
Chapter 1

Eigenvalues and Eigenvectors

Among problems in numerical linear algebra, the determination of the eigenvalues
and eigenvectors of matrices is second in importance only to the solution of lin-
ear systems. In this chapter we first give some theoretical results relevant to the
resolution of algebraic eigenvalue problems. In particular, we consider eigenvalue
decompositions which relate a given matrix A to another matrix that has the same
eigenvalues as A, but such that these are easily determined. The bulk of the chapter
is devoted to algorithms for the determination of either a few or all the eigenvalues
and eigenvectors of a given matrix. In many cases, these algorithms compute an
approximation to an eigenvalue decomposition of the given matrix.

1.1 Introduction

Given an n× n matrix A, the algebraic eigenvalue problem is to find a λ ∈ Ck and
a vector x ∈ Cn satisfying

Ax = λx , x 6= 0 .(1.1)

The scalar λ is called an eigenvalue of A and the nonzero vector x a (right) eigen-
vector of A corresponding to λ. Note that an eigenvector can be determined only up
to a multiplicative constant since, for any nonvanishing α ∈ Ck, αx is an eigenvector
of A whenever x is.

Clearly, λ is an eigenvalue of A if and only if the matrix A− λI is singular, i.e.,
if and only if

det(A− λI) = 0 .(1.2)

The polynomial det(A − λI) of degree n in λ, referred to as the characteristic
polynomial corresponding to A, has n roots some of which may be repeated. The
set of all eigenvalues of a matrix A, i.e., the set of all roots of the characteristic
polynomial, is called the spectrum of A, and is denoted by λ(A). Recall the basic
result that the roots of a polynomial depend continuously on the coefficients of the
polynomial. Then, since the eigenvalues of a matrix are the roots of its characteristic
polynomial, and since the coefficients of the characteristic polynomial are continuous
functions of the entries of the matrix (in fact, they are polynomial functions), we

1

2 1. Eigenvalues and Eigenvectors

can conclude that the eigenvalues of a matrix depend continuously on the entries
of the matrix.

There is a converse to the above correspondence between the eigenvalues of a
matrix A and the roots of its characteristic polynomial. Given any monic polynomial
p(λ) = a0 +a1λ+a2λ

2 + · · ·+an−1λ
n−1 +λn in λ of degree n, there exists a matrix

C whose eigenvalues are the roots of p(λ), i.e., such that p(λ) = det(C − λI) is the
characteristic polynomial for C. One such matrix is the companion matrix

C =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...
0 0 · · · 1 −an−1

 .

It is well know that, in general, one cannot determine the roots of a polynomial of
degree 5 or higher using a finite number of rational operations. This observation
and the correspondences between the eigenvalues of a matrix and the roots of its
characteristic polynomial have an immediate implication concerning algorithms for
determining the eigenvalues of a matrix: in general, one cannot determine the eigen-
values of a matrix in a finite number of rational operations. Thus, any algorithm
for determining eigenvalues is necessarily iterative in character, and one must settle
for approximations to the eigenvalues.

We say that an eigenvalue λ has algebraic multiplicity ma(λ) if it is repeated
ma(λ) times as a root of the characteristic polynomial (1.2). The sum of the alge-
braic multiplicities of the distinct eigenvalues of an n× n matrix is equal to n.

A vector x is an eigenvector of A corresponding to the eigenvalue λ if x ∈ N (A−
λI). Any linear combination of eigenvectors corresponding to a single eigenvalue is
itself an eigenvector corresponding to that same eigenvalue, i.e., if x(1),x(2), . . . ,x(k)

are all eigenvectors of a matrix A corresponding to the same eigenvalue λ, then,
for any cj ∈ Ck, j = 1, . . . , k, the vector

∑k
j=1 cjx(j) is also an eigenvector of A

corresponding to λ.

The geometric multiplicity of an eigenvalue λ is the integer mg(λ) = dim N (A−
λI). Note that for any eigenvalue λ, ma(λ) ≥ mg(λ) ≥ 1; thus, it is possible for the
sum of the geometric multiplicities to be less than n. This sum gives the dimension
of the subspace of Ckn spanned by the eigenvectors of A. If ma(λ) > mg(λ) we call
the eigenvalue λ defective; if ma(λ) = mg(λ), λ is called nondefective. If A has at
least one defective eigenvalue, A itself is called defective; if all the eigenvalues of A
are nondefective, A itself is called nondefective. Thus a nondefective matrix A has a
complete set of eigenvectors, i.e., there exists a set of eigenvectors of a nondefective
n× n matrix that span Ckn.

1.1. Introduction 3

Example 1.1 Consider the matrix

A =


3 1 0 0
0 3 0 0
0 0 2 0
0 0 0 2

 .

