[
c
(
− 2− x+ x2) + 1− x+ 3e2x + xe2

][
− 2− x+ x2

]
dx = 0 .

We need to multiply these two expressions and then integrate the resulting
polynomials and the terms involving e2x which is straightforward but a bit
tedious. With the help of a symbolic algebra package have∫ 1

0

[
c(4 + 4x− 3x2 − 2x3 + x4)− 2 + x+ 2x2 − x3

+e2x
(
− 6− 3x+ 3x2

)
+ e2

(
− 2x− x2 + x3

)]
dx = 0

⇒ 4.7c− 29.7553 = 0⇒ c = 6.33092 .

Our approximate solution is uh = c1 + c2x + c3x
2 and after satisfying the

boundary conditions we had uh = 1 − (1 + c)x + cx2 so with c = 6.33092 we
have

uh = 1− 7.330924x+ 6.33092x2 .

In Figure 7.1 we graph the exact solution u(x) = e2x − xe2 and this quadratic
approximation. Remember that this is a very coarse approximation because
we are using a quadratic polynomial over the entire interval [0, 1] and after we
satisfy the boundary conditions we only have one degree of freedom.

7.3 Collocation Method

The Collocation Method makes a choice for the weighting functionWi, i = 1, 2, . . . , n
which depends on a family of functions called Dirac delta functions.3 We first
review the basic idea of the Dirac delta function and see the effect of its use as a
weighting function.

The Dirac delta function is typically denoted by δ(x) and can be thought of as a
function which has an infinitely high spike at the origin and is zero everywhere else;

3Named after the theoretical physicist Paul Dirac (1902-1984) who was at Florida State
University for the last decade of his life.
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Figure 7.1: Comparison of the exact solution u(x) = e2x − xe2 for the example of
this chapter with its MWR approximation uh = 1− 7.330924x+ 6.33092x2 where
the weighting function is chosen by the Least Squares approach.

the area under the spike is required to be one. In theoretical physics it represents an
idealized point mass or point charge. It is not a true function because if it is zero
everywhere except at one point then it should have an integral of zero. Consequently
the Dirac delta function only makes sense when it is used inside an integral. In that
case it can typically be handled as if it were a function. Mathematically it is called
a generalized function. The Dirac delta function is also useful in modeling impulse
phenomena such as a large force applied over a very small time step such as occurs
with the strike of a hammer.

Oftentimes the Dirac delta function is defined by the condition∫
f(x)δ(x− a) dx = f(a) (7.1)

because the Dirac delta function δ(x − a) is zero every except at x = a. This
property (7.1) allows us to see the result if we choose the Dirac delta function as
the weighting function. For the MWR method we have∫

Ω

RWi dΩ = 0 i = 1, 2, . . . , n .

The choice of the weighting function as the Dirac delta function forces the integral
to zero at a set of discrete points xi, i = 1, 2, . . . , n. The choice of the xi is
dependent on the problem. Substitution of Wi = δ(x−xi) into the MWR equation
for one dimension gives∫

Ω

R(x)δ(x− xi) dx = 0⇒ R(xi) = 0 i = 1, 2, 3, . . . , n .

In higher dimensions x and xi are just vectors. Thus the Collocation Method sets
the residual to zero at a set of finite points xi. Of course the choice of the points
is critical but we will not go into that here.
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Example 7.3. We return to our example and solve it using the Dirac delta
function as the weighting function. Recall that after satisfying the boundary
conditions we had only one unknown c so the equation we have to impose is∫ 1

0

[
c
(
− 2− x+ x2) + 1− x+ 3e2x + xe2

]
W1 dx = 0 .

Because we only have one unknown we only need one collocation point. The
domain is [0, 1] so an obvious choice is to choose the midpoint x1 = 0.5. Thus
we choose W1 = δ(x− 0.5) so we set the residual to zero at x = 0.5. Recall that

R(x) = c
(
− 2− x+ x2) + 1− x+ 3e2x + xe2 = 0

so evaluating R(x) at x1 = 0.5 and setting it to zero gives

R(0.5) = c
(
−2−0.5+0.25)+1−0.5+3e1+0.5e2 = 0⇒ 1.75c = 12.3494⇒ c = 7.05678

Thus the quadratic polynomial is 1− 8.05678x+ 7.05678x2. The exact solution
and the result from the Collocation method is plotted in Figure 7.2.

Collocation
approximation ->

<- exact solution
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Figure 7.2: Comparison of the exact solution u(x) = e2x − xe2 for the BVP in the
example of this chapter with its MWR approximation uh = 1−8.05678x+7.05678x2

where the weighting function is chosen by the collocation approach by setting the
residual to be zero at specific points; in this case a single point is used and is chosen
to be the midpoint of the domain.

7.4 Galerkin Methods

Galerkin Methods may be the most popular of all MWR methods. They make the
simple choice of the basis functions φi as the weight functions. One can view them
as a modification to the Least Squares approach where the weighting function is
the derivative of the residual with respect to the variables. Instead of differentiating
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the residual, Galerkin methods differentiate the approximating function uh. Recall
that

uh =

n∑
i=1

ciφi

so differentiating with respect to each ci gives

Wi =
∂uh

∂ci
= φi

which is just the basis function.

Example 7.4. We return to our example and solve it using a combination of
the basis functions φi as the weighting functions. Recall that after satisfying
the boundary conditions we had only one unknown c so the equation we have
to impose is∫ 1

0

[
c
(
− 2− x+ x2) + 1− x+ 3e2x + xe2

]
W1 dx = 0 .

Our unknown is uh = 1−(1+c)x+cx2 (after satisfying the boundary conditions)
so differentiating with respect to c gives

W1 = −x+ x2 .

Substituting into the integral gives∫ 1

0

[
c
(
− 2− x+ x2) + 1− x+ 3e2x + xe2

][
− x+ x2

]
dx = 0 .

Again we expand the terms in the integrand and integrate from zero to one. We
have∫ 1

0

[
c
(
2x− x2 − 2x3 + x4

)
+
(
− x+ 2x2 − x3 + e2x(−3x+ 3x2) + e2(−x2 + x3)

)
= 0

⇒ c(0.366667)− 2.19909 = 0⇒ c = 5.99751

so the approximate solution uh is given by

uh = 1− 6.99751x+ 5.99751x2 .

A comparison of the exact solution and the Galerkin approximation is given in
Figure 7.3.

7.5 Summary

Although the example we did in this chapter used polynomials as our approximating
functions, keep in mind that there are many other choices. For example, we can
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Galerkin
approximation ->

<- exact solution

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

Figure 7.3: Comparison of the exact solution u(x) = e2x − xe2 for the BVP given
in the example of this chapter with its MWR approximation uh = 1− 6.99751x+
5.99751x2 where the weighting function is chosen by the Galerkin approach.

use polynomials, sines and cosines, rational functions, wavelets, etc. Once we use
these approximating functions our problem becomes discrete because we choose an
approximating space that is finite dimensional and so we have a basis {φi}ni=1 of
size n and the goal is to find the coefficients of the expansion of our unknown in
terms of these basis functions, i.e., uh =

∑n
i=1 ciφi. We know that for a finite

dimensional space like Rn or the space of all polynomials of degree less than n
there are an infinite number of choices for the basis. Using one choice of a basis
or another will not change the answer but it may make the computations easier.
When we solve a BVP we know that we have to solve a linear system Ax = b
so the choice of basis can affect the structure of the matrix, e.g., the bandwidth.
Consequently choosing an appropriate basis will be an integral part of making the
method efficient and competitive with the FD method.

In the remainder of this section we discuss a weak formulation of the problem
which is the starting point for many methods such as the FEM. We compare its
solution with that of solving ∫

Ω

R(x)Wi dΩ = 0

and discuss reasons for using this alternate formulation. Then we introduce some
additional terminology which is commonly used.

7.5.1 Weak formulation

Many methods, such as the FEM, Spectral-Galerkin methods, Wavelet-Galerkin
methods, etc. do not solve the equation∫

Ω

R(x)Wi(x) dΩ = 0

but rather solve a weak orvariational form of the equation. This alternate form is
found by integrating the equation by parts in one dimension or the equivalent in
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higher dimensions to balance the derivatives. For example, suppose that we have a
homogeneous Dirichlet BVP with −u′′(x) = f(x) on [0, 1] and our weight function
is chosen by Galerkin’s method so that Wi = φi where uh =

∑n
i=1 ciφ(x). Then

we have the equation ∫ 1

0

[
− d2uh

dx2
− f(x)

]
φi(x) dx = 0

or

−
∫ 1

0

d2uh

dx2
φi(x) dx =

∫ 1

0

f(x)φi(x) dx .

In this equation we must take two derivatives of uh(x) and none on the weight func-
tion φi(x). This is called the “strong” formulation; to get the “weak” formulation
we integrate the term involving uh by parts to balance the derivatives, i.e., to have
one derivative on uh and one on φi. Integrating by parts gives the weak problem∫ 1

0

duh

dx

dφi
dx

dx−
[
(uh)′(1)φi(1)−(uh)′(0)φi(0)

]
=

∫ 1

0

f(x)φi(x) dx i = 1, 2, . . . , n .

(7.2)
The boundary terms will disappear if we require φi(x) to satisfy the homogeneous
Dirichlet boundary conditions for this problem.

Are the solutions to the strong and weak problems identical? Clearly, in our case
if uh satisfies the strong equation then it satisfies the weak equation because all we
did is integrate by parts. However, the converse may not always hold. Why is this?
The weak problem only requires that uh possess one derivative whereas the strong
problem requires it to have two derivatives. So you could imagine a weak problem
whose solution has one derivative but not two so that the integration by parts step
can not be reversed. Hence the name “weak” because we are imposing weaker
conditions on the unknown. However, in the majority of problems we will consider
the solution to the weak problem and the strong problem will coincide. One of the
reasons for working with a weak problem is that the approximating space span{φi}
is much easier to construct if only one derivative is imposed. Another advantage
of using the weak formulation is that it is trivial to impose Neumann boundary
conditions. For example, if we have a Neumann condition like u′(0) = 4 then we
simply substitute this into the weak form (7.2) and it becomes a known value and
moves to the right hand side. Contrast this with the FDM where we had to set up
fictitious points on the boundary.

We introduce some terminology that is prevalent when using the Galerkin method.
Remember that we seek an approximation uh which we write as uh =

∑n
i=1 φi(x)

for our basis {φi}ni=1 so we “try” our solution as a linear combination of the basis
vectors. In this case the φi are called trial functions. On the other hand, our
equation (7.2) has to hold for each Wi = φi(x), i = 1, 2, . . . , n so we say that we
“test” the equation against each Wi. These are called test functions.

Example 7.5. We end this chapter by returning to our example and comparing
the results from the three methods. First the solutions are plotted in Figure 7.4
and in Table 7.1 we compare pointwise errors. Finally Figure 7.5 plots the errors
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for each method. Note that the error for the Collocation Method is smallest at
x = 0.5 which is expected because that was the collocation point we chose.

x Exact Collocation Galerkin Least Squares
0.0 1.0 1.0 1.0 1.0
0.1 0.482497 0.26489 0.360225 0.330217
0.2 0.0140135 -0.329085 -0.1596 -0.212948
0.3 -0.394598 -0.781924 -0.559475 -0.629494
0.4 -0.730082 -1.09363 -0.8394 -0.919422
0.5 -0.976246 -1.2642 -0.999375 -1.08273
0.6 -1.11332 -1.29363 -1.0394 -1.11942
0.7 -1.11714 -1.18192 -0.959475 -1.0295
0.8 -0.958212 -0.929085 -0.7596 -0.81295
0.9 -0.600503 -0.53511 -0.439775 -0.469786
1. 0.0 0.0 0.0 0.0

Table 7.1: Pointwise comparison of solutions for the Least Squares, Galerkin and
Collocation approximations for our example.

Galerkin
approximation ->

Collocation
Approximation ->

Least Squares
Approximation ->

<- exact solution
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Figure 7.4: Comparison of the approximate solutions for the BVP given in the
example of this chapter using Least Squares, Galerkin, and Collocation approxima-
tions.
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<- Least Squares
    Approximation

<- Galerkin
   Approximation

Collocation   ->
Approximation
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Figure 7.5: Comparison of the pointwise errors (not normalized) for the BVP
given in Example ?? with its Least Squares, Galerkin, and Collocation approx-
imations.



Chapter 8
The Finite Element Method in 1D

The finite element method (FEM) is a method for approximating the solution of
differential equations; it has gained widespread use in a diverse range of areas such
as fluid mechanics, structural mechanics, biological science, chemistry, electromag-
netism, financial modeling, and superconductivity, to name a few. One can find
articles where finite element methods have been employed to study everything from
stress analysis of a human tooth to design of an airplane wing.

Although the foundations for the finite element method were laid in the first
half of the twentieth century, it did not become widely used until much later.
Structural engineers were the first to use the technique in the 1940’s and 1950’s;
mathematicians became interested in analyzing and implementing the method in
the late 1960’s. The first symposium on the mathematical foundations of the
finite element method was held in June of 1972 with over 250 participants. Prior
to this symposium there had already been numerous national and international
conferences held on the finite element method but mainly with an emphasis on
engineering applications. In the following decades the finite element method has
grown in popularity as a useful tool in design and application as well as a fertile
area for mathematical analysis.

The FEM is a Galerkin method where the choice of weighting function in the
Mean Weighted Residual approach is the same as the trial function or basis. Finite
element methods are a class of methods for obtaining approximate solutions of
differential equations, especially partial differential equations.1 As such, they can
be compared to other methods that are used for this purpose, e.g., finite difference
methods, finite volume methods or spectral methods. There are seemingly countless
finite element methods in use, so that one cannot refer to any method as the finite
element method any more that one can refer to any particular method as being the
finite difference method. In fact, there are numerous subclasses of finite element

1Finite element methods were not always thought of in this manner, at least in the struc-
tural mechanics community. In an alternate definition, structural systems are directly dis-
cretized into approximate submembers such as beams, plates, shells, etc., without any recourse
to differential equations. These submembers are then called “finite elements.”

158
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methods, each saddled with a modifier, e.g., Galerkin-Petrov , mixed , or collocation
finite element methods.

The finite element method is distinguished from other approaches to approx-
imating differential equations by two key factors - the use of a weak formulation
and the use of piecewise polynomial approximation. Piecewise polynomial approxi-
mation is very attractive due to the ease of use, its approximation properties, and
the availability of bases which are locally supported; that is, bases that are nonzero
over a small portion of the domain.

