
Intrinsic Functions

• A fortran compiler has many built-in or intrinsic function for standard math-
ematical operations.

• Appendix A in your book has a complete list and Table 2.2, page 33 has an
abbreviated list..

• The trig functions are standard - for example

sin(x) cos(x) tan(x) asin(x) sinh(x)

– Here asin is the arcsin (i.e., sin−1) and sinh is the hyperbolic sine.

– Note that each function has an argument enclosed in () which is an
angle in radians.

– Note that cos (pi/ 3) is cos 60◦ not cos (60), assuming of course
that pi has been appropriately defined.

• The natural log, log10, e, and square root function are defined by

log(x) log10(x) exp(x) sqrt(x)

• If we want to compute log2 x then we must convert this to the natural log
(or log10), i.e., log2 x = ln x/ ln 2.

• Note that the natural log is not ln

• Note that there is no built-in function for
1

x
like on your calculator.

• As an example, consider the quantity

4e.5 + sin 90◦ − ln 2.79

4.0 ∗ exp(0.5) + sin(pi/2.0) − log(2.79)

where pi has been appropriately defined.

• There are many more intrinsic functions or procedures which we will introduce
as we need them

Variables

• Most of the time we will perform a calculation and assign the value to some
variable (which has been declared in a type statement). Alternately, we may
want to define a variable as a parameter (fixed forever in the program) such
as pi.

• Of course fortran has rules for naming variables.

– must begin with a letter

– other characters may be letters, numbers or underscores

– must be ≤ 30 characters

• You can not name a variable a name that already means something in fortran.
For example, you can’t name a variable sin since it is an intrinsic function.

• I have a rule for naming variables - The name must be meaningful!

• As an example, consider the following two lines of code for calculating the
area of a circle. Which one do you think is easier to follow?

a = 5.0

b = pi * a **2

or

radius = 5.0

area circle = pi * radius**2

The Assignment Statement

• We have already seen that the assignment statement just assigns a value to
a variable.

• However there is one assignment statement which may seem confusing at
first. Consider the statements

a = 3.0

• This statement assigns the value 3 to a.

a = a + 5.0

• This statement says take the current value of a (which is 3) and add 5 to
it; a is now 8.

a = a / 4.0

• This says take the current value of a (8) and divide it by 4. a is now 2.

A Simple Do Loop for Repetition

• Many times we will want to perform a calculation repeatedly.

• For example, if we want to add the first n integers then a strategy would be
to
– initialize the sum to 0
– repeatedly add the next integer to the sum until you reach n

• Do loops allow us to easily repeat a section of code.

• Here we will only investigate counter-controlled do loops

• Syntax for the do construct (counter-controlled)

do control variable = initial value, final value, increment
statements

end do

• The counter control, initial value, final value and increment must be integers

• The increment is optional; if omitted it is assumed that the increment is 1

• Negative increments are allowed.

• The initial or final values can be zero

• How does it work? Consider the statements

do i = 2, 10

· · ·

end do

1. The counter control i is set to the initial value, here to 2

2. i is then checked against the final value (here 10) to see if it is ≤ the
final value (assuming final value is positive)

– If less than or equal to the final value, proceed to step 3

– If greater than the final value, terminate loop (go to next statement
after end do)

3. all statements between the do and the end do statements are executed

4. the increment is added to i (here the increment is 1 so that i = i +1)

5. Return to step (2)

Example

integer :: sum integers

integer :: i

sum integers = 0

do i = 1, 5

sum integers = sum integers + i

end do

• i = 1 - sum integers = 0 + 1 = 1

• i = 2 - sum integers = 1 + 2 = 3

• i = 3 - sum integers = 3 + 3 = 6

• i = 4 - sum integers = 6 + 4 = 10

• i = 5 - sum integers = 10 + 5 = 15

• the loop is terminated when i = 6 since this value is greater than the final

value

• Note that for readability we have indented the commands inside the do loop

An example of a do loop with a negative increment

Suppose that you want to program the relationship

ai−1 = ai/2 , i = 5, 4, . . . , 1, a5 = 100

real :: a i

integer :: i

a i = 100.0

do i = 4,1,-1

a i = a i / 2.0

end do

• i is first set to 4, a i computed as 100./2.=50.

• i is then incremented by -1, i.e., it is 3 and a i is computed to be 50./2.=25.

• The loop is repeated until the value of the counter is < 1

A Simple Conditional

• Often we need to test to see if a particular condition has been met. For
example, if our error is less than some tolerance.

• Fortran provides several conditional statements for this purpose.

• Now we look at the simple if statement where we test a condition and
have only one alternative. The alternative can consist of a single statement
or several statements.