The characteristic polynomial is given (3−λ)2(2−λ)2 and the eigenvalues are 2 and
3, each having algebraic multiplicity 2. Note that N (A− 2I) = span {(0 0 1 0)T ,
(0 0 0 0 1)T } and N (A − 3I) = span{ (1 0 0 0)T } so that the geometric
multiplicity of the eigenvalue 2 is 2, and that of the eigenvalue 3 is 1. Thus, the
eigenvalue 3 is defective, the eigenvalue 2 is nondefective, and the matrix A is
defective.

In general, if an eigenvalue λ of a matrix is known, then a corresponding eigen-
vector x can be determined by solving for any particular solution of the singular
system (A − λI)x = 0. If one finds mg(λ) vectors which constitute a basis for
N (A − λI), then one has found a set of linearly independent eigenvectors corre-
sponding to λ that is of maximal possible cardinality. One may find a basis for the
null space of a matrix by, e.g., Gauss elimination or through a QR factorization.

If an eigenvector x of a matrix A is known then, using (1.1), the corresponding
eigenvalue may be determined from the Rayleigh quotient

λ =
x∗Ax
x∗x

.(1.3)

Alternately, one may also use

λ =
(Ax)j

(x)j
(1.4)

for any integer j such that 1 ≤ j ≤ n and for which (x)j 6= 0.
If x is an exact eigenvector of A, and if λ is determined from (1.3) or (1.4), we

have that (A−λI)x = 0. If (µ, z) is not an exact eigenpair, then r = (A−µI)z 6= 0;
we call r the residual of the approximate eigenpair (µ, z). An important property
of the Rayleigh quotient with respect to the residual is given in the following result.

Proposition 1.1 Let A be a given n × n matrix and let z ∈ Ckn, z 6= 0, be a
given vector. Then, the residual norm ‖r‖2 = ‖(A− µI)z‖2 is minimized when µ
is chosen to be the Rayleigh quotient for z, i.e., if µ = z∗Az/z∗z.

Proof. It is easier to work with ‖r‖22 which is given by

‖r‖22 = z∗(A∗ − µ̄I)(A− µI)z
= |µ|2z∗z−<(µ)z∗(A + A∗)z + i=(µ)z∗(A−A∗)z + z∗A∗Az .

It is a simple exercise in the calculus to show that this function of two variables
is minimized when 2(z∗z)<(µ) = z∗(A + A∗)z and 2(z∗z)=(µ) = −iz∗(A − A∗)z.
From these it follows that µ = z∗Az/z∗z. 2

4 1. Eigenvalues and Eigenvectors

We say that a subspace S is invariant for a matrix A if x ∈ S implies that
Ax ∈ S. If S = span{p(1),p(2), . . . ,p(s) } is an invariant subspace for an n × n
matrix A, then there exists an s × s matrix B such that AP = PB, where the
columns of the n × s matrix P are the vectors p(j), j = 1, . . . , s. Trivially, the
space spanned by n linearly independent vectors belonging to Ckn is an invariant
subspace for any n × n matrix; in this case, the relation between the matrices A,
B, and P is given a special name.

Let A and B be n × n matrices. Then A and B are said to be similar if there
exists an invertible matrix P , i.e., a matrix with linearly independent columns, such
that

B = P−1AP .(1.5)

The relation (1.5) itself is called a similarity transformation. B is said to be unitarily
similar to A if P is unitary, i.e., if B = P ∗AP and P ∗P = I.

The following proposition shows that similar matrices have the same character-
istic polynomial and thus the same set of eigenvalues having the same algebraic
multiplicities; the geometric multiplicites of the eigenvalues are also unchanged.

Proposition 1.2 Let A be an n × n matrix and P an n × n nonsingular matrix.
Let B = P−1AP . If λ is an eigenvalue of A of algebraic (geometric) multiplicity
ma (mg), then λ is an eigenvalue of B of algebraic (geometric) multiplicity ma

(mg). Moreover, if x is an eigenvector of A corresponding to λ then P−1x is an
eigenvector of B corresponding to the same eigenvalue λ.

Proof. Since Ax = λx and P is invertible, we have that

P−1AP (P−1x) = λP−1x

so that if (λ,x) is an eigenpair of A then (λ, P−1x) is an eigenpair of B. To
demonstrate that the algebraic multiplicities are unchanged after a similarity trans-
formation, we show that A and B have the same characteristic polynomial. Indeed,

det(B − λI) = det(P−1AP − λI) = det(P−1(A− λI)P)
= det(P−1) det(A− λI) detP = det(A− λI) .