Although the principal use of finite element methods is for approximating so-
lutions to partial differential equations, it is instructive to look at one-dimensional
problems for their simplicity and ease of understanding. In addition, when we ap-
proximate PDEs using rectangular elements, then we take tensor products of one-
dimensional elements. The goal of this chapter is to investigate the FEM for a
two-point BVP.

8.1 A Simple Example

In order to begin to understand the basic idea of the finite element method and
the steps involved, we define a finite element method for the very simple two-point
boundary value problem

−u′′(x) = f(x) 0 < x < 1 , (8.1a)

u(0) = 0 , (8.1b)

and
u′(1) = 0 . (8.1c)

The finite element approximation uh(x) to the solution u(x) of (8.1) is defined to
be the solution of the following problem:

find uh(x) ∈ V h such that

∫ 1

0

(uh)′(vh)′ dx =

∫ 1

0

fvh dx ∀vh ∈ V h , (8.2)

where V h is a finite dimensional space of functions2 that vanish at x = 0 and are
sufficiently smooth. Actually, Problem 8.2 defines a finite element method only if
the approximating space V h is chosen to consist of piecewise polynomial functions.
This choice of approximating functions, along with a judicious choice of basis for
V h, are primarily responsible for the success of the finite element method as a
computational method.

We now ask ourselves what (8.2) has to do with the original problem (8.1).
Recall that for the MWR method we force the residual to zero over the domain
and test it against a weight function; in the Galerkin method the weight function is

2Recall that a finite dimensional function space is characterized by the fact that a basis of
size m < ∞ can be chosen.
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chosen the same as the basis which in the finite element case consists of piecewise
polynomials. So we have

−
∫ 1

0

d2uh

dx2
vh dx−

∫ 1

0

fvh dx = 0

where vh is our weighting function. We want to integrate the first integral by parts
to balance the derivatives; recall that the integration by parts formula is∫ b

a

w dz = w(b)z(b)− w(a)z(a)−
∫ b

a

z dw

so if we let w = −vh and dz = (uh)′′dx then we have

−
∫ 1

0

d2uh

dx2
vh dx =

∫ 1

0

(uh)′(vh)′ dx−(uh)′(1)vh(1)+(uh)′(0)vh(0) =

∫ 1

0

fvh dx .

Now we said that V h was a space of piecewise polynomials that are zero at x = 0
so vh(0) = 0 and that term disappears. The other term also disappears because the
boundary condition u′(1) = 0 should also be satisfied by the approximating function
uh. Consequently we are left with (8.2).

However, most FEM books or papers don’t refer to the weighted residual method.
Instead they view (8.2) as an approximation to the following problem:

find u(x) such that u(0) = 0 and∫ 1

0

u′v′ dx =

∫ 1

0

fv dx ∀v ∈ V ,
(8.3)

where for each v ∈ V , v(0) = 0 and v is “sufficiently smooth”. Note that this is
posed over an infinite dimensional space V , i.e., there is no basis for V . Of course
(8.3) is not the original BVP we started with but rather a weak form of it. To
obtain the weak form of the BVP we typically multiply the differential equation by
a test function (or weighting function) which we require to satisfy any homogeneous
Dirichlet boundary conditions and integrate over the domain. We then balance the
derivatives by integrating by parts in one dimension or in higher dimensions we use
an analogous approach. Neumann boundary conditions are typically satisfied by the
weak form. For example, for our BVP we have

−u′′v = fv ⇒ −
∫ 1

0

u′′v dx =

∫ 1

0

fv dx

and integrating by parts yields∫ 1

0

u′v′ dx− u′(1)v(1) + u′(0)v(0) =

∫ 1

0

fv dx .

Now requiring v(0) = 0 makes the term u(0)v(0) disappear and imposing the
boundary condition u′(1) = 0 makes the term u′(1)v(1) disappear so we are left
with the continuous weak problem (8.3). We can reverse the steps if u is sufficiently
smooth, i.e., it possesses two derivatives. However, the weak problem only requires
one derivative on u(x).
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8.1.1 Some Terminology

Let us now introduce some terminology that is used in the FEM. We call u(x) a
classical solution of (8.1) if, upon substitution into these relations, equality holds
at every point x ∈ (0, 1). We call solutions of (8.3) that are not classical solutions
of (8.1) weak solutions of the latter problem and (8.3) itself is referred to as a
weak formulation of (8.1). Analogously, problem (8.2) is termed a discrete weak
problem because it is posed over a finite dimensional space which means the space
has a basis so we have a discrete problem. For most problems we will consider, the
classical solution and the weak solution will coincide.

The functions vh and uh in (8.2) are called test and trial functions, respectively.
The same terminology is used for the corresponding functions v and u appearing
in (8.3). Where do these names come from? Suppose someone gave us a function
uh(x) and claimed that it was a solution of the discrete weak problem (8.2). To
verify the claim, we would put the function uh(x) on “trial,” i.e., we would determine
if substituting it into (8.2) results in the left-hand side equal to the right-hand side
for all possible test functions vh(x) ∈ V h.

The Dirichlet boundary condition (8.1b) and the Neumann boundary condition
(8.1c) are treated differently within the framework of the weak formulation (8.3)
or its approximation (8.2). First, we note that the Neumann boundary condition
(8.1c) is not imposed on the test or trial functions; however, we saw that if u(x)
satisfies the weak problem (8.3), then this Neumann boundary condition is indeed
satisfied. Such boundary conditions, i.e., boundary conditions that are not required
of the trial functions but are satisfied “naturally” by the weak formulation, are
called natural boundary conditions. On the other hand, nothing in the process
we used to go from the weak problem (8.3) to the classical problem (8.1) implied
that the Dirichlet boundary condition (8.1b) was satisfied. For this reason, we
imposed the boundary condition as a constraint on the possible trial functions.
Such boundary conditions are called essential boundary conditions. Note that for
the discrete problem, the approximate solution uh(x) satisfies (by construction)
the essential boundary condition (8.1b) exactly, but the natural boundary condition
(8.1c) is only satisfied in a weak sense. This will be explored in the examples.

8.1.2 Polynomial Approximation

The two main components of the FEM are its variational principles which take
the form of weak problems and the use of piecewise polynomial approximation. In
our example we use the discrete weak or variational formulation (8.2) to define a
finite element method but we have not used piecewise polynomials yet. In this
example we choose the simple case of approximating with continuous piecewise
linear polynomials; that is, a polynomial which is linear when restricted to each
subdivision of the domain. To define these piecewise polynomials, we first discretize
the domain [0, 1] by letting N be a positive integer and setting the grid points or
nodes {xj}Nj=0 so that 0 = x0 < x1 < x2 < · · · < xN−1 < xN = 1. Consequently
we have N + 1 nodes and N elements. These nodes serve to define a partition of
the interval [0, 1] into the subintervals Ti = [xi−1, xi], i = 1, . . . , N . For now we
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will take the grid to be uniform but we will see that we can easily modify the process
to include nonuniform grids. The subintervals Ti are the simplest examples of finite
elements. We choose the finite dimensional space V h in (8.2) to be the space of
continuous piecewise linear polynomials over this partition of the given interval so
that each vh is a continuous piecewise linear polynomial. This means that when
we look at vh in an element Ti it is a linear polynomial and it is continuous across
elements. In Figure 8.1 we plot a function which is a continuous piecewise linear
function defined over a uniform partition of [0, 1] using seven grid points and which
is zero at x = 0.

x0 x1 x2 x3 x4 x5 x6
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Figure 8.1: Example of a continuous piecewise linear function in V h defined over
the partition {xi}60 of [0, 1].

8.1.3 How do you implement finite element methods?

We now translate the finite element method defined by (8.2) into something closer to
what a computer can understand. To do this, we first show that (8.2) is equivalent
to a linear algebraic system once a basis for V h is chosen. Next we indicate how
the entries in the matrix equation can be evaluated.

Let {φi(x)}Ni=1 be a basis for V h, i.e., a set of linearly independent functions
such that any function belonging to V h can be expressed as a linear combination of
these basis functions. The dimension of V h is N which we will demonstrate later if
we define V h to be all continuous piecewise polynomials defined over our partition
of [0, 1] which are zero at x = 0. Thus, the set {φi(x)}|Ni=1 has the property that
it is linearly independent, i.e.,

N∑
i=1

αiφi(x) = 0 implies αi = 0 for i = 1, . . . , N

and it spans the space. That is, for each wh ∈ V h there exists real numbers wi,
i = 1, . . . , N , such that

wh(x) =

N∑
i=1

ωiφi(x) .
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In the weak problem (8.2), the solution uh(x) belongs to V h and the test function

vh(x) is arbitrary in V h. Since the set spans V h we can set uh =
∑N
j=1 µjφj and

then express (8.2) in the following equivalent form: find µj ∈ R1, j = 1, . . . , N ,
such that∫ 1

0

d

dx

 N∑
j=1

µjφj(x)

 d

dx

(
vh
)
dx =

∫ 1

0

f(x)vh dx ∀vh ∈ V h

or equivalently

N∑
j=1

µj

∫ 1

0

φ′j(x)(vh)′ dx =

∫ 1

0

f(x)vh dx ∀vh ∈ V h .

Now this equation must hold for each function vh ∈ V h. We claim that it is enough
to test the equation for each element in the basis; that is,

N∑
j=1

µj

∫ 1

0

φ′j(x)φ′i(x) dx =

∫ 1

0

f(x)φi(x) dx for i = 1, . . . , N .

To see this, let vh ∈ V h where vh is arbitrary; it can be written as vh = ν1φ1 +
· · · νnφN because the φi(x) form a basis for V h. We substitute this vh into our
weak formulation (8.2) to get∫ 1

0

duh

dx

[
ν1
dφ1

dx
+ · · ·+ νN

dφN
dx

]
dx =

∫ 1

0

f(x)
[
ν1φ1 + · · ·+ νNφN

]
dx

which can be written as

ν1

∫ 1

0

duh

dx

dφ1

dx
dx+· · ·+νN

∫ 1

0

duh

dx

dφN
dx

dx = ν1

∫ 1

0

f(x)φ1 dx+· · ·+νN
∫ 1

0

f(x)φN dx .

On the other hand, the weak formulation has to hold for each vh = φi so when we
choose vh to be each basis function we have∫ 1

0

duh

dx

dφ1

dx
dx =

∫ 1

0

f(x)φ1 dx · · ·
∫ 1

0

duh

dx

dφN
dx

dx =

∫ 1

0

f(x)φN dx .

If we multiply the first equation by ν1, the second by ν2, etc. and add the equations
then we get the previous result; consequently requiring the weak formulation to
hold for each φi means it holds for any vh = ν1φ1 + · · · νnφN . Using this fact, the
discrete problem is rewritten as

find µj , j = 1, . . . , N , such that

N∑
j=1

µj

(∫ 1

0

φ′i(x)φ′j(x)

)
dx =

∫ 1

0

fφi(x) dx for i = 1, . . . , N .

(8.4)
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Clearly (8.4) is a linear algebraic system of N equations in N unknowns. Indeed, if
the entries of the matrix K and the vectors U and b are defined by

Kij =

∫ 1

0

φ′i(x)φ′j(x) dx , Uj = µj , and bi =

∫ 1

0

f(x)φi dx

for i, j = 1, . . . , N then, in matrix notation, (8.4) is given by

KU = b . (8.5)

However, we have not yet completely formulated our problem so that it can be
implemented on a computer. We first need to choose a particular basis and then the
integrals appearing in the definition of K and b must be evaluated or approximated.
Clearly there are many choices for a basis for the space of continuous piecewise linear
functions defined over our subdivision of [0, 1]. We will see that a judicious choice
of the basis set will result in (8.5) being a tridiagonal system of equations and thus
one which can be solved efficiently in O(N) operations. Recall that using a second
centered difference quotient for u′′(x) resulted in a tridiagonal system so the two
system would require equivalent work to solve.

For now, let’s assume that we have chosen a specific basis and turn to the
problem of evaluating or approximating the integrals appearing in K and b. For a
simple problem like ours we can often determine the integrals exactly; however, for
a problem with variable coefficients or one defined on a general polygonal domain
in R2 or R3 this would not be practical. Even if we have software available that can
perform the integrations, this would not lead to an efficient implementation of the
finite element method. Thus to obtain a general procedure which would be viable
for a wide range of problems, we approximate the integrals by a quadrature rule.
For example, for the particular implementation we are developing here, we use the
midpoint rule in each element to define a composite rule. Recall that the midpoint
rule on a generic interval [xk−1, xk] is∫ xk

xk−1

g(x) dx ≈ (xk − xk−1)g
(xk−1 + xk

2

)
and the composition rule on [0, 1] is found by applying this rule over each subinterval
to get ∫ 1

0

g(x) dx =

N∑
k=1

∫ xk

xk−1

g(x) dx ≈
N∑
k=1

g

(
xk−1 + xk

2

)
(xk − xk−1) .

Using this rule for the integrals that appear in (8.5), we are led to the problem

KhUh = bh , (8.6)

where the superscript h on the matrix K and the vector b denotes the fact that we
have approximated the entries of K and b by using a quadrature rule to evaluate
the integrals. The entries of Kh, and bh are given explicitly by

Kh
ij =

N∑
k=1

(xk − xk−1)φ′i

(
xk−1 + xk

2

)
φ′j

(
xk−1 + xk

2

)
, for i, j = 1, . . . , N
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and

bhi =

N∑
k=1

(xk − xk−1)f

(
xk−1 + xk

2

)
φi

(
xk−1 + xk

2

)
, for i = 1, . . . , N .

In our example, Kh = K. To see this, recall that we have chosen V h as the
space of continuous piecewise linear functions on our partition of [0, 1] and thus
the integrands in K are constant on each element Ti. The midpoint rule integrates
constant functions exactly so even though we are implementing a quadrature rule,
we have performed the integrations exactly. However, in general, bh 6= b so that
Uh 6= U. In the sequel we will not include the superscript h on our matrices but
keep in mind that we will be typically making an approximation to the entries of the
matrix because of numerical quadrature. As long as we choose a quadrature rule
that is sufficiently accurate for our choice of basis, then the error in the quadrature
rule will not dominate the error made by our choice of basis.