• Syntax for case when we only want to perform one statement if the condition
is satisfied

if (condition) statement

Example
if (a < 2) b = a **4

if (error < tolerance) stop

• Syntax for the case when we want to perform several statements if the
condition is satisfied

if (condition) then

statements
end if

if (error < tolerance) then

print *, " method has converged"

stop

end if

An IF ELSE Construct

• Often when we test we want to do one thing if the condition is satisfied and
another if it is not; i.e., we have 2 alternatives. In this case we can simply
add an else to our if then construction

if (condition) then

statements
else

statements
end if

• For example, if we want to take the square root of a if a ≥ 0 but if a is
negative then we want to take the square root of the absolute value of a,
we would have the following IF ELSE construct

if (a >= 0.0) then

a = sqrt(a)

else

a = sqrt(abs (a))

end if

Symbols for Logical Expressions

less than < .lt.

less than or equal to <= .le.

great than > .gt.

greater than or equal to >= .le.

equal to == .eq.

not equal to /= .ne.

• You can use either the symbol or the text syntax. For example if you want
less than you can use either < or .lt.

• If we wanted to test if a is less than 4

if (a < 4.0) then

• If we wanted to test if a is greater than 2

if (a > 2.0) then

• What if we want to combine these two expressions to check that 2 < a < 4?

Compound Expressions

and .and.

or .or.

not .not.

• To check that 2 < a < 4

if (a < 4.0 .and. a > 2.0) then

• To check that the error is less than or equal to the tolerance or the number
of steps (say n) is greater than some maximum number of steps

if (error <= tolerance .or. n > max steps) then

Printing our Results to the Screen

• After we do some calculations we want to output the results.

• Typically we will either output the results
– to the screen
– or write them to a file which we can open and look at later.

• If we don’t have too much output, then we can simply print to the screen.

• We can either print text or the value of some variable

• To print text to the screen we must enclose the text in either single or double
quotes

print *, " the method has converged "

• Note that print * means to print to the screen

• We can print the stored value of a variable to the screen by
print *, variable name

• If we want to print two variables, say approximation and error then we
put them in a list and separate them by a comma

print *, approximation, error

• We can combine these two into one statement; for example to print out the
final error (call it error) after the method has converged to an acceptable
answer we type
print *, " the method has converged; the error is ", error

• These are all called unformatted writes. We can also specify the format we
want to use to write out a variable; e.g., how many decimal places to include,
etc. We will return to the print statement later.

Reading Input from the Screen

• If you recall, the first day of class you downloaded a code which summed the
first n integers. The program queried the user to enter the value of n. You
simply typed it when asked and hit return.

• To do this, we can simply use the read command and tell the compiler we
want to read the data from the terminal window.

read *, n

• Again the syntax read * means to read from the screen just like print *

writes to the screen .

• When the program is executed, execution is halted until this value is read in.
It will NOT prompt you to do this.

• Consequently, if you are reading from the screen, you should always put a
write statement before this to tell the user that he/she will be asked to input
a value.

For example, if the user needs to input the number of integers from the
screen, then you should include the lines

print *, " enter the number of integers you want to sum"

read *, n

Debugging Codes

• Writing a program often takes less time than actually debugging it - i.e.,
finding all the errors.

• Errors are of two basic types :
1. Compile time error

– errors that violate syntax rules such as:
∗ typos which result in a violation of fortran rules

∗ we inadvertently violate some rule such as forgetting to declare a
variable

2. Runtime or Execution errors
– dividing by zero
– errors in input/output
– referencing an entry in an array that doesn’t exist
– logical errors - usually the hardest to find

• Remember that just because a code compiles and runs doesn’t mean it’s
right.

• First, let’s look at some simple codes which have errors in them to see the
actual error messages and try to debug the codes. We will look at the codes
debug1.f90, debug2.f90, debug3.f90 and debug4.f90 now to try to
get them to compile.

Accessing SCS Computers Remotely

• You can compute on the SCS machines remotely - from a computer at your
home or other locations on campus.

• You will need to use the ssh command to do this.

• The command sftp is useful for moving files from you class account to your
personal computer.

• We will now try to log on to another classroom machine using the ssh

command.

Homework

• Open up the file quadratic formula.f90 (which of course implements
the quadratic formula for finding the roots of a quadratic polynomial) and
attempt to find the errors so that the program compiles. (I think there are
3 compile errors)

• The code quadratic formula.f90 has a logic error in it. Find it and
verify the code gives the correct answer for the quadratic polynomial that is
specified in the code.

• Add read statements to quadratic formula.f90 to enter the coefficients
of the quadratic ax2+bx+c from the terminal instead of setting their values
in the actual program. For example, you might say

print *, "enter the coefficient of x squared"

read *, a

• Try your program on the quadratic x2 + 4. What happens and why?

• Add a conditional to check if the discriminant b2 − 4ac < 0; if it is, print
out a statement indicating that no real roots are found.

• The final version of your code should be submitted as homework. See Home-
work I.1