That the geometric multiplicities are also unchanged follows from

0 = (A− λI)x = P (B − λI)(P−1x)

and the invertibility of P . 2

It is easily seen that any set consisting of eigenvectors of a matrix A is an invari-
ant set for A. In particular, the eigenvectors corresponding to a single eigenvalue λ
form an invariant set. Since linear combinations of eigenvectors corresponding to a
single eigenvalue are also eigenvectors, it is often the case that these invariant sets
are of more interest than the individual eigenvectors.

1.1. Introduction 5

If an n × n matrix is defective, the set of eigenvectors does not span Cn. In
fact, the cardinality of any set of linearly independent eigenvectors is necessarily
less than or equal to the sum of the geometric multiplicities of the eigenvalues of
A. Corresponding to any defective eigenvalue λ of a matrix A, one may define
generalized eigenvectors that satisfy, instead of (1.1),

Ay = λy + z ,(1.6)

where z is either an eigenvector or another generalized eigenvector of A. The num-
ber of linearly independent generalized eigenvectors corresponding to a defective
eigenvalue λ is given by ma(λ) − mg(λ), so that the total number of generalized
eigenvectors of a defective n × n matrix A is n − k, where k =

∑K
j=1 mg(λj) and

λj , j = 1, . . . ,K, denote the distinct eigenvalues of A. The set of eigenvectors and
generalized eigenvectors corresponding to the same eigenvalue form an invariant
subset. The set of all eigenvectors and generalized eigenvectors of an n× n matrix
A do span Cn. Moreover, there always exists a set consisting of k eigenvectors and
n− k generalized eigenvectors which forms a basis for Cn.

Example 1.2 Consider the matrix

A =


2 3 4 0 0
0 2 5 0 0
0 0 2 0 0
0 0 0 2 6
0 0 0 0 2


and the vectors

x(1) =


1
0
0
0
0

 , x(2) =


0
0
0
1
0

 ,

y(1) =


0

1/3
0
0
0

 , y(2) =


0

−4/45
1/15

0
0

 , and y(3) =


0
0
0
0

1/6

 .

Clearly, λ = 2 is the only eigenvalue of A and it has algebraic multiplicity ma(2) =
5 and geometric multiplicity mg(2) = 2. It is easily verified that x(1) and x(2)

are eigenvectors of A; all other eigenvectors of A can be expressed as a linear
combination of x(1) and x(2). Also, y(1), y(2), and y(3) are generalized eigenvectors
of A. Indeed,

Ay(1) = 2y(1) + x(1)

Ay(2) = 2y(2) + y(1)

Ay(3) = 2y(3) + x(2) .

6 1. Eigenvalues and Eigenvectors

Finally, the set {x(1) , x(2) , y(1) , y(2) , y(3) } spans RI 5.

The precise nature of the relations between eigenvectors and generalized eigen-
vectors of a matrix A may be determined from its Jordan canonical form which we
do not discuss here.

If U is an upper triangular matrix, its eigenvalues and eigenvectors are easily
determined, i.e., the eigenvalues are the diagonal entries of U and the eigenvectors
may be found through a simple back substitution process. Also, if A is a block upper
triangular matrix, i.e., a matrix of the form

A =


A11 A12 A13 · · · A1m

0 A22 A23 · · · A2m

0 0 A33 · · · A3m

...
...

. . .
...

0 0 0 · · · Amm

 ,

where the diagonal blocks Aii, i = 1, . . . ,m, are square, then it is easy to
demonstrate that the eigenvalues of A are merely the union of the eigenvalues of
Aii for i = 1, . . . ,m.

We close this section by giving a localization theorem for eigenvalues, i.e., a
result which allows us to determine regions in the complex plane that contain the
eigenvalues of a given matrix.

Theorem 1.3 (Gerschgorin Circle Theorem) Let A be a given n×n matrix. Define
the disks

Di =
{

z ∈ Ck : |ai,i − z| ≤
n∑

j=1
j 6=i

|ai,j |
}

for i = 1, . . . , n .(1.7)

Then every eigenvalue of A lies in the union of the disks S = ∪n
i=1Di. Moreover, if

Sk denotes the union of k disks, 1 ≤ k ≤ n, which are disjoint from the remaining
(n − k) disks, then Sk contains exactly k eigenvalues of A counted according to
algebraic multiplicity.