Once the specific choice of a basis set for V h is made, the matrix problem (8.6)
can be directly implemented on a computer. A standard linear systems solver can
be used to obtain U and should be chosen based upon the structure and properties
of K .

There are an infinite number of possible basis sets for our space V h. For exam-
ple, for R3 we can choose {(1, 1, 1)T , (1, 0, 1)T , (0, 5, 0)T } or {(7, 1, 7)T ,(0, 2, 1)T ,
(4,−4, 1)T } but a more common choice is the set {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T }
because it is much easier to write a vector in R3 as a linear combination of these
vectors. Of course this is because each vector is zero in all but one component.
So we want to choose basis functions for the space of continuous piecewise linear
functions on our partition of [0, 1] which have an analogous property. If the basis
functions are nonzero over the whole interval (0, 1), then, in general, the resulting
discrete systems such as (8.5) or (8.6) will involve full matrices, i.e., matrices hav-
ing possibly all nonzero entries. In this case we say the basis functions have global
support.

In order to achieve maximum sparsity in the discrete systems such as (8.5) or
(8.6), the basis functions should be chosen to have local support, i.e., to be nonzero
on as small a portion of the domain as possible. In the one dimensional case we have
considered here, the basis functions should be nonzero over as small a number of
subintervals as possible. Such a basis set is provided by the “hat” functions defined
by

for i = 1, . . . , N , φi(x) =



x− xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi

xi+1 − x
xi+1 − xi

for xi ≤ x ≤ xi+1

0 otherwise

(8.7)
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and

φN (x) =


x− xN−1

xN − xN−1
for xN−1 ≤ x ≤ xN

0 otherwise.

(8.8)

A sketch of these functions for the case N = 4 on a uniform partition of [0, 1] is
given in Figure 8.2. Note that for all i = 1, . . . , N , φi(0) = 0, φi(x) is continuous
on [0, 1], is a linear polynomial on each subinterval [xj−1, xj ], j = 1, . . . , N , and
φi(x) is nonzero only in [xi−1, xi+1]. It can be shown that the set {φi(x)}Ni=1 given
by (8.7) and (8.8) is linearly independent and forms a basis for the space V h.

x0 x1 x2 x3 x4

�
��@

@@

φ1(x)

x0 x1 x2 x3 x4

�
��@

@@

φ2(x)

x0 x1 x2 x3 x4

�
��@

@@

φ3(x)

x0 x1 x2 x3 x4

�
��

φ4(x)

Figure 8.2: Example of the hat basis functions for V h for a subdivision of [0, 1]
using four uniform elements. All basis functions are zero at x = 0 and have a
maximum height of one.

Now let’s examine the entries of the matrices K and Kh appearing in the linear
systems (8.5) or (8.6), respectively, for the basis functions defined in (8.7) and
(8.8). It is easy to see that Kij = 0 unless |i − j| ≤ 1. Thus, for any number
of elements N , these matrices have nonzero entries only along the main diagonal
and the first upper and lower subdiagonals, i.e., they are tridiagonal matrices. This
is the optimal sparsity achievable with piecewise linear finite elements and is the
same structure that we got when we solved the same BVP using a second centered
difference approximation. When we delve into the method more we will explicitly
determine the entries in the matrix.

8.1.4 A comparison with finite difference methods

Like finite difference methods, particular finite element methods are ultimately de-
fined based on a grid, i.e., a partition of a given domain in Euclidian space into
subdomains. More often than not, the grid itself is defined by selecting a finite
number of points in the given domain. Thus, both classes of methods may be
thought of as grid-based methods.

What separates the two classes of methods? We can immediately point out one
difference, albeit a somewhat philosophical one, between finite difference and finite
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element methods. The finite difference method is derived primarily by approximating
operators, i.e., derivatives. On the other hand, the primary approximation step in
deriving the FEM (8.2) was to replace the solution u in (8.3) by an approximation
uh, i.e., by approximating the solution.

Finite element methods possess many desirable properties that account for their
popularity in a variety of settings. Some of these we have already encountered. For
example, within the finite element framework, natural boundary conditions such as
(8.1c) are very easily enforced. Also there is no difficulty in treating problems with
nonuniform grids. A third advantage that we have alluded to is that, due to being
able to introduce sophisticated function theoretic machinery, finite element methods
can be “easily” analyzed with complete rigor. All three of these are thought of as
posing difficulties within the finite difference framework.

There are other good features inherent in finite element methodologies. Perhaps
the most important one is the ability of the FEM to “easily” treat problems in
complicated, e.g., non-rectangular, domains.3 Another good feature is that finite
element methods preserve certain symmetry and positivity properties possessed by
problems such as (8.1). In particular, in this case, the matrix K appearing in (8.5)
is symmetric and positive definite.

A final desirable feature of finite element methods is that, when they are properly
implemented, they lead to sparse discrete problems. This spasity property is crucial
to the efficiency of the method and results from a judicious choice for the basis set
{φi(x)}Ni=1 for the finite element space V h.

Which method is best? Unfortunately, there is no best method for all problems.
Which method is best, be it of the finite difference, finite element, finite volume,
spectral, etc., depends on the class of problems under consideration or, often, on the
specific problem itself. It is not even possible to say that one finite element method
is better than another one in all settings. In order to determine which method is
best (or even good) for a given problem, one must understand its definition, imple-
mentation, and analysis. The purpose of studying different methods is to obtain the
tools, knowledge, and experience so that rational comparisons and decisions can be
made.

8.2 Two point boundary value problems

We now want to look at the FEM in more detail for our prototype BVP in one
dimension. We will begin by defining an appropriate continuous weak formulation
and show that for sufficiently smooth solutions the classical and weak solutions
coincide. Then we discuss the finite element approximation using different choices
of approximating polynomials, investigate the resulting matrix equations, and de-
termine error estimates. In addition, we provide computational results for several
examples.

Before taking a closer look at the FEM we want to define the space of functions
defined on a domain Ω called L2(Ω). This linear (vector) space and an associated

3Of course, since we have only looked at problems in one dimension, we have not yet been
exposed to such domains.
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norm is used throughout the discussion of the FEM. Recall that when we computed
an error using finite differences, we had a vector containing the difference in the
approximate and exact solution at each node. Then we used a vector norm such
as the `2 norm, i.e., the standard Euclidean norm, to measure the error. In the
case of the FEM our approximation uh is a continuous function because it is a
linear combination of continuous piecewise polynomials. So in this case we don’t
measure the error in the `2 vector norm; instead we use the analogue for continuous
functions. We define L2(Ω) as the space of all square integrable functions 4

L2(Ω) ≡ {v ∈ C0(Ω) |
∫

Ω

v2 dΩ <∞} (8.9)

and the associated norm

‖v‖2 =
[ ∫

Ω

v2 dΩ
]1/2

. (8.10)

In words we say that L2(Ω) consists of all continuous functions on Ω which are
square integrable, i.e., the integral of the square of the function is finite. It is
important to realize the similarity between the standard Euclidean norm and the L2

norm defined here. We have replaced the sum with an integral and instead of taking
the dot product of a vector with itself we simply square the function. Note also that
we have used the same notation ‖·‖2 for both the `2 and L2 norms; the particular
norm we are using should be clear from the context. When we talk about finite
element approximations we will always use the L2 norm and for the finite difference
method we will always use the `2 norm.

8.2.1 A two-point BVP with homogeneous Dirichlet boundary
data

We begin by returning to our prototype two-point boundary value problem on [0, 1];
specifically we seek a function u(x) satisfying

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) for 0 < x < 1

u(0) = 0
u(1) = 0 ,

(8.11)

where p(x), q(x), and f(x) are given functions defined on [0, 1]. As before, we
assume that 0 < pmin ≤ p(x) ≤ pmax and qmin = 0 ≤ q(x) ≤ qmax where pmin,
pmax, and qmin are positive constants and f ∈ L2(0, 1). The solution u to problem
(8.11) is the classical solution. We are interested in a weak solution of (8.11);
i.e., in a function u(x) that satisfies (8.11) in some sense even when f, p, q are
not continuous; if f, p, q are sufficiently smooth then we want the weak solution to
coincide with the classical solution.

4The rigorous definition of L2 is that it is the completion of the space we defined, i.e.,
the limit of every Cauchy sequence is added to this space; specifically it is a complete inner
product space which we call a Hilbert space. We will not be proving results which require this
precise definition so we will be a bit less rigorous here.
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8.2.2 Weak formulation

In choosing the underlying function space for our weak formulation of (8.11), we
know that multiplication of the differential equation by an appropriate test function,
integrating over the domain and then integrating by parts to balance the order of
the derivatives results in both the test and trial functions having one derivative.
Consequently we require our solution to be integrable and to possess at least one
derivative. In addition, we constrain our space so that we only consider functions
which satisfy the homogeneous Dirichlet boundary conditions. We call V0 to be the
function space5 in which we seek a solution u(x) and the space of test functions.
The weak problem is stated as:{ seek u ∈ V0 satisfying∫ 1

0
p(x)u′(x)v′(x) dx+

∫ 1

0
q(x)u(x)v(x) dx =

∫ 1

0
fv dx ∀v ∈ V0 .

(8.12)
Note that if u is the classical solution of (8.11) then u(x) also satisfies the weak

problem because for v ∈ V0∫ 1

0

fv dx =

∫ 1

0

(
−(pu′)′ + qu

)
v dx

=

∫ 1

0

pu′v′ dx+

∫ 1

0

quv dx−
[
pu′v

] ∣∣1
0

=

∫ 1

0

pu′v′ dx+

∫ 1

0

quv dx

because v is zero at x = 0 and x = 1. Conversely, if u ∈ V0 satisfies (8.12) and u
is sufficiently smooth, i.e., u ∈ C2(0, 1), a situation which can be guaranteed if p, q
and f are themselves sufficiently smooth, then u coincides with the classical solution
of (8.11). To see this, note that the homogeneous Dirichlet boundary conditions are
satisfied because u ∈ V0; the differential equation holds because the weak problem
implies ∫ 1

0

pu′v′ dx+

∫ 1

0

quv dx−
∫ 1

0

fv dx = 0

and thus integrating by parts gives∫ 1

0

[
(−pu′)′ + qu− f

]
v dx = 0 ∀v ∈ V0

which has to hold for every v ∈ V0 and so the only way this integral is zero is
if (−pu′)′ + qu − f = 0. Recall that if we can find a function u ∈ V0 which is
the unique solution of (8.12), then we call u the weak solution of (8.11) in V0. In
this problem we constrained our function space to consist of functions which satisfy
the homogenous Dirichlet boundary conditions. We recall that boundary conditions
which are satisfied by constraining the trial space are called essential .

5The appropriate function space is a Hilbert space called a Sobolev space but we will not
get into the mathematical details here.
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Because the solution of the weak problem may not be a solution of the classical
problem, one needs to demonstrate that the solution of the weak problem exists and
is unique. The result that givens conditions for existence and uniqueness is called
the Lax-Milgram theorem but we will not investigate it here. The interested reader
is referred to a standard text in the FEM. For our exposition, we will assume that
the weak problem has a unique solution.

8.2.3 Approximation using piecewise linear polynomials

We now turn to approximating u, the solution of the weak problem (8.12), by
its Galerkin approximation uh in a finite dimensional subspace V h0 of V0. The
approximate solution is required to satisfy (8.12) but only for all vh ∈ V h0 ; the
discrete weak problem is{ seek uh ∈ V h0 satisfying∫ 1

0
p(x)(uh)′(x)(vh)′(x) dx+

∫ 1

0
q(x)vh(x)wh(x) dx =

∫ 1

0
fvh dx ∀vh ∈ V h0 .

(8.13)
Because V h0 ⊂ V h the conditions that guaranteed a unique solution to the con-
tinuous weak problem are automatically satisfied on V h0 so we are guaranteed that
there exists a unique uh ∈ V h0 which satisfies (8.13).

To write the discrete weak problem as a linear system of equation we must choose
a specific basis. In this section we choose V h0 to be the space of continuous linear
piecewise polynomials defined on a partition of [0, 1] which satisify the homogeneous
Dirichlet boundary conditions; in a later section we will consider other choices of
V h0 . In particular, we consider the following partition of [0, 1]:

0 = x0 < x1 < · · · < xN+1 = 1 where xi = xi−1 + hi, 1 ≤ i ≤ N + 1 ,
(8.14)

and where hi, 1 ≤ i ≤ N + 1 are given numbers such that 0 < hi < 1 and∑N+1
i=1 hi = 1. We define h = max

1≤i≤N+1
hi; if hi = h for all i then we call the

subdivision uniform. Here we consider the general case and will demonstrate that
it is no more difficult to handle a nonuniform grid in finite elements. A continuous
piecewise linear function with respect to the given subdivision on [0, 1] is a function
φ(x) defined on [0, 1] which is linear on each subinterval i.e., φ(x) = αix + βi on
[xi, xi+1], 0 ≤ i ≤ N . Consequently φ(x) can be a different linear function on each
interval. To impose continuity we require that the constants αi, βi, i = 1, 2, . . . , N
defining φ(x) satisfy αi−1xi + βi−1 = αixi + βi, i = 1, . . . , N . In addition, for
φ(x) to be in V h0 it must be zero at x = 0 and x = 1. We define

V h0 = {φ(x) | φ ∈ C[0, 1],
φ(x) linear on [xi, xi+1] for 0 ≤ i ≤ N,φ(0) = φ(1) = 0} .

We want to choose a basis whose functions have as small support as possible
so that the resulting coefficient matrix is sparse; that is, they are nonzero over as
small a portion of the domain as possible and zero elsewhere. For 1 ≤ i ≤ N we
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consider again the “hat” functions

φi(x) =


x− xi−1

hi
for xi−1 ≤ x ≤ xi

xi+1 − x
hi+1

for xi ≤ x ≤ xi+1

0 elsewhere.

(8.15)

Clearly φi(x) ∈ V h0 for 1 ≤ i ≤ N . Moreover, we easily see that

φi(xj) =

{
1 if i = j
0 otherwise

(8.16)

for 1 ≤ i ≤ N and 0 ≤ j ≤ N + 1. We call this type of basis function a nodal
basis because it is one at a single node and zero at all other grid points.

The following proposition justifies our intuition that the functions defined in
(8.15) form a basis for V h0 .

Proposition 8.1. The functions {φi(x)}Ni=1 defined in (8.15) form a basis for V h0 .

Proof. We must show that {φi(x)}, i = 1, . . . , N are linearly independent and
span the space V h0 . To see that we have a linearly independent set, let ψ(x) =∑N
i=1 ciφi(x); we want to show that the only way ψ(x) = 0 for all x is if ci = 0

for i = 1, . . . , N . Using (8.16), we see that ψ(xi) = ci for 1 ≤ i ≤ N . Thus if
ψ(x) = 0 for all x we have that ci = 0 for i = 1, . . . , N ; in addition if ci = 0 for
all 1 ≤ i ≤ N then the nodal values of ψ are zero and since it is piecewise linear, it
is zero everywhere. Hence we conclude that the functions are linearly independent.
To show that the set spans V h0 we let ψ(x) be an arbitrary element of V h0 and show
that we can write ψ(x) as a linear combination of the φi(x), i = 1, . . . , N ; i.e.,

ψ(x) =
∑N
i=1 ciφi(x). But this can be done by letting ci = ψ(xi), i.e., setting ci

to be the nodal values of ψ.
Once we have chosen a basis for V h0 , the problem (8.13) reduces to solving a

system of N algebraic equations in N unknowns. Since uh ∈ V h0 , we let uh(x) =∑N
j=1 cjφj(x) and write (8.13) as

N∑
j=1

cj

∫ 1

0

p(x)φ′i(x)φ′j(x) dx+

N∑
j=1

cj

∫ 1

0

q(x)φi(x)φj(x) dx =

∫ 1

0

fφi dx

for 1 ≤ i ≤ N . Recall that previously we demonstrated that testing the equation
against each vh ∈ V h0 was equivalent to testing against each element of the basis
of V h0 . Then c = (c1, c2, . . . , cN )T satisfies the matrix system

Ac = b , (8.17)

where b =
(∫ 1

0
fφ1 dx,

∫ 1

0
fφ2 dx, . . . ,

∫ 1

0
fφN dx

)T
and A is the N ×N matrix

whose elements are given by

Aij =

∫ 1

0

pφ′jφ
′
i dx+

∫ 1

0

qφjφi dx
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or
Aij = Sij +Mij

with Sij =
∫ 1

0
pφ′jφ

′
i dx and Mij =

∫ 1

0
qφjφi dx. The matrix A is symmetric,

positive definite and tridiagonal. If p(x) = q(x) = 1 on [0, 1] and we use a uniform
mesh with continuous piecewise linear basis functions then the integrals can be
computed exactly; in this case the matrices S and M are explicitly given by

S =
1

h



2 −1 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 0 0
. . .

. . .
. . .

0 · · · 0 −1 2 −1
0 · · · 0 −1 2


(8.18)

and

M =
h

6



4 1 0 · · · 0
1 4 1 0 · · · 0
0 1 4 1 0 0

. . .
. . .

. . .

0 · · · 0 1 4 1
0 · · · 0 1 4


. (8.19)

Note that S is the same coefficient that we got when we discretized the equation
−u′′(x) = f using the second centered finite difference quotient if we multiply
through by h. In the case p = 1 the matrix S is called the stiffness matrix of the
basis {φi}Ni=1 while in the case q = 1, the matrix M is called the Gram matrix or
the mass matrix associated with the basis {φi}Ni=1.

8.2.4 Error estimates

We would like to bound the error between the solution u(x) of the weak problem
and uh(x) the solution of the discrete weak problem. However, the natural estimate
that comes out is a bound in the error in the derivatives u′(x) − (uh)′(x). Extra
work has to be done to estimate the error in the solution itself rather than the
derivative. In addition, the goal is to measure the error in terms of powers of h
because we have seen that this is useful. To do this we will need some results from
interpolation theory.

For simplicity of exposition let’s prove the error estimate for the case where
p(x) = 1 and q(x) = 0; this will just make the steps clearer. First recall that the
continuous weak problem∫ 1

0

u′(x)v′(x) dx =

∫ 1

0

fv(x) dx ∀v ∈ V0

holds for every v ∈ V0 and because vh ∈ V h0 ⊂ V0 the equation has to hold for
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every vh ∈ V h0 , i.e.,∫ 1

0

u′(x)(vh)′(x) dx =

∫ 1

0

fvh dx ∀vh ∈ V h0 .

The reason we write this equation like this is so that we can combine it with the
discrete weak problem∫ 1

0

(uh)′(x)(vh)′(x) dx =

∫ 1

0

fvh dx ∀vh ∈ V h0 .

Subtracting these two equations gives∫ 1

0

[
u′(x)− (uh)′(x)

]
(vh)′(x) dx = 0 ∀vh ∈ V h0 .

Note that u′(x)− (uh)′(x) is the error in the derivative of the solution so that this
equation says the derivative of the error E = u(x) − uh(x) is orthogonal to all
elements in V h0 in this sense, i.e.,∫ 1

0

[
u′(x)− (uh)′(x)

]
(vh)′(x) dx =

∫ 1

0

dE

dx

dvh

dx
dx = 0 ∀vh ∈ V h0 (8.20)

and thus it is called the orthogonality condition for the error.
We now use this orthogonality condition and properties of integrals to prove an

error estimate. We have∫ 1

0

[
u′(x)− (uh)′(x)

]2
dx =

∫ 1

0

[
u′(x)− (uh)′(x)

]
u′(x) dx

−
∫ 1

0

[
u′(x)− (uh)′(x)

]
(uh)′(x) dx

=

∫ 1

0

[
u′(x)− (uh)′(x)

][
u′(x)− (wh)′(x)

]
dx

−
∫ 1

0

[
u′(x)− (uh)′(x)

][
(uh)′(x)− (wh)′(x)

]
dx

where for the last step we have added and subtracted a term containing an arbitrary
element wh ∈ V h0 . From the orthogonality condition (8.20) we see that the second
term is zero where we set vh = uh − wh ∈ V h0 . We will denote the norm on
L2([0, 1]) by ‖ · ‖0 where

‖v‖0 =
[ ∫ 1

0

(v(x))2 dx
]1/2

.

We have

‖u′(x)− (uh)′(x)‖20 =

∣∣∣∣∫ 1

0

[
u′(x)− (uh)′(x)

][
u′(x)− (wh)′(x)

]
dx

∣∣∣∣ .
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There is a useful inequality called the Cauchy-Schwartz inequality which is∣∣∣∣∫
Ω

uv dΩ

∣∣∣∣ ≤ [∫
Ω

u2 dΩ

]1/2 [∫
Ω

v2 dΩ

]1/2

= ‖u‖0 ‖v‖0 . (8.21)

Using this inequality yields

‖u′(x)− (uh)′(x)‖20 =

∣∣∣∣∫ 1

0

[
u′(x)− (uh)′(x)

][
u′(x)− (wh)′(x)

]
dx

∣∣∣∣
≤ ‖u′(x)− (uh)′(x)‖0 ‖u′(x)− (wh)′(x)‖0

and thus

‖u′(x)− (uh)′(x)‖0 ≤ ‖u′(x)− (wh)′(x)‖0 ∀wh ∈ V h0 .

Now this has to hold for every wh ∈ V h0 so it has to be true for the particular wh

whose derivative is closest to the derivative of the solution to the weak problem.
We write this as

‖u′(x)− (uh)′(x)‖0 ≤ inf
χh∈V h

0

‖u′(x)− (χh)′(x)‖0 . (8.22)

This results says that the L2(0, 1) error in the derivative of the error is less than
or equal to a constant times the best approximation to u′(x) in the space V h0 .
However, our goal was to estimate the error in terms of h. It turns out that it is not
easy to estimate the difference in a function and its best approximation; however
there are readily available estimates for how well you can approximate a function
with its piecewise interpolant. How can this help us? We have that for any wh ∈ V h0

‖u′(x)− (uh)′(x)‖0 ≤ inf
χh∈V h

0

‖u′(x)− (χh)′(x)‖0 ≤ ‖u′(x)− (wh)′(x))‖0

because infχh∈V h
0
‖u′(x)− (χh)′(x)‖0 is the smallest value for all χh ∈ V h0 and wh

is just some other element of V h0 . So if we have an estimate for a particular wh

then we can use these.
Recall that one way to approximate a function is to use a polynomial interpolant;

i.e., to find a polynomial which agrees with the given function or its derivatives at a
set of points. One such example is a Lagrange interpolant which interpolates given
data or function values. Due to the fact that one cannot guarantee that the norm of
the difference in the function and the Lagrange interpolating polynomial approaches
zero as the degree of the polynomial increases, one typically uses piecewise polyno-
mial interpolation. In piecewise Lagrange interpolation we put together Lagrange
polynomials of a fixed degree to force them to interpolate the given function val-
ues or data. For example, a continuous piecewise linear Lagrange polynomial is a
continuous function which is a linear polynomial over each subinterval and matches
the given function at the nodes. Clearly, a piecewise linear Lagrange polynomial
over the subdivision of [0, 1] given in (8.14) which is zero at x = 0 and x = 1 is an
element of V h0 .
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We state the estimates for the error in a function or its derivatives and its V h-
interpolant where V h is the space of continuous piecewise linear functions defined
over the given partition with no boundary conditions imposed; i.e.,

V h = {φ(x) ∈ C[0, 1] | φ(x) linear on [xi, xi+1] for 0 ≤ i ≤ N} . (8.23)

Then these results also hold for V h0 ⊂ V h. If v(x) is a continuous function on [0, 1]
then we can find a unique element which agrees with v(x) at each of the points xi,
i = 0, . . . , N + 1; we call this element of V h the V h-interpolant of v and denote it
by Ihv. Once we have the standard estimate for the approximation of a function by
its piecewise linear Lagrange interpolant, then we can use it to obtain an estimate in
terms of powers of h. The following lemma gives standard results for approximating
a function or its derivatives by its piecewise linear Lagrange interpolant in the L2

norm.

Lemma 8.1. Let f ∈ C2(0, 1) and V h ⊂ V be defined by (8.23); let Ihf denote the
V h-interpolant of f . Then there exists positive constants C1 and C2, independent
of h and f , such that ∥∥f − Ihf∥∥

0
≤ C1h

2 ‖f ′′‖0 (8.24)

and ∥∥(f − Ihf)′
∥∥

0
≤ C2h ‖f ′′‖0 . (8.25)

Note that the error in the function and its interpolant is one degree higher in h
than the error in the derivative. This is true in general and a way to think about
this is to recall that the definition of the first derivative has an h in the denominator
just like our forward, backward or centered differences for the first derivative; hence
you lose a power of h when you approximate the derivative. The other thing to
notice about the lemma is that these optimal error estimates hold only when the
function we are approximating has two derivatives. By optimal we mean that they
are the best that can be obtained; no matter how smooth the function is, this is
the best accuracy one can obtain. Recall that our weak formulation only requires
one derivative on the solution whereas this lemma requires two. This does not have
anything to do with finite elements but rather is a result of approximation theory. In
fact, if you choose a solution which doesn’t have two derivatives then we don’t get
the optimal rates of convergence; we will see this when we look at some numerical
examples.

Now we have the result

‖u′(x)− (uh)′(x)‖0 ≤ ‖u′(x)− Ih(u′(x))‖0 ≤ h‖u′′‖0 (8.26)

if u ∈ C2(0, 1) and V h is the space of continuous piecewise linear functions over
the given partition; thus we say the error in the derivatives is linear in h. It turns
out that the error in the solution itself is optimal as long as u′′(x) ∈ C(0, 1), i.e.,

‖u(x)− uh(x)‖0 ≤ h2‖u′′(x)‖0 .
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Thus the error in the solution itself is quadratic in h. It takes more work to prove
this rigorous but it can be done by something called “Nitsche’s trick” and using
regularity of the differential equation. However we will not prove the result here.

We have now completed our analysis of a finite element solution of (8.11) using
continuous, piecewise linear polynomials. Before turning our attention to imple-
menting the method to obtain some numerical results we consider approximating
using higher degree polynomials and then remind ourselves how the entries in the
matrix and right-hand side of (8.17) are obtained.

8.2.5 Approximation using higher degree polynomials

From the error estimate (8.26) we see that the rate of convergence is linear in h if
we measure the error in the derivatives of the solution. If we want our calculations
to converge at a higher rate, such as quadratically, then we have to choose a higher
degree polynomial for our approximating space V h0 . In this section we give some
general results for the error in the interpolating polynomial for a kth degree polyno-
mial and then use these to state optimal error estimates for our problem. We also
consider a basis for quadratic polynomials and the structure of the resulting linear
system which is no longer tridiagonal as it was when we used linear polynomials.
The case of continuous, cubic polynomials is left to the exercises.

We now define V h to be the space of continuous, piecewise polynomials of
degree k or less over the partition of [0, 1] defined in (8.14), i.e.,

V h = {φ(x) | φ ∈ C[0, 1], φ(x) polynomial of
degree ≤ k on [xi, xi+1] for 0 ≤ i ≤ N} . (8.27)

V h0 is defined in the same way except we require φ(x) to be zero at the endpoints;

V h0 = {φ(x) | φ ∈ C[0, 1], φ(x) polynomial of
degree ≤ k on [xi, xi+1] for 0 ≤ i ≤ N,φ(0) = φ(1) = 0} . (8.28)

A result for the V h-interpolant of functions and their derivatives for piecewise poly-
nomials of degree k is provided in the following lemma. The situation where k = 1,
i.e., we are using linear polynomials, is a special case of this result.

Lemma 8.2. Let f ∈ Ck+1(0, 1) and V h is defined by (8.27); let Ihf denote the
V h-interpolant of f . Then there exists positive constants C1, C2, independent of
h and f , such that ∥∥f − Ihf∥∥

0
≤ C1h

k+1
∥∥∥f [k+1]

∥∥∥
0

(8.29)

and ∥∥(f − Ihf)′
∥∥

0
≤ C2h

k
∥∥∥f [k+1]

∥∥∥
0
. (8.30)

Note that (8.29) reduces to (8.24) and (8.30) reduces to (8.25) when k = 1.
These are the best rates of convergence possible with a kth degree polynomial. If f
is not smooth enough then there is a loss in the rates of convergence. If our finite
element solution is sufficiently smooth then the optimal rates of convergence are
given in the following theorem.
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Theorem 8.1. Let u ∈ Ck+1(0, 1) be the solution of (8.12) and let uh be the
Galerkin approximation of u in the space V h0 defined by (8.28) satisfying (8.13).
Then there exists positive constants C1, C2, independent of u, h, or uh such that∥∥(u− uh)′

∥∥
0
≤ C1h

k
∥∥∥u[k+1]

∥∥∥
0
. (8.31)

and ∥∥u− uh∥∥
0
≤ C2h

k+1
∥∥∥u[k+1]

∥∥∥
0
. (8.32)

We note that this estimate says that if the solution is sufficiently smooth, then
increasing the degree of the polynomial by one increases the rate of convergence by
one. So when we use continuous piecewise quadratics for V h then we expect the
optimal rate of convergence for u to be h3 and for its derivative to be h2.