Proof. Let (λ,x) be an eigenpair of A and define the index i by |xi| = ‖x‖∞. Since

n∑
j=1

ai,jxj − λxi = 0

we have that

|ai,i − λ| |xi| = |ai,ixi − λxi| =
∣∣∣ n∑
j=1
j 6=i

ai,jxj

∣∣∣ ≤ n∑
j=1
j 6=i

|ai,j | |xi|

1.2. Eigenvalue Decompositions 7

and since x 6= 0, we have that xi 6= 0 and therefore (1.7) holds.
For the second result, let

A = D + B and for i = 1, . . . , n, si =
n∑

j=1
j 6=i

|ai,j | ,

where D is the diagonal of A. Now, for 0 ≤ t ≤ 1, consider the matrix C = D + tB.
Since the eigenvalues of C are continuous functions of t, as t varies from 0 to 1 each
of these eigenvalues describes a continuous curve in the complex plane. Also, by
the first result of the theorem, for any t, the eigenvalues of C lie in the union of the
disks centered at ai and of radii tsi ≤ si. Note that since t ∈ [0, 1], each disk of
radius tsi is contained within the disk of radius si. Without loss of generality we
may assume that it is the first k disks that are disjoint from the remaining (n− k)
disks so that the disks with radii sk+1, . . . , sn are isolated from Sk = ∪k

i=1Di. This
remains valid for all t ∈ [0, 1], i.e., the disks with radii tsk+1, . . . , tsn are isolated
from those with radii ts1, . . . , tsk. Now, when t = 0, the eigenvalues of C are given
by a1,1, . . . , an,n and the first k of these are in Sk and the last (n − k) lie outside
of Sk. Since the eigenvalues describe continuous curves, this remains valid for all
t ∈ [0, 1], including t = 1 for which C = A. 2

Example 1.3 The matrix A given by

A =

 2 0 1
1 −3 −1
−1 1 4


has eigenvalues −

√
8,
√

8, and 3. All the eigenvalues of A lie in D1 ∪ D2 ∪ D3,
where

D1 = {z ∈ CI 1 : |z− 2| ≤ 1}
D2 = {z ∈ CI 1 : |z + 3| ≤ 2}
D3 = {z ∈ CI 1 : |z− 4| ≤ 2} .

Moreover, since D2 is disjoint from D1 ∪ D3 we have that exactly one eigenvalue
lies in D2 and two eigenvalues lie in D1 ∪D3.

1.2 Eigenvalue Decompositions

In this section we show that a given n × n matrix is similar to a matrix whose
eigenvalues and eigenvectors are easily determined. The associated similarity trans-
formations are referred to as eigenvalue decompositions. We will examine several
such decompositions, beginning with the central result in this genre, which is known
as the Schur decomposition.

8 1. Eigenvalues and Eigenvectors

Theorem 1.4 Let A be a given n× n matrix. Then there exists an n× n unitary
matrix Q such that

Q∗AQ = U ,(1.8)

where U is an upper triangular matrix whose diagonal entries are the eigenvalues of
A. Furthermore, Q can be chosen so that the eigenvalues of A appear in any order
along the diagonal of U .

Proof. The proof is by induction on n. For n = 1 the proof is trivial since A is
a scalar in this case. Now assume that for any (n − 1) × (n − 1) matrix B there
exists an (n− 1)× (n− 1) unitary matrix Q̂ such that Q̂∗BQ̂ is upper triangular.
Let (λ1,x(1)) be an eigenpair of A, i.e., Ax(1) = λ1x(1); normalize x(1) so that
‖x(1)‖2 = 1. Now x(1) ∈ Cn so there exists an orthonormal basis for Cn which
contains the vector x(1); denote this basis set by {x(1),x(2), . . . ,x(n)} and let X be
the n × n unitary matrix whose j-th column is the vector x(j). Now, due to the
orthonormality of the columns of X, X∗AX can be partitioned in the form

X∗AX =
(

λ1 y∗

0 B

)
,

where y is an (n − 1)−vector and B is an (n − 1) × (n − 1) matrix. From the
induction hypothesis there exists a unitary matrix Q̂ such that Q̂∗BQ̂ is upper
triangular. Choose

Q = X

(
1 0
0 Q̂

)
;

note that Q is a unitary matrix. Then

Q∗AQ =
(

1 0
0 Q̂∗

)
X∗AX

(
1 0
0 Q̂

)
=

(
1 0
0 Q̂∗

)(
λ1 y∗

0 B

)(
1 0
0 Q̂

)
=

(
λ1 y∗Q̂
0 Q̂∗BQ̂

)
,

where the last matrix is an upper triangular matrix since Q̂∗BQ̂ is upper triangular.
Thus A is unitarily similar to the upper triangular matrix U = Q∗AQ and therefore
U and A have the same eigenvalues which are given by the diagonal entries of
U . Also, since λ1 can be any eigenvalue of A, it is clear that we may choose
any ordering for the appearance of the eigenvalues along the diagonal of the upper
triangular matrix U . 2

Given a matrix A, suppose that its Schur decomposition is known, i.e., U and
Q in (1.8) are known. Then, since the eigenvalues of A and U are the same, the
eigenvalues of the former are determined. Furthermore, if y is an eigenvector of U
corresponding to an eigenvalue λ, then x = Qy is an eigenvector of A corresponding

1.2. Eigenvalue Decompositions 9

to the same eigenvalue, so that the eigenvectors of A are also easily determined from
those of U .