We now turn to the concrete problem of finding a basis for V h or V h0 when we
choose quadratic polynomials, i.e., k = 2. In this case we know that the rates of
convergence are O(h2) for the L2 norm of the derivative of the error and O(h3) in
the L2 norm of the error, if the solution is sufficiently smooth. We use the same
partition of [0, 1] as before, i.e., that given in (8.14). The problem now is that
over each element [xi−1, xi] the basis function must be a quadratic; however, it
takes three points to uniquely determine a quadratic. To this end, we add a node
in each subinterval; the easiest thing to do is add a node at the midpoint of each
subinterval, xi− 1

2
= (xi−1 +xi)/2. We still have N +1 elements, but now have the

N + 2 points from the endpoints of the intervals plus the N + 1 midpoints giving
a total of 2N + 3 points. Analogous to the continuous, piecewise linear case, we
expect that a basis for V h for k = 2 consists of 2N + 3 members and for V h0 we
don’t need the endpoints so we have 2N + 1 vectors in a basis.

For simplicity of exposition, we renumber our 2N+3 nodes as xi, i = 0, . . . , 2N+
2. However, we must remember that the elements are [x2j−2, x2j ] for j = 1, . . . , N+
1. To determine a nodal basis for V h we require each φi in the basis to have the
property that it is one at node xi and zero at all other nodes. In the basis for piece-
wise linear polynomials we were able to make the support of the basis functions to
be two adjacent elements; the same is true in this case. However, now we have
two different formulas for the basis functions determined by whether the function
is centered at an endpoint of an interval or the midpoint.

To easily get an idea what these quadratic functions look like, we first write the
polynomials on [−1, 1] with nodes x = −1, 0, 1; we can then translate them to the
desired interval. From these we can determine the shape of our basis functions.
For the quadratic function which is one at the midpoint of [−1, 1], i.e., at x = 0,
and zero at x = ±1 we have φ(x) = 1 − x2. For the quadratic function which
is one at x = −1 and zero at x = 0, 1 we have φ(x) = 1

2 (x2 − x). Similarly
for the quadratic function which is one at x = 1 and zero at x = −1, 0 we have
φ(x) = 1

2 (x2 + x). These functions are illustrated in Figure 8.3 and have the same
shape as the ones on [x2j−2, x2j ]. We can splice together the two functions centered
at the endpoints of the interval to get a complete picture of the basis function
centered at an endpoint which has support over two intervals; this is demonstrated
in the right plot in Figure 8.3. Note that analogous to the case of continuous
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piecewise linear polynomials the quadratic basis functions will be continuous but
not continuously differentiable at the grid points.

Figure 8.3: Plot on left shows nodal quadratic functions on [−1, 1] and plot on
right shows shape of quadratic basis function centered at endpoint of an interval
having support over two intervals.

To find the analogous polynomials on [x2j−2, x2j ] we need to translate our
functions on [−1, 1] to the desired interval or equivalently solve linear systems. For
example, a straightforward way to find the quadratic which is one at x2j−1 and zero
at the endpoints is to solve

0 = a+ b
(
x2j−2

)
+ c
(
x2j−2

)2
1 = a+ b

(
x2j−1

)
+ c
(
x2j−2

)2
0 = a+ b

(
x2j

)
+ c
(
x2j

)2
.

However, there are more efficient approaches to finding basis functions. The support
of the quadratic basis functions for V h0 on a uniform partition of [0, 2] with h = 0.5
are illustrated in Figure 8.4.

Figure 8.4: Support of quadratic basis functions on the uniform partition of [0, 2]
with h = .5 assuming homogeneous Dirichlet boundary conditions.

We have seen that once a basis for the finite dimensional space is chosen, the
discrete problem can be converted to solving a linear system of equations. The (i, j)
entry of the coefficient matrix A is given by the same expression as in the case of
piecewise linear functions except we are using a different basis; specifically, we have

Aij = (pφ′j , φ
′
i) + (qφj , φi)

where φi is now a quadratic polynomial. We recall that when the standard “hat”
functions were used as a basis for V h0 the resulting matrix was N ×N , symmetric,
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positive definite and tridiagonal. In the case of our quadratic basis functions in V h0 ,
the matrix is still symmetric and positive definite but we note that the size of our
matrix has increased to 2N + 1. Also, it is no longer tridiagonal. To determine the
bandwidth of the matrix, we need to ascertain where the zero entries begin in each
row. We return to Figure 8.4 and note that for a basis function φi centered at a

midpoint node xi, the integral
∫ 1

0
φiφj dx is zero when j > i+ 1 or j < i− 1, i.e.,

outside of the interval; the same is true for the term
∫ 1

0
φ′iφ
′
j dx. However, for a

basis function φi centered at the right endpoint node xi, the integral
∫ 1

0
φiφj dx is

potentially nonzero in that interval and the next which includes a total of five basis
functions, counting itself. Thus the integral is zero when j > i+ 2 or j < i− 2 and
the maximum bandwidth of the matrix is five. This system can be efficiently solved
by a direct method such as a banded Cholesky algorithm or an iterative method
such as conjugate gradient or one of its variants.

If we desire to have a method where the error in the derivative converges cubi-
cally, then we can choose continuous, piecewise cubic polynomials for V h. Because
we need four points to uniquely determine a cubic, we add two points to each interval
in our original partition given in (8.14). For V h0 we now have N+2(N+1) = 3N+2
points and we expect that this is the dimension of the space and thus the dimension
of the resulting matrix.

8.2.6 Numerical quadrature

If we are implementing our example given in (8.11) in the case p = q = 1 with
continuous, piecewise linear polynomials for V h0 and where we are using a uniform
grid, then (8.18) and (8.19) explicitly give the coefficient matrices. However, entries
in the right-hand side of (8.17) must be computed and also entries for the coefficient
matrix for general p, q. For some choices of f we could evaluate the integrals exactly.
However, if we want to write a general finite element program then we should be
able to do problems where the integrals can not be evaluated exactly. In this case,
we must use quadrature rules to approximate the integrals. Recall that in our error
analysis, we have assumed that the integrals are computed exactly. For now, we
present some widely used quadrature formulas in one-dimension and give general
rules for choosing a formula.

In numerical integration we approximate the integral by the sum of the integrand
evaluated at a prescribed set of points multiplied by weights; i.e.,∫ b

a

f(x) dx ≈
∑
k

f(qk)wk , (8.33)

where qk represent the quadrature points and wk the quadrature weights. Of par-
ticular interest in one dimension are the Gauss quadrature rules; in these rules the
quadrature points and weights are chosen so that the rule integrates exactly as
high a degree polynomial as possible. Specifically, if we use n Gaussian quadrature
points then the rule integrates polynomials of degree 2n− 1 exactly. The Gaussian
quadrature rule for one point is the well known midpoint rule which integrates lin-
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ear functions exactly. The following table gives the Gaussian quadrature points and
weights on the interval [−1, 1].

Table 8.1: Gauss quadrature formulas on [−1, 1]
n nodes weights
1 0.0000000000 2.0000000000
2 ± 1√

3
= ±0.5773502692 1.0000000000

3 ±0.7745966692 0.5555555556
0.0000000000 0.8888888889

4 ±0.8611363116 0.3478548451
±0.3399810436 0.6521451549

5 ±0.9061798459 0.2369268850
±0.5384693101 0.4786286701
0.0000000000 0.5688888889

If the domain of integration is different from (−1, 1), then a change of variables

is needed. For example, to compute the integral
∫ b
a
f(x̂) dx̂ we use the linear

mapping x̂ = a + b−a
2 (x + 1) to map to the integral over (−1, 1). In this case we

have ∫ b

a

f(x̂) dx̂ =
b− a

2

∫ 1

−1

f
(
a+

b− a
2

(x+ 1)
)
dx .

Then we apply the quadrature rule to the integral over (−1, 1). Note that we
have just modified the quadrature weight by multiplying by b−a

2 and mapping the
quadrature point to the interval (a, b).

When choosing a quadrature rule, we want to use as low a degree rule as possible
for efficiency but as high a degree rule as necessary for accuracy. It is not necessary
to evaluate the integrals exactly, even if this is possible; however, we must assure
that the error in the numerical quadrature does not contaminate the power of h
accuracy in our estimate. When using piecewise linear polynomials for the finite
element space in one-dimension for the problem (8.11), it is adequate to use a one-
point Gauss quadrature rules; for piecewise quadratic polynomials a two-point rule
is adequate.

8.2.7 Computational examples

In this section we implement two specific examples of the boundary value problem
given in (8.11) where we know the exact solution so that errors and rates of con-
vergence can be calculated. These problems differ in the choice of p, q and f . The
choice of f is especially important because a lack of smoothness in f results in the
solution not being smooth enough to guarantee the optimal rates of convergence.
In all computations we use continuous, piecewise polynomials on a uniform grid, an
appropriate Gauss quadrature rule to evaluate the integrals in the coefficient matrix
and the right-hand side, and a direct solver for the linear system. For the error
computation we use a higher order quadrature rule to evaluate the integrals. The
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reason for the higher order rule in the error computation is to make absolutely sure
that no error from the numerical integration contaminates the calculation of the
error. The computations are performed using h = 1/4, 1/8, 1/16, and 1/32 with
linear, quadratic and cubic elements; the L22 norm of the error in the unknown and
its derivative are computed for each grid.

For each example we are interested in calculating the numerical rate of con-
vergence and comparing it with the theoretical results. The errors for each grid
can be used to compute an approximate rate of convergence. For example, we
have

∥∥u− uh∥∥ ≈ Chr where we expect r to approach some value as the grid size
decreases. If we have the error, Ei, on two separate meshes then we have that
E1 ≈ Chr1 and E2 ≈ Chr2 where E1 and E2 represent

∥∥u− uh∥∥ on the grid with
mesh spacing h1 and h2, respectively. If we solve for C and set the two relationships
equal, we have E1/h

r
1 ≈ E2/h

r
2 ; solving for r we obtain

r ≈ lnE1/E2

lnh1/h2
. (8.34)

We note that if the grid spacing is halved, i.e., h2 = h1/2 then the error should be

approximately decreased by
(

1
2

)r
since E2 ≈

(
h2

h1

)r
E1. This implies that if r = 1

the error is approximately halved when the grid spacing is halved; if the rate is two,
then the error is reduced by a factor of one-fourth when the grid spacing is halved,
etc.

Example 8.1. We first consider the problem

−u′′ + π2u = 2xπ2 sinπx− 2π cosπx for 0 < x < 1
u(0) = u(1) = 0 ,

(8.35)

whose exact solution is given by u = x sinπx. Since our solution u(x) = x sinπx
possesses all derivatives we expect the optimal rates of convergence; in particular
if we use continuous, piecewise linear polynomials then the rate r, calculated
from (8.34), should approach two as h → 0 for the L2-norm of the error itself
and approach one for the L2 norm of the derivative of the error. These values for
r are calculated in Table 8.2 along with the errors and rates using continuous,
piecewise quadratic and cubic polynomials; in the table we computed the rate
using the errors at h = 1/4 and 1/8, at h = 1/8 and 1/16, and at h = 1/16
and h = 1/32. Note that, in fact, r → 1 for the error in the derivatives and
r → 2 in the L2-error as predicted when piecewise linear polynomials are used;
the optimal rates for quadratic and cubic polynomials are also obtained. In
these calculations we used a one-point Gauss rule for linear polynomials, a two-
point Gauss rule for quadratic polynomials, and a three-point Gauss rule for
cubic polynomials. In Table 8.3 we illustrate what happens if we use continuous
quadratic polynomials using a one-point, a two-point and a three-point Gauss
quadrature rule. Note that the rates of convergence using a two-point and a
three-point rule are essentially the same, but when we use the one-point rule
the results are meaningless.
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Table 8.2: Numerical results for Example 8.1 using continuous, piecewise linear
polynomials.

pk h
∥∥(u− uh)′

∥∥
2

rate
∥∥u− uh∥∥

2
rate

linear 1/4 0.47700 0.28823× 10−1

linear 1/8 0.23783 1.0041 0.69831× 10−2 2.0459
linear 1/16 0.11885 1.0007 0.17313× 10−2 2.0120
linear 1/32 0.059416 1.0002 0.43199× 10−3 2.0028

quadratic 1/4 0.49755×10−1 0.15707× 10−2

quadratic 1/8 0.12649×10−1 1.9758 0.20227× 10−3 2.9570
quadratic 1/16 0.31747×10−2 1.9940 0.25553× 10−4 2.9847
quadratic 1/32 0.79445×10−3 1.9986 0.32031× 10−5 2.9960

cubic 1/4 0.51665×10−2 0.10722× 10−3

cubic 1/8 0.64425×10−3 3.003 0.67724× 10−5 3.985
cubic 1/16 0.80496×10−4 3.001 0.42465× 10−6 3.9953
cubic 1/32 0.10061×10−4 3.000 0.26564× 10−7 3.9987

Example 8.2. The next problem we want to consider is

−u′′ = −α(α− 1)xα−2 for 0 < x < 1
u(0) = u(1) = 0 ,

(8.36)

where α > 0; the exact solution u is given by u(x) = xα − x. The results for
various values of α are presented in Table 8.4 using continuous, piecewise linear
polynomials and a one-point Gauss quadrature rule. Recall that the optimal
rates in this case are O(h) in the L2 norm of the derivatives and O(h2) in
the L2 norm of the function. Note that for α = 7/3 we get the optimal rates
of convergence. However, for α = 4/3 we have less than optimal rates and
for α = 1/3 the error in the derivative is almost constant and the rate in the
L2-norm of the error is less than one. Of course, the reason for this is that
when α = 3/2 the exact solution u = x4/3 − x does not possess two continuous
derivatives on [0, 1] and when α = 1/3 the exact solution u = x1/3 − x does not
possess even one derivative on [0, 1]. Thus the interpolation results (8.24) and
(8.25) do not hold and we can’t expect to get optimal rates of convergence.

8.3 A two-point BVP with Neumann boundary data

In this section we consider the same prototype two point BVP as before but now
we impose Neumann boundary data instead of homogeneous Dirichlet data. In
particular we seek a function u(x) satisfying

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x) for 0 < x < 1

u′(0) = 0
u′(1) = α .

(8.37)
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Table 8.3: Numerical results for Example 8.1 using continuous, piecewise quadratic
polynomials with three different quadrature rules.

Gauss h
∥∥(u− uh)′

∥∥
2

rate
∥∥u− uh∥∥

2
rate

Quadrature Rule
one-point 1/4 8.885 0.3904
one-point 1/8 18.073 0.3665
one-point 1/16 36.391 0.3603
one-point 1/32 72.775 0.3587

two-point 1/4 0.49755×10−3 0.15707× 10−4

two-point 1/8 0.12649×10−3 1.9758 0.20227× 10−5 2.9570
two-point 1/16 0.31747×10−4 1.9940 0.25553× 10−6 2.9847
two-point 1/32 0.79445×10−5 1.9986 0.32031× 10−7 2.9960

three-point 1/4 0.49132×10−3 0.18665× 10−4

three-point 1/8 0.12109×10−3 1.9620 0.24228× 10−5 2.9456
three-point 1/16 0.31724×10−4 1.9911 0.30564× 10−6 2.9868
three-point 1/32 0.79430×10−5 1.9978 0.38292× 10−7 2.9967

As before, p and q are bounded functions on [0, 1] satisfying 0 < pmin ≤ p(x) ≤
pmax but now we impose 0 < qmin ≤ q(x) ≤ qmax for all x ∈ [0, 1]. Again
if f, q ∈ C[0, 1] and p ∈ C1[0, 1] the boundary value problem (8.37) possesses a
unique classical solution u(x) ∈ C2(0, 1) which satisfies (8.37) for every x ∈ [0, 1].
Note that here we require that qmin > 0 to guarantee a unique solution; this is
because if q = 0 and u satisfies (8.37) then so does u+ C for any constant C.

In this case we call our underlying finite element space V because we have no
boundary conditions to impose on the space. The weak formulation is{ seek u ∈ V satisfying∫ 1

0
p(x)u′(x)v′(x) dx+

∫ 1

0
q(x)u(x)v(x) dx =

∫ 1

0
fv dx+ αp(1)v(1) ∀v ∈ V ,

(8.38)
Clearly, if u(x) satisfies the classical problem (8.37), then u(x) satisfies (8.38)

because∫ 1

0

f(x)v dx =

∫ 1

0

(
−(p(x)u′(x))′ + q(x)u(x)

)
v(x) dx

= −pu′v
∣∣1
0
+

∫ 1

0

p(x)u′(x)v′(x) dx+

∫ 1

0

q(x)u(x)v(x) dx

= −p(1)u′(1)v(1) + p(0)u′(0)v(0) +

∫ 1

0

p(x)u′(x)v′(x) dx+

∫ 1

0

q(x)u(x)v(x) dx

=

∫ 1

0

p(x)u′(x)v′(x) dx+

∫ 1

0

q(x)u(x)v(x) dx− αp(1)v(1) ,

where we have imposed the homogenous Neumann boundary condition u′(0) = 0
and the inhomogeneous condition u′(1) = α. Note that these boundary conditions
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Table 8.4: Numerical results for Example 8.2.
α h

∥∥(u− uh)′
∥∥

2
rate

∥∥u− uh∥∥
2

rate

7/3 1/4 0.1747 0.17130× 10−1

7/3 1/8 0.08707 1.0046 0.33455× 10−2 1.9726
7/3 1/16 0.04350 1.0012 0.84947× 10−3 1.9776
7/3 1/32 0.02174 1.0007 0.21495× 10−3 1.9826

4/3 1/4 0.47700 0.28823× 10−1

4/3 1/8 0.23783 0.7690 0.69831× 10−2 1.8705
4/3 1/16 0.11885 0.7845 0.17313× 10−2 1.8834
4/3 1/32 0.059416 0.7965 0.43199× 10−3 1.8005

1/3 1/4 0.43332 0.14594
1/3 1/8 0.43938 0.10599 0.4615
1/3 1/16 0.46661 0.07922 0.4200
1/3 1/32 0.50890 0.06064 0.3857

are not imposed on the space, but rather on the weak formulation; these are called
natural boundary conditions.

If we want to seek an approximation to u(x) in the space of continuous, piecewise
linear functions defined over the subdivision (8.14) then we cannot use the space
V h0 defined in (8.15) since this space was designed to approximate functions in V0.
Instead we consider V h where

V h = {φ(x) ∈ C[0, 1], φ(x) linear on (xi, xi+1) for 0 ≤ i ≤ N} . (8.39)

Similar to the homogeneous Dirichlet case, it can be shown that V h is an N + 2
dimensional subspace of V ; a basis for V h is given by the standard “hat” functions
that we used for V h0 along with one defined at each endpoint. Specifically, we have
the functions ψi, i = 1, . . . , N + 2 defined by

ψi(x) =

 φ0(x) for j = 1
φi−1(x) for 2 ≤ i ≤ N + 1
φN+1(x) for j = N + 2

(8.40)

where φi(x), i = 1, . . . N are given by (8.15) and

φ0(x) =

{ x1 − x
h1

for 0 ≤ x ≤ x1

0 elsewhere
(8.41)

and

φN+1(x) =


x− xN
hN+1

for xN ≤ x ≤ 1

0 elsewhere .
(8.42)
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The discrete weak problem is

{ seek uh ∈ V h satisfying∫ 1

0
p(x)(uh)′(x)(vh)′(x) dx+

∫ 1

0
q(x)uh(x)vh(x) dx =

∫ 1

0
fvh dx+ αp(1)vh(1)

∀vh ∈ V h.
(8.43)

As before, the problem of finding a uh ∈ V h which satisfies (8.43) reduces to solving
a linear system of equations; in this case the coefficient matrix has dimension N+2
but is still tridiagonal when piecewise linear polynomials are used. In addition, we
can use the interpolation results given in Lemma 8.1 to get the identical optimal
error estimates as before.

One purpose of the following computations is to demonstrate the difference in
satisfying a boundary condition by imposing it on the space (an essential boundary
condition) as the previous examples did and imposing a boundary condition weakly
through the weak formulation (a natural boundary condition).

Example 8.3. We consider the problem

−u′′ + π2u = 2xπ2 sinπx− 2π cosπx for 0 < x < 1
u′(0) = 0
u′(1) = −π ,

(8.44)

whose exact solution is given by u = x sinπx. Note that this is the same
differential equation as in Example 8.1 but now we are imposing Neumann
boundary conditions. Since our solution u(x) = x sinπx is actually in C∞(0, 1)
we expect the optimal rates of convergence which we can see are obtained from
Table 8.5. The approximate solutions using uniform grids of h = 1

4 , 1
8 and 1

16
along with the exact solution are plotted in Figure 8.5. Note that although our
exact solution is zero at the endpoints, our approximate solution is not because
we imposed Neumann boundary conditions. It is important to realize that the
approximate solution does not satisfy the exact derivative boundary condition
because we have satisfied it weakly. This is analogous to the finite difference
case where we satisfy the Neumann boundary condition by approximating the
derivative by a difference quotient. In the last plot in Figure 8.5 we have blown
up the approximate solutions at the right end point which should have a slope of
−π. The approximate derivative at the right boundary is -1.994, -2.645, -2.917
and -3.036 for h = 1/4, 1/8, 1/16, and 1/32 respectively. These correspond
to errors of 1.147, 0.4968, 0.2244 and 0.1055. As h → 0 the derivative of the
approximate solution at x = 1 approaches the exact value of −π linearly; this
is expected because the rate of convergence in the L2 norm of the derivative
is one. Note that this is in contrast to Example 8.1 where our approximate
solution exactly satisfied the homogeneous Dirichlet boundary condition because
we imposed it on our space.
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Table 8.5: Numerical results for Example 8.3 using continuous, piecewise linear
polynomials.

h
∥∥(u− uh)′

∥∥
2

rate
∥∥u− uh∥∥

2
rate

1/4 0.48183 0.22942× 10−1

1/8 0.23838 1.0153 0.56235× 10−2 2.0281
1/16 0.11892 1.0033 0.13988× 10−2 2.0073
1/32 0.059425 1.0009 0.34924× 10−3 2.0019

Figure 8.5: Plots of the exact solution and three piecewise linear approximations.
The last plot gives a blow-up of the right endpoint demonstrating that the natural
boundary condition is only satisfied weakly.



Chapter 9
The Finite Element Method in
Higher Dimensions

9.1 Simple Examples on Rectangular Domains

We first consider simple elliptic boundary value problems in rectangular domains
in R2 or R3; as before our prototype example is the Poisson equation. Similar to
our exposition of the two-point boundary value problem in the previous chapter we
consider the implementation of different boundary conditions for the Poisson equa-
tion. Much of this exposition is a straightforward extension of the results presented
in the previous chapter for the two-point boundary value problem. However, a few
important differences will be evident.

Because we first look at problems defined on rectangular domains we approxi-
mate the solution with finite elements spaces which are obtained by taking tensor
products of one-dimensional finite element spaces that we defined in the previous
chapter. Later in this chapter we will consider triangular elements which are useful
for problems defined over non-rectangular domains such as a polygonal region.

9.1.1 The Poisson equation with homogeneous Dirichlet
boundary data

We first consider the Poisson equation defined in a bounded domain in R2 or R3

with homogeneous Dirichlet boundary data. We let x denote a point in R2 or R3.
We let Ω be an open, connected, bounded set in R2 or R3 and let Γ denote its
boundary. At this point in our discussion of the finite element method, we only have
the background to use finite element spaces which are tensor products of the one
dimensional finite element spaces discussed in the last chapter. Consequently, when
we move to the discretization stage we require that Ω be a rectangular domain.
However, the weak formulations that we present hold for more general domains.

187
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Specifically we want to approximation u(x) which is the solution of the Poisson
equation

−∆u(x) = f(x) for x ∈ Ω (9.1a)

u(x) = 0 for x ∈ Γ , (9.1b)

where, as usual, ∆u = uxx + uyy in R2 or analogously ∆u = uxx + uyy + uzz in
R3. It is well known that for sufficiently smooth Γ there exists a unique classical
solution of (9.1).

In the sequel, we assume enough smoothness of the boundary so that the do-
main admits the application of the divergence theorem. Every polygonal domain
or a domain with a piecewise smooth boundary has sufficient smoothness for our
purposes.

We will make extensive use of Green’s formula which is the analogue of the
integration by parts formula in higher dimensions and is derived from the divergence
theorem of vector calculus. Let n̂ denote the unit outer normal to Γ and let dS
denote the measure defined on the boundary and dΩ the measure of volume. We
have that for v ∈ C1(Ω), w ∈ C2(Ω)∫

Ω

v∆w dΩ =

∫
Γ

v(n̂ · ∇w)−
∫

Ω

∇w · ∇v dΩ

or equivalently ∫
Ω

v∆w dΩ =

∫
Γ

v
∂w

∂n̂
−
∫

Ω

∇w · ∇v dΩ . (9.2)

9.1.2 Weak formulation

To define the weak formulation we first define the function space where we seek the
solution. As before, we impose the homogeneous Dirichlet boundary conditions by
constraining our space V ; in particular we have the space

V0 = {v ∈ C1(Ω) | v = 0 on Γ} .

The weak formulation which we consider is{ seek u ∈ V0 such that∫
Ω

∇v · ∇w dΩ =

∫
Ω

fv dΩ ∀v ∈ V0 .
(9.3)

The solution u ∈ V0 of (9.3) is called the weak solution of (9.1).
If u(x) satisfies the classical problem (9.1) then u(x) satisfies the weak formu-

lation (9.1) because∫
Ω

fv dΩ = −
∫

Ω

∆uv dΩ ∀v ∈ V0

=

∫
Ω

∇u · ∇v dΩ−
∫

Γ

∂u

∂n̂
v dΓ

=

∫
Ω

∇u · ∇v dΩ
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where we have used Green’s formula (9.2) and imposed the fact that v = 0 on Γ.
The existence and uniqueness of a weak solution to (9.3) can be verified.

9.1.3 Approximation using bilinear functions

At present, we restrict the domain so that we can use rectangular elements; there-
fore, the finite element spaces can be constructed from the spaces used in the
previous chapter. As in the one-dimensional case, we must now choose a finite
dimensional subspace of V h0 (Ω) ⊂ V0 in which to seek the approximate solution.
For the discrete problem we have{ seek uh ∈ V h0 (Ω) satisfying∫

Ω

(
∇uh · ∇vh

)
dΩ =

∫
Ω
fvh dΩ ∀vh ∈ V h0 .

(9.4)

To approximate our finite element solution we consider the concrete case where
Ω is the (a1, b1) × (a2, b2) in R2 or (a1, b1) × (a2, b2) × (a3, b3) in R3 We choose
the space V h0 (Ω) to be continuous, piecewise bilinear functions defined on Ω ⊂ R2

or continuous, piecewise trilinear functions1 for Ω ⊂ R3. We formally construct
the bilinear basis functions; the trilinear basis functions are defined analogously. Let
N,M be positive integers and let hx = (b1−a1)(/(N+1), hy = (b2−a2)/(M+1)
and consider the subdivision of Ω into rectangles of size hx × hy where

xi = a1 + ihx, 0 ≤ i ≤ N + 1, yj = a2 + jhy, 0 ≤ j ≤M + 1 .

Let φi(x), 1 ≤ i ≤ N represent the standard “hat” piecewise linear basis
functions in x and let φj(y), 1 ≤ j ≤M , be similarly defined i.e.,

φi(x) =


x− xi−1

hx
for xi−1 ≤ x ≤ xi

xi+1 − x
hx

for xi ≤ x ≤ xi+1

0 elsewhere

φj(y) =


y − yj−1

hy
for yj−1 ≤ y ≤ yj

yj+1 − y
hy

for yj ≤ y ≤ yj+1

0 elsewhere.