In many cases where a matrix has some special characteristic, more information
about the structure of the Schur decomposition can be established. Before exam-
ining one such consequence of the Schur decomposition, we consider the possibility
of a matrix being similar to diagonal matrix.

An n× n matrix A is diagonalizable if there exists a nonsingular matrix P and
a diagonal matrix Λ such that

P−1AP = Λ ,(1.9)

i.e., if A is similar to a diagonal matrix.
From Proposition 1.2 it is clear that if A is diagonalizable, then the entries

of the diagonal matrix Λ are the eigenvalues of A. Also, P−1AP = Λ implies
that AP = PΛ so that the columns of P are eigenvectors of A. To see this, let
λ1, λ2, . . . , λn denote the eigenvalues of A, let Λ = diag(λ1, λ2, . . . , λn), and let p(j)

denote the j-th column of P , then Ap(j) = λjp(j), i.e., p(j) is an eigenvector of A
corresponding to the eigenvalue λj .

Not all matrices are diagonalizable, as is shown in the following result.

Proposition 1.5 Let A be an n× n matrix. Then A is diagonalizable if and only
if A is nondefective.

Proof. Assume that A is diagonalizable. Then there exists an invertible matix P
such that P−1AP = Λ, where Λ is a diagonal matrix. As was indicated above, the
columns of P are eigenvectors of A, and since P is invertible, these eigenvectors
form an n-dimensional linearly independent set, i.e., a basis for Ckn. Thus A is
nondefective.

Now assume that A is nondefective, i.e., A has a complete set of linearly in-
dependent eigenvectors which form a basis for Cn. Denote these vectors by p(j),
j = 1, . . . , n, and define the n× n matrix P to be the matrix whose j-th column is
p(j). Then

AP = PΛ ,

where Λ = diag (λ1, λ2, . . . , λn). Since P is invertible we have that

P−1AP = Λ

and thus A is diagonalizable. 2

Some matrices are unitarily diagonalizable, i.e., P in (1.9) is a unitary matrix.
From another point of view, for these matrices, the upper triangular matrix U in
(1.8) is a diagonal matrix. Recall that an n× n matrix A is normal if AA∗ = A∗A.
All unitary, Hermitian, and skew-Hermitian matrices are normal. We now show
that a matrix is normal if and only if it is unitarily diagonalizable.

10 1. Eigenvalues and Eigenvectors

Proposition 1.6 Let A be an n×n matrix. Then A is normal if and only if there
exists a unitary matrix Q such that Q∗AQ is diagonal. Moreover, the columns of Q
are eigenvectors of A so that normal matrices have a complete, orthonormal set of
linearly independent eigenvectors; in particular, normal matrices are nondefective.

Proof. Let A be a normal matrix. From Theorem 1.4 A is unitarily similar to an
upper triangular matrix U , i.e., Q∗AQ = U where Q∗Q = I. But, since A is normal,
so is U , i.e.,

UU∗ = Q∗AQQ∗A∗Q = Q∗AA∗Q = Q∗A∗AQ = Q∗A∗QQ∗AQ = U∗U .

By equating entries of UU∗ and U∗U we can show that a normal upper triangular
matrix must be diagonal.

We now show that if A is unitarily diagonalizable, then it is normal. Let Q be
a unitary matrix such that

Q∗AQ = Λ ,

where Λ is a diagonal matrix. Then A is normal since

AA∗ = QΛQ∗QΛ∗Q∗ = QΛΛ∗Q∗ = QΛ∗ΛQ∗ = QΛ∗Q∗QΛQ∗ = A∗A ,

where we have used the fact that diagonal matrices commute.
From Q∗AQ = Λ, we have that AQ = QΛ, so that if Λ = diag(λ1, λ2, . . . , λn)

and q(j) denotes the j-th column of Q, then Aq(j) = λjq(j), i.e., q(j) is an eigen-
vector of A corresponding to the eigenvalue λj . 2

Corollary 1.7 Let A be an n × n Hermitian matrix. Then there exists a unitary
matrix Q such that Q∗AQ is a real diagonal matrix. Moreover, the columns of Q
are eigenvectors of A and thus Hermitian matrices are nondefective and possess a
complete, orthonormal set of eigenvectors.