On Ω = (0, 1)× (0, 1) we now define the NM bilinear functions

φij(x, y) = φi(x)φj(y) for 1 ≤ i ≤ N , 1 ≤ j ≤M . (9.5)

We easily see that φij(xi, yj) = 1 and φij(xk, yl) = 0 for k 6= i or l 6= j . Also
φij(x, y) is zero outside of [(i−1)hx, (i+1)hx]×[(j−1)hy, (j+1)hy]. The support
of φij(x, y) is illustrated in Figure 9.1 and the shape of a specific bilinear function
φ2,3 which is one at node (x2, y3) is given in Figure 9.2.

For Ω the unit square, we choose V h0 (Ω) ≡ V h0 (0, 1)⊗V h0 (0, 1) to be the tensor
product of the subspaces V h0 (0, 1) (one each in the x− and y− directions) of one-
dimensional piecewise linear, continuous functions which vanish at zero and one.

1A bilinear or trilinear function is a function which is linear with respect to its variables
because if we hold one variable fixed, it is linear in the other; for example f(x, y) = xy is a
bilinear function but f(x, y) = x2y is not.
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x0 x1 x2 xi xN+1hx

y1

y2

yj−1

yj

yM+1

hy
(xi, yj)

φijb

Figure 9.1: Grid on a unit square with support of basis function φij(x, y) indicated.

Figure 9.2: Support of bilinear basis function φ2,3.

V h0 (Ω) consists of all functions v(x, y) on (0, 1)× (0, 1) of the form

v(x, y) =

N∑
i=1

M∑
j=1

cijφi(x)φj(y) =

N∑
i=1

M∑
j=1

cijφij(x, y) . (9.6)
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Note that the general form of a bilinear function in R2 is a0 + a1x + a2y + a3xy
compared with a linear function in two variables which has the general form a0 +
a1x+a2y. Clearly V h0 (Ω) is the space of all continuous, piecewise bilinear functions
(with respect to the given subdivision) which vanish on the sides of the unit square.
Also, every piecewise bilinear function f(x, y) can be written in the form (9.6) with
cij = f(xi, yj); i.e., it is a linear combination of the P = NM linearly independent
functions φij(x, y). V h0 (Ω) is an P -dimensional subspace of V0; note that for
M = N , V h0 is an N2 dimensional subspace whereas in one dimension, it was an
N dimensional subspace. Of course this affects the size of our resulting matrix
problem. However, this was the same increase that we saw using the FD method.

From previous discussions we know that once a basis is chosen for the approxi-
mating subspace, the discrete problem can be written as a linear system of equations.
To investigate the structure of the coefficient matrix for our choice of bilinear basis
functions, we let the basis functions φij(x, y) for V h0 (Ω) be rewritten in single index
notation; for simplicity of exposition we choose M = N . We have

{ψk(x, y)}N
2

k=1 = {φij(x, y)}Ni,j=1 .

For example, for 1 ≤ k ≤ N ψk = φk1; for 1 ≤ k ≤ N ψN+k = φk2; etc. Our
discrete weak formulation (9.4) is equivalent to seeking uh ∈ V h0 satisfying∫

Ω

∇uh∇ψi dΩ =

∫
Ω

fψi dΩ for 1 ≤ i ≤ N2 .

We now let uh =
∑N2

j=1 cjψj and substitute into the above expression. The result

is a linear system of N2 equations in the N2 unknowns {cj}N
2

j=1; i.e., Ac = f

where c = (c1, . . . , cN2)T , Fi =
∫

Ω
fψi dΩ and Aij = A(ψi, ψj). Note that with

the numbering scheme we are using for the basis functions, we are numbering our
unknowns which correspond to the coefficients cj across rows. Because we have
assumed the same number of points in the x and y directions we could have easily
numbered them along columns of the grid.

To determine the structure of the resulting matrix we consider the ith row of
the matrix and decide how many nonzero entries are in the row. Because we know
the matrix is symmetric, we only consider terms above the diagonal. Clearly there
can be nonzero entries in columns i and i+ 1. The next nonzero entries occur for
unknowns corresponding to basis functions in the next row of the grid. Specifically
we can have nonzero entries in columns i+N − 1, i+N and i+N + 1 where N is
the number of unknowns across the row. The coefficient matrix A is an N2 ×N2

symmetric, positive definite matrix which has a block tridiagonal structure of the
form

A =


A0 A1 0 · · · 0
A1 A0 A1 0 · · · 0

. . .
. . .

. . .

0 · · · 0 A1 A0 A1

0 · · · 0 A1 A0

 , (9.7)
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where A0 and A1 are N × N tridiagonal matrices. A matrix of this form can be
solved efficiently by a banded Cholesky algorithm, a block tridiagonal solver or an
iterative solver.

Error estimates

One can prove error estimates in an analogous manner to the one-dimensional case.
Specifically one demonstrates that∥∥∇(u− uh) · ∇(u− uh)

∥∥
2
≤ inf
χh∈V h

0

∥∥∇(u− χh)
∥∥

2

We then use results from interpolation theory to bound the error in the derivative
of (u(x)−uh(x)). We state the results here for bilinear elements for completeness.

Lemma 9.1. Let v ∈ C2(Ω). Then if Ihv is the interpolant of v in V h(Ω), the
space of continuous, piecewise bilinear functions, then there exist constants Ci,
i = 1, 2 independent of v and h such that∥∥v − Ihv∥∥

0
≤ C1h

2 ‖v‖2 (9.8)

and ∥∥v − Ihv∥∥
1
≤ C2h ‖v‖2 . (9.9)

Theorem 9.1. Let u ∈ C2(Ω)∩V0 be the solution of (9.3) where Ω = (0, 1)×(0, 1).
Let V h0 (Ω) be the space of piecewise bilinear functions which vanish on Γ and let
uh be the Galerkin approximation to u in V h0 (Ω) defined by (9.4). Then∥∥∇(u− uh)

∥∥
2
≤ Ch ‖u‖2 (9.10)

and ∥∥u− uh∥∥
2
≤ Ch2 ‖u‖2 (9.11)

for some constants C independent of h and u.

9.1.4 Higher order elements

Our discussion of approximating the problem (9.1) posed on Ω = (0, 1) × (0, 1)
has so far included only piecewise bilinear function spaces. Of course, we can also
use tensor products of higher order spaces such as the quadratic or cubic functions
in one space dimension. Note that a general biquadratic function has the form
a0 + a1x+ a2y+ a3xy+ a4x

2 + a5y
2 + a6x

2y+ a7xy
2 + a8x

2y2 compared with a
general quadratic function in two dimensions which has the form a0 + a1x+ a2y+
a3xy+a4x

2 +a5y
2. As in the one-dimensional case, for a smooth enough solution,

these spaces yield higher rates of convergence then that achieved with piecewise
bilinear approximations. The construction of the basis functions in two or three
dimensions is done analogous to the piecewise bilinear case; the details are left to
the exercises.
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9.1.5 Numerical quadrature

Once again, the entries in the matrix and right-hand side of our linear system are
calculated using a numerical quadrature rule which has the form∫

Ω

f(x) dΩ ≈
∑
i

f(qi)ωi ,

where the points qi are the quadrature points and ωi are the quadrature weights.
Because we are using rectangular elements with basis functions obtained by taking
the tensor product of one-dimensional basis functions, the most straightforward
approach is to use tensor products of the quadrature rules in one spatial dimension.
Typically, we use the same quadrature rule in each spatial dimension. For example,
if we have the rule ∫ b

a

f(x) dx =
∑
i

f(qi)wi

then we can write∫ b

a

∫ d

c

f(x, y) dydx ≈
∫ b

a

(∑
j

f(x, qj)wj

)
≈
∑
i

∑
j

f(qi, qj)wjwi .

In one dimension we employed the Gauss-Legendre quadrature rules on [−1, 1]. If
we take the tensor products of a p-point Gauss rule in each direction then we would
have one point for the tensor product of the one-point rule, four points for the tensor
product of the two-point rule, nine points for the tensor product of the three-point
rule, etc. The quadrature points in two dimensions formed by the tensor product
of one-point through three-point Gauss quadrature rules are described in Table 9.1.
Note that in three dimensions we have 1, 8, and 27 quadrature points for tensor
products of these three quadrature rules. To apply these rules to an integral over an
arbitrary rectangular domain, we must perform a change of variables in both the x
and y directions analogous to the one-dimensional case. For our example, if we are
using bilinear or trilinear elements, then the tensor product of the one-point Gauss
rule is adequate; for biquadratics or triquadratics we need to use the tensor product
of the two-point Gauss rule.

9.1.6 The Poisson equation with Neumann boundary data

In this section we consider solving Poisson’s equation on an open, bounded domain
in R2 or R3 where we specify Neumann data on a portion of the boundary and
Dirichlet data on the remainder of the boundary. In particular, we seek a function
u satisfying

−∆u(x) = f(x) for x ∈ Ω

u(x) = 0 for x ∈ Γ1 (9.12)

∂u

∂n̂
(x) = g(x) for x ∈ Γ2 ,



CHAPTER 9. THE FINITE ELEMENTMETHOD IN HIGHER DIMENSIONS194

1-D rule # points in R2 points qi & weights wi

r 1 point Gauss 1 q1 = (0, 0) w1 = 4

rr rr 2 point Gauss 4 qi = 1√
3

{
(−1,−1), (1,−1), (−1, 1), (1, 1)

wi = 1

r r rr r r
r r r

3 point Gauss 9 qi =
√

3
5

{
(−1,−1), (0,−1), (1,−1), (−1, 0),

((0, 0), (1, 0), (−1, 1), (0, 1), (1, 1)
}

wi = 1
81

{
25, 40, 25, 40, 64, 40, 25, 40, 25

}
Table 9.1: Tensor product of Gauss quadrature rules in two dimensions

where Γ1 ∪ Γ2 = Γ, Γ1 ∩ Γ2 is not empty and ∂u/∂n̂ denotes the directional
derivative of u in the direction of the unit outward normal n̂ to the boundary of
the domain. We note that if Γ1 is the entire boundary Γ then we have the purely
Dirichlet problem discussed in Section (9.1.1); in the case Γ2 is the entire boundary
we have a purely Neumann problem. As expected, in the latter case the problem
does not have a unique solution. It is well known that for sufficiently smooth
boundary there exists a unique classical solution of (9.12).

9.1.7 Weak Formulation

For this problem we define V̂0 as

V̂0 = {u ∈ C1(Ω) | u = 0 on Γ1} . (9.13)

Our weak formulation is{ seek u ∈ V̂0 satisfying∫
Ω
∇u · ∇v dΩ =

∫
Ω
fvdΩ +

∫
Γ2
gv ds ∀v ∈ V̂0 .

(9.14)

If u is a solution of the classical problem (9.12) then by Green’s theorem u satisfies∫
Ω

fv dΩ = −
∫

Ω

∆uv dΩ =

∫
Ω

∇u · ∇v −
∫

Γ

∂u

∂~n
v ds

=

∫
Ω

∇u · ∇v −
∫

Γ1

∂u

∂~n
v ds−

∫
Γ2

∂u

∂~n
v ds

=

∫
Ω

∇u · ∇v −
∫

Γ2

g(x)v ds ∀v ∈ V̂0 ,
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where we have used the fact that the boundary integral over Γ1 is zero since v ∈ V̂0

and for the boundary integral over Γ2 we have used ∂u/∂~n = g(x). In this problem
the Dirichlet boundary condition on Γ1 is essential whereas the Neumann boundary
condition on Γ2 is natural. It’s interesting to compare the weak formulation (9.14)
with the analogous weak formulation for the two-point boundary value problem. In
the one-dimensional case, we simply have the value of the derivative at a point times
the test function at the same point. In two spatial dimensions with inhomogeneous
Neumann boundary conditions we have a line integral on the right-hand side of
the weak form and in three spatial dimensions we have a surface integral. This
complicates the implementation of the method but it is straightforward; for example,
for Ω ⊂ R2 we have a line integral on the boundary which can be approximated
using a Gauss quadrature rule. The existence and uniqueness of a solution to (9.14)
is demonstrated in an analogous manner to the purely Dirichlet problem discussed
in Section 9.1.1.

9.1.8 Approximation using bilinear functions

As a concrete example we once again take Ω = (0, 1)× (0, 1); we choose Γ1 to be
the top and bottom portions of the boundary, i.e., when y = 0 and y = 1; Γ2 is the
remainder of the boundary. We subdivide our domain into rectangles of size h× h
where h = 1/(N + 1), xi = ih, yj = jh, i, j = 0, . . . , N + 1. If we approximate
using continuous, piecewise bilinear functions as in Section 9.1.1, then we seek our

solution in the space V̂ h0 which is the space of all continuous, piecewise bilinear
functions on Ω which are zero at y = 0 and y = 1. In the x-direction we have
the N + 2 basis functions φi(x), i = 0, 1, . . . , N + 1 and N basis functions in the
y-direction φj(y), j = 1, . . . , N . In this case we have the N(N + 2) basis functions
φij(x, y) which are the tensor products of the one-dimensional basis functions. The
basic structure of the matrix is the same as in the previous example. Optimal error
estimates are derived in a completely analogous manner to the previous section.

We note that if we attempt to discretize the purely Neumann problem, i.e.,
when Γ2 = Γ, then the resulting (N + 2)2 matrix would be singular. This is to
be expected because we could not prove uniqueness of the solution to the weak
problem. A unique solution to the system can be found by imposing an additional
condition on uh such as specifying uh at one point or requiring the solution to have
zero mean, i.e.,

∫
Ω
u dΩ = 0.

9.1.9 A Neumann problem for the Helmholtz equation

We have seen that the purely Neumann problem for Poisson’s equation; i.e., when
Γ2 = Γ, does not have a unique solution and if we attempt to discretize then we
have a singular matrix. If, however, we consider the Neumann problem for the
Helmholtz equation

−∆u+ σ2u = f in Ω

∂u

∂n̂
= 0 on Γ
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then the problem possesses a unique solution for u ∈ C2 and sufficiently smooth
boundary. In this case the weak formulation is to find u ∈ V such that∫

Ω

(
∇u · ∇v + uv

)
dΩ =

∫
Ω

fv dΩ ∀v ∈ V .

The discrete weak form is defined in an analogous manner.