Proof. Let Q∗AQ = U be the Schur decomposition of A, where A is Hermitian.
Then U is also Hermitian, i.e., U∗ = Q∗A∗Q = Q∗AQ = U . But U is also an
upper triangular matrix so that it easily follows that U is a diagonal matrix and
that its diagonal entries are real. Again, as in Proposition 1.6, the columns of Q
are eigenvectors of A. 2

If A is a real, symmetric matrix, then Q may be chosen to be real as well in
which case Q is an orthogonal matrix. Thus, symmetric matrices possess a complete,
orthonormal set of real eigenvectors.

Example 1.4 Let A be the symmetric matrix

A =

 −2 0 −36
0 −3 0

−36 0 −23

 .

1.2. Eigenvalue Decompositions 11

Then A is orthogonally similar to a diagonal matrix, i.e.,

QT AQ =

 −4/5 0 3/5
0 1 0

3/5 0 4/5

 −2 0 −36
0 −3 0

−36 0 −23

 −4/5 0 3/5
0 1 0

3/5 0 4/5


=

 25 0 0
0 −3 0
0 0 −50

 .

If A is a real matrix having complex eigenvalues, then its Schur decomposition
necessarily must involve complex arithmetic, i.e., if one wishes to use only real
arithmetic, similarity to an upper triangular matrix cannot be achieved. However,
if A is a real matrix, then its characteristic polynomial has real coefficients and
therefore its complex eigenvalues must occur in complex conjugate pairs. The cor-
responding eigenvectors may be chosen to occur in complex conjugate pairs as well,
i.e., if x + iy is an eigenvector corresponding to an eigenvalue λ, then x− iy is an
eigenvector corresponding to λ̄. (Note that if λ is a complex eigenvalue of a real
matrix A, then its corresponding eigenvectors are necessarily complex, i.e., y 6= 0.
On the other hand, if λ is a real eigenvalue of a real matrix, then its corresponding
eigenvectors may be chosen to be real.) These observations lead to the following
real Schur decomposition of a given real matrix A wherein only real arithmetic is
needed and for which A is similar to a quasi-upper triangular matrix.

Proposition 1.8 Let A be an n × n real matrix. Then there exists an orthogonal
matrix Q such that QT AQ is a real matrix of the form

QT AQ =


U1,1 U1,2 · · · U1,m

0 U2,2 · · · U2,m

...
...

. . .
...

0 0 · · · Um,m

 ,(1.10)

where each Ui,i is either a scalar or is a 2× 2 matrix with complex conjugate eigen-
values. The eigenvalues of A are the union of the eigenvalues of Ui,i, i = 1, . . . ,m.

Proof. Let µ denote the number of pairs of eigenvalues occurring as complex con-
jugates; clearly, 0 ≤ µ ≤ n/2. If µ = 0, then all the eigenvalues of A are real and all
the eigenvectors may be chosen to be real as well. Then, the proof of Theorem 1.4
may be easily amended so that only real arithmetic is utilized; hence in the case
µ = 0, we have that QT AQ = U , where Q is an orthogonal matrix and U is a real
upper triangular matrix. Thus, if µ = 0, the decomposition (1.10) is demonstrated.

Now, let µ ≥ 1 so that necessarily n > 1. Clearly the result is true for 0× 0 and
1× 1 matrices. Now, assume that the result is true for any (n− 2)× (n− 2) matrix
B, i.e., there exists an (n − 2) × (n − 2) orthogonal matrix Q̂ such that Q̂T BQ̂
has the requisite structure. Next, for α, β ∈ RI and x,y ∈ RI n, let (α + iβ,x + iy)

12 1. Eigenvalues and Eigenvectors

and (α − iβ,x − iy) denote a complex conjugate eigenpair of A, i.e., A(x ± iy) =
(α± iβ)(x± iy). Then

A (x y) = (x y) F where F =
(

α β
−β α

)
(1.11)

so that x and y span an invariant subspace. Furthermore, if β 6= 0, as we are
supposing, the set {x y} is linearly independent since otherwise x + iy = (1 + ci)x
for some real number c so that then x is a real eigenvector corresponding to the
complex eigenvalue α + iβ of a real matrix; this clearly is impossible. Therefore we
may choose x(1) ∈ RI n and x(2) ∈ RI n to form an orthonormal basis for span{x,y}.
Then there exists an invertible 2 × 2 matrix S such that (x y) = (x(1) x(2))S.
Then, (1.11) implies that

A (x(1) x(2))S = (x(1) x(2))SF

or

A(x(1) x(2)) = (x(1) x(2))SFS−1 .(1.12)

Now choose x(j) ∈ RI n, j = 3, . . . , n, so that {x(1),x(2), . . . ,x(n)} forms an
orthonormal basis for RI n. Let X be the n×n orthogonal matrix whose j-th column
is the vector x(j). Now, due to (1.12) and the orthonormality of the columns of X,
XT AX can be partitioned in the form

XT AX =
(

SFS−1 Y
0 B

)
,

where Y is a 2 × (n − 1) matrix and B is an (n − 2) × (n − 2) matrix. From
the induction hypothesis there exists an orthogonal matrix Q̂ such that Q̂T BQ̂ is
quasi-upper triangular. Choose

Q = X

(
I2 0
0 Q̂

)
.