9.2 Computational examples

Before looking at a specific example, we first compare the number of nodes, the
number of unknowns, and the number of quadrature points required to approximate
the solution of the problem −∆u+ u = f with homogeneous, Neumann boundary
conditions in one, two and three dimensions. Note that in this purely Neumann
problem the number of unknowns is the same as the number of nodes. Specifically
we compare the number of unknowns for various values of h for linear, bilinear and
trilinear elements as well as for tensor products of quadratic and cubic spaces. We
also provide the minimum number of quadrature points that are used in each case.
Recall that the number of unknowns corresponds to the size of the matrix and the
number of quadrature points influences the amount of work required to compute
the entries in the matrix and right-hand sides. In all cases we assume a uniform
grid with spacing h in each dimension. The “curse of dimensionality” can clearly
be seen from Table 9.2.

Number of unknowns Number of
h = 0.1 h = 0.01 h = 0.001 quadrature pts.

linear 11 101 1001 1
bilinear 121 10,201 1.030×106 1
trilinear 1331 1.030×106 1.003×109 1

quadratic 21 201 2001 2
biquadratic 441 40,401 4.004×106 4
triquadratic 9261 8.121×106 8.012×109 8

cubic 31 301 3001 3
bicubic 961 90,601 9.006×106 9
tricubic 29,791 2.727×107 2.703×1010 27

Table 9.2: Comparison of number of unknowns for solving a problem on a domain
(0, 1)n, n = 1, 2, 3 using tensor products of one-dimensional elements.

We now turn to providing some numerical results for the specific problem

−u′′(x) = (x2 + y2) sin(x, y) ∀(x, y) ∈ Ω
u = sin(xy) on Γ

(9.15)

where Ω = {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 3}. The exact solution to this problem
is u(x, y) = sin(xy) whose solution is plotted in Figure 9.3 along with a contour
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plot of the solution. Note that we are imposing inhomogeneous Dirichlet boundary
conditions in this example. The results presented here use bilinear and biquadratic
elements on a uniform grid of size h in each dimension; for the quadrature rule we use
the tensor product of the one point Gauss rule for bilinears and the tensor product
of the two point Gauss rule for biquadratics. As usual, a higher order quadrature
rule is used to calculate the error. The numerical rates of convergence are obtained
in the same manner as before. The results are presented in Table 9.3 and some
results are plotted for the bilinear case in Figure 9.4. Note that as expected, the
optimal rates of convergence are obtained.

Figure 9.3: Exact solution

Table 9.3: Numerical results for (9.15) using bilinear and biquadratic elements.

element h No. of
∥∥u− uh∥∥

1
rate

∥∥u− uh∥∥
0

rate
unknowns

bilinear 1/4 144 0.87717 0.76184× 10−1

bilinear 1/8 529 0.0.43836 1.0007 0.19185× 10−1 1.9895
bilinear 1/16 2209 0.21916 1.0001 0.48051× 10−2 1.9973
bilinear 1/32 9216 0.0.10958 1.0000 0.12018× 10−3 1.9994

biquadratic 1/4 529 0.70737×10−1 0.22488× 10−2

biquadratic 1/8 2209 0.17673×10−1 1.9758 0.28399× 10−3 2.9853
biquadratic 1/16 9025 0.44175×10−2 1.9940 0.35604× 10−4 2.9957
biquadratic 1/32 36,491 0.11043×10−2 1.9986 0.44539× 10−5 2.9990

9.3 Finite Element Spaces

One of the advantages of the finite element method is that it can be used with
relative ease to find approximations to solutions of differential equations on general
domains. So far we have only considered approximating in one dimension or in higher
dimensions using rectangular elements. Our goal now is to present some examples



CHAPTER 9. THE FINITE ELEMENTMETHOD IN HIGHER DIMENSIONS198

Figure 9.4: Approximations to Problem (9.15) using h = 1/4 and h = 1/8.

of commonly used elements. When we have a domain with curved boundaries there
are special elements called isoparametric elements; however we will not discuss
those here.

To precisely describe a particular finite element, it is not enough to give the
geometric figure, e.g., a triangle, rectangle, etc. One must also specify the de-
gree of polynomial that is used. Does describing these two pieces of information
uniquely determine the choice? In fact, no. For example, in R1 using an interval
as the geometric element and specifying a cubic polynomial on each interval does
not completely describe the finite element because we can determine the cubic by
function values at four points or by function and derivative values at two points;
the latter is called a Hermite cubic. Consequently, three pieces of information must
be provided to give an adequate description of a finite element; we must specify

(i) the geometric element,

(ii) the degree of polynomial, and

(iii) the degrees of freedom which are used to uniquely determine the polynomial.

Once we have chosen a particular finite element, we subdivide the domain into a
finite number of geometric elements; this meshing must be “admissible”, i.e., satisfy
certain properties. We want to construct a finite element space over this mesh which
possesses specific properties. A basic property which we said is a distinguishing
feature of the finite element method is that we use a piecewise polynomial which is
a kth degree polynomial when restricted to the specific element. For second order
differential equations this piecewise polynomial has to be continuous but for fourth
order problems more smoothness is required; this is why fourth order problems are
typically written as a system of second order equations. Also, for the finite element
method to be computationally efficient we must be able to construct a basis which
has small support. Before addressing some of these issues we consider the admissible
“triangulations” of a domain.
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9.3.1 Admissible triangulations

Once a specific geometric element is chosen, we subdivide the domain Ω into a finite
number of individual subsets or geometric elements. We will use the terminology
triangulation to refer to a subdivision of Ω even if the specific geometric element
is not a triangle. The subsets form a triangulation of Ω, denoted T h, which must
satisfy certain properties. Some of these properties are obvious, such as the fact
that their union is Ω̄ (the domain including the boundary), while others may not be
as obvious. For example, we must add a condition which guarantees there are no
“hanging nodes” as indicated in Figure 9.5.
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Figure 9.5: Inadmissible triangulation due to “hanging node”

Definition 1. A subdivision T h of Ω into subsets {K1,K2, . . . ,KM} is an ad-
missible triangulation of Ω if it satisfies the following properties:

(i) Ω̄ = ∪Mj=1 Kj ;

(ii) for each j, j = 1, 2, . . . ,M , the set Kj is closed and the interior of Kj is
non-empty;

(iii) for each Kj , j = 1, 2, . . . ,M , the boundary ∂Kj is Lipschitz continuous2 ;

(iv) if the intersection of two elements Kj and K` is nonempty then the intersection
must be a common vertex of the elements if the intersection is a single point;
otherwise the intersection must be an entire edge or face common to both K`
and Kj .

See Figure 9.5 for an example of a triangulation which does not satisfy condition
(iii).
The penultimate condition in Definition 9.3.1 allows the application of Green’s
formula over each element.

The parameter h in the triangulation T h is related to the size of the geometric
elements and generally gives a measure of the coarseness or fineness of the mesh. It

2A domain in Euclidean space with Lipschitz boundary is one whose boundary is “suffi-
ciently regular”. Formally, this means that the boundary can be written as, e.g., z = f(x, y)
where f is Lipschitz continuous.
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is usually taken to be the diameter of the largest element. If we have a mesh where
all the geometric elements are congruent, then the triangulation is uniform if all
the elements are the same size; otherwise the triangulation is called nonuniform.

9.4 Examples of finite elements

In R2 the common choices for a geometric element are a triangle and a quadrilateral.
If the domain is polygonal and not rectangular, then triangular elements are needed
to discretize. In R3 the commonly used elements are tetrahedra, prisms and cubes
or bricks. In this section we look at some of the more commonly used triangular
elements and their variants.

We have seen that to completely specify a finite element, it is not enough to
just choose a geometric element. We must also specify the degree of polynomial on
the element and the degrees of freedom which uniquely determine the polynomial.
To use the element we must also specify a basis which has small support. We saw
that for rectangular elements we could simply use tensor products of the basis in
one-dimension. For triangles or tetrahedra, this approach does not work.

9.4.1 Simplices

To gain insight into how finite element families are defined we look at a particular
example called simplices which are line segments in R1, triangles in R2 or tetrahedra
in R3. Formally, we define an n-simplex in the following way.

Definition 2. Let zk, k = 1, . . . , n + 1, denote n + 1 points in Rn. The in-
tersection of all convex sets 3 containing these n + 1 points, the containing zk,
k = 1, . . . , n + 1, is called an n-simplex and the points zk, k = 1, . . . , n + 1, are
called the vertices of the n-simplex.

For example, for n = 1 we specify two points {z1, z2} and a 1-simplex is an
interval with the endpoints z1, z2 where we require z1 6= z2. For n = 2 we
specify three points {z1, z2, z3} and a 2-simplex is simply a triangle with vertices
(zi1 , zi2), i = 1, 2, 3, provided the three points are not collinear. To enforce the
non-collinearity of the points, we require that the matrix z11

z21
z31

z12
z22

z32

1 1 1


is nonsingular. Note that the magnitude of the determinant of this matrix is just
the area of the parallelogram formed by the vectors z2− z1 and z3− z1. For n = 3,
we specify four points {z1, z2, z3, z4} and a 3-simplex is just a tetrahedron with

3Recall that a set S is convex if given any two points x and y in S then the line segment
joining x and y lies entirely in S.
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Figure 9.6: n-simplicies of type(1)
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vertices zi, i = 1, . . . , 4, provided the four points are not coplanar, i.e., provided
the matrix 

z11
z21

z31
z41

z12
z22

z32
z42

z13
z23

z33
z43

1 1 1 1


is nonsingular. Note that the magnitude of the determinant of this matrix is the
volume of the parallelepiped formed by the vectors zi − z1, i = 2, 3, 4.

We have seen how to construct a basis in one dimension so that it is nodal
(i.e., zero at all nodes except one where it takes on the value of one) and thus it
is nonzero over a large portion of the domain. This property resulted in a sparse
banded matrix equation to solve. In addition, in one dimension we had an explicit
formula for our basis. We now want to see how we can construct a nodal basis in
R2.

Constructing a nodal basis

We will only consider the case of triangles in R2 but the results easily generalize
to R3. Suppose that we are given a set of three points z1, z2, z3 which are not
collinear so they defined a triangle. Suppose further that we want to construct a
linear function p(x, y) = a0 + a1x+ a2y which is one at vertex z1 and zero at the
other two vertices. To simplify the exposition assume that z1 = (0, 0), z2 = (1, 0)
and z3 = (1, 1). In this case we have to solve the system of equations

p((0, 0)) = a0 + a1 · 0 + a2 · 0 = 1
p((1, 0)) = a0 + a1 · 1 + a2 · 0 = 0
p((1, 1)) = a0 + a1 · 1 + a2 · 1 = 0
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which gives the polynomial 1− x. Similarly the linear polynomial that is one at z2

and zero at the other two nodes satisfies the system

p((0, 0)) = a0 + a1 · 0 + a2 · 0 = 0
p((1, 0)) = a0 + a1 · 1 + a2 · 0 = 1
p((1, 1)) = a0 + a1 · 1 + a2 · 1 = 0

so it is given by x− y. The polynomial that is one at z3 and zero at the other two
nodes satisfies the system

p((0, 0)) = a0 + a1 · 0 + a2 · 0 = 0
p((1, 0)) = a0 + a1 · 1 + a2 · 0 = 0
p((1, 1)) = a0 + a1 · 1 + a2 · 1 = 1

so it is just y. So on our specific triangle we have three linear polynomials, 1−x, x−y
and y which any polynomial a0 + a1x+ a2y can be written as a linear combination
of these three polynomials. For example, 3− 2x+ 4y = 3(1−x) + 1(x− y) + 5(y).
The polynomials are linearly independent and span the space of all linear functions
defined over our given triangle.

If we have a general triangle then we would have to solve a 3 × 3 system of
equations to determine the basis function. However, if we take this approach then
when we define a quadratic on our triangle, then we have a 6× 6 system to solve.
There are two approaches to avoid this problem. One is to determine formulas for
the basis functions on a reference element such as the triangle we chose. Then
we map these basis functions into the desired triangle much like we map our Gauss
quadrature formulas defined on [−1, 1] into our desired interval of integration. The
other approach is to use something called barycentric coordinates which were first
defined by Möbius in 1827. We know that if we are given a frame in Rn, then
we can define a local coordinate system with respect to the frame;e.g., Cartesian
coordinates. If we are given a set of n + 1 points in Rn then we can also define a
local coordinate system with respect to these points; such coordinate systems are
called barycentric coordinates. These allow the calculation of higher order basis
functions defined on a triangle by solving a 3× 3 system of equations. We will not
go into the details here.

In general, one can demonstrate rigorously that a linear function defined on a
triangle can be uniquely determined by its values at the vertices of the triangle. In
R3 a linear function on a tetrahedron can be uniquely determined by its values at
the four vertices.

What do we do if we want to use higher degree polynomials? If we want to
define a quadratic polynomial a0 + a1x+ a2y + a3x

2 + a4y
2 + a5xy on a triangle

then we have six degrees of freedom a0, . . . , a5 so we need to specify six conditions.
We use the three vertices of the triangle and to get three additional conditions we
choose the midpoints of the side of the triangle. Likewise for a cubic we have an
additional four degrees of freedom so that we need to specify ten nodes. We choose
the vertices, two points on each side of the triangle and an additional one at the
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barycenter of the triangle. These nodes are illustrated in Figure 9.7. So for linear
polynomials on a triangle we have three nodes, for quadratics on a triangle we have
six nodes and for cubics on a triangle we have ten nodes. Recall that as we increase
the number of nodes we increase the size of the resulting system of equations.
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Figure 9.7: From left to right: three node linear triangle; six node quadratic
triangle; ten node cubic triangle

All of the finite element spaces we have defined so far are called Lagrangian
elements because they use the value at the nodes as constraints. We can also use
derivative values as constraints; these are typically called Hermite elements. The
interested reader is referred to a standard text in FEM for details.

9.4.2 Quadrature rules on triangles

When we used rectangular elements we were able to choose our quadrature rules as
tensor products of Gauss quadrature rules in one dimension. However, on triangles
we can no longer do this. If one uses continuous piecewise linear functions defined
over triangles than the quadrature rule∫

T

g(x, y) dxdy ≈ g(mT )area(T )

is adequate for the assembly of the matrix and right hand side. Here mT represents
the barycenter of the triangle we are integrating over.

If we are using continuous piecewise quadratic functions defined over triangles
then we must use a three point rule∫

T

g(x, y) dxdy ≈ 1

3

[
g(z12) + g(z23) + g(z31)

]
area(T )

where zij represents the midpoint of the side of the triangle with vertices zi and zj .
Higher accurate rules can be found in standard texts on finite element methods.