Then

QT AQ =
(

I2 0
0 Q̂T

)
XT AX

(
I2 0
0 Q̂

)
=

(
I2 0
0 Q̂T

)(
SFS−1 Y

0 B

)(
I2 0
0 Q̂

)
=

(
SFS−1 Y Q̂

0 Q̂T BQ̂

)
,

where the last matrix is a quasi-upper triangular matrix since Q̂T BQ̂ is quasi-upper
triangular and SFS−1 is a 2× 2 matrix. Thus, the inductive step is complete and

1.3. Reduction to Hessenberg form 13

A is orthogonally similar to a quasi-upper triangular matrix. Of course, A and the
matrix QT AQ constructed above have the same eigenvalues since they are related
through a similarity transformation. In fact, the 2 × 2 diagonal block SFS−1 is
similar to F , so that the eigenvalues of SFS−1 are α± iβ. 2

Example 1.5 Let

A =

 3/2 −1/2 3/
√

2
1/2 1/2 1/

√
2

−1/
√

2 1/
√

2 1

 , Q =

 1/
√

2 1/
√

2 0
1/
√

2 −1/
√

2 0
0 0 1

 ,

and

U =

 1 1 2
0 1 1
0 −1 1

 .

Then QT Q = I and QT AQ = U . Note that

U11 = 1 , U22 =
(

1 1
−1 1

)
and λ(U11) = 1 and λ(U22) = 1± i; these are the three eigenvalues of A.

1.3 Reduction to Hessenberg form

It was noted in Section 1.1 that in general the eigenvalues and eigenvectors of a
matrix cannot be determined using a finite number of rational operations. On
the other hand, if any of the eigenvalue decompositions considered in Section 1.2
are known, then the eigenvalues and eigenvectors can be determined in a finite
number of arithmetic operations. Thus, necessarily, all the proofs of that section
are non-constructive. For example, in the proof of the Schur decomposition, i.e.,
Theorem 1.4, one assumes that an eigenpair (λ1,x(1)) is known in order to carry
out the inductive step.

Given any square matrix A one can determine an upper Hessenberg matrix A0

that is similar to A through the use of a finite number of arithmetic operations.
(Recall that an n×n matrix A is in upper Hessenberg form if ai,j = 0 for i > j +1.)
Of course, it would still take an infinite number of rational operations to exactly
determine the eigenvalues and eigenvectors of A0, so that there seems to be little
reason for wanting to compute A0. However, in many cases, iterative algorithms for
the approximate determination of the eigenvalues and eigenvectors of matrices are
more efficient when applied to matrices in Hessenberg form. Thus, given a matrix
A, one often first transforms it into a similar upper Hessenberg matrix before one
applies the iterative method.

One can effect the transformation to Hessenberg form using either unitary or
lower triangular matrices. The former is especially useful for symmetric or Hermi-
tian matrices since this characteristic can be preserved throughout the reduction

14 1. Eigenvalues and Eigenvectors

process. For unsymmetric and non-Hermitian matrices the latter are in general less
costly.

1.3.1 Reduction to Hessenberg form using unitary transformations

We first consider the reduction to Hessenberg form using unitary similarity trans-
formations. The proof of the following result is similar to that of Proposition ??
in which we used Householder transformations to reduce a matrix to one with row
echelon structure except that now we also postmultiply by Householder transforma-
tions H(k) since we want to determine a matrix that is similar to the given matrix.
Note that unlike the proof of the Schur decomposition theorem (Theorem 1.4), the
following proof is constructive.

Proposition 1.9 Let A be an n × n matrix. Then there exist unitary matrices
H(k), k = 1, . . . , n− 2, such that

A0 = H(n−2) · · ·H(2)H(1)AH(1)H(2) · · ·H(n−2)(1.13)

is upper Hessenberg and unitarily similar to A. The matrices H(k), k = 1, . . . , n−2,
are either Householder transformations or identity matrices. If A is real then the
H(k), k = 1, . . . , n− 2, and A0 are real as well.

Proof. Starting with A(1) = A, we assume that the k-th stage of the procedure
begins with a matrix of the form

A(k) =
(

U (k) a(k) B(k)

0 c(k) D(k)

)
,(1.14)

where U (k) is k × (k − 1) and upper Hessenberg, a(k) ∈ Ckk, c(k) ∈ Ckn− k, B(k)

is k× (n− k) and D(k) is (n− k)× (n− k). Thus, the first (k− 1) columns of A(k)

are in upper Hessenberg form.
If c(k) = 0 or if c(k) is a multiple of e(1), the first unit vector in RI n−k, then the

k-th column of A(k) is also in upper Hessenberg form so that we set H(k) = I and
A(k+1) = H(k)AH(k) = A(k). Otherwise we use Algorithms ?? and ?? with q = n
and

x =
(

a(k)

c(k)

)
(1.15)

to construct a Householder matrix

H(k) =
(

Ik 0
0 H̃(k)

)
such that

H(k)x =


a(k)

−αk

0
...
0

 .(1.16)

1.3. Reduction to Hessenberg form 15

Clearly H̃(k) is the (n − k) × (n − k) Householder matrix determined by c(k), i.e.,
H̃(k)c(k) = (−αk, 0, . . . , 0)T ∈ Ckn− k. Then, since x is the k-th column of A(k),
we have that

A(k+1) = H(k)A(k)H(k) =


U (k) a(k) B(k)H̃(k)

0 −αk

0 0
...

... H̃(k)D(k)H̃(k)

0 0


or

A(k+1) =
(

U (k+1) a(k+1) B(k+1)

0 c(k+1) D(k+1)

)
,

where U (k+1) is the (k + 1)× k upper Hessenberg matrix

U (k+1) =
(

U (k) a(k)

0 −αk

)
.

Also A(k+1) is unitarily similar to A(k) since A(k+1) = H(k)A(k)H(k) and H(k) is
unitary and Hermitian. Clearly A(k+1) has the same structure as A(k) with the index
k augmented by one, i.e., the first k columns of A(k+1) are in upper Hessenberg
form, so that the inductive step is complete.

Note that after the (n−2)-nd stage that the matrix A0 = A(n−1) has its first n−2
columns in upper Hessenberg form so that A0 is an upper Hessenberg matrix. Thus
the total number of stages necessary is (n − 2). Also, if A is real then throughout
only real arithmetic is employed so that all the matrices H(k), k = 1, . . . , n− 2, as
well as A0 are real . 2

Proposition 1.9 provides a constructive proof of the following result.

Corollary 1.10 Given any n × n matrix A, there exists a unitary matrix Q and
an upper Hessenberg matrix A0 such that

A0 = Q∗AQ .(1.17)

If A is real, then Q and A0 may be chosen to be real as well, i.e., A0 = QT AQ and
QT Q = I.

Proof. Let H(k), k = 1, . . . , n− 2, be the matrices of (1.13) and let

Q = H(1)H(2) · · ·H(n−2) .

Then the results follow from Proposition 1.9. 2

Example 1.6 Let A be given by

A =

 1 1 3
−3 2 −1

4 −1 1

 .

16 1. Eigenvalues and Eigenvectors

Then A is orthogonally similar to the upper Hessenberg matrix

A0 = QT AQ =

 1 0 0
0 −3/5 4/5
0 4/5 3/5

 1 1 3
−3 2 −1

4 −1 1

 1 0 0
0 −3/5 4/5
0 4/5 3/5


=

 1 9/5 13/5
5 28/25 −19/25
0 −19/5 17/25

 .

If, in Corollary 1.10, the matrix A is Hermitian or real and symmetric, then the
matrix A0 turns out to be tridiagonal.

Corollary 1.11 Let A be an n× n Hermitian matrix. Then there exists a unitary
matrix Q such that

A0 = Q∗AQ ,(1.18)

where A0 is a Hermitian tridiagonal matrix. If A is real and symmetric, then Q
may be chosen to be real as well, i.e., QT Q = I, so that in this case A0 = QT AQ
can be chosen to be real, symmetric, and tridiagonal.

Proof. In examining the proof of Proposition 1.9 we see that since H(k) is Hermitian,
A(k+1) = H(k)A(k)H(k) is Hermitian whenever A(k) is. Thus, A0 is Hermitian. But
A0 is also upper Hessenberg so that A0 is tridiagonal. The results about real
symmetric matrices follow from the fact that for real matrices the steps of the proof
of Proposition 1.9 may be effected using only real arithmetic. 2

Example 1.7 Let A be given by

A =

 10 −3 4
−3 1 7

4 7 49

 .

Then A is orthogonally similar to the tridiagonal symmetric matrix

A0 = QT AQ =

 1 0 0
0 −3/5 4/5
0 4/5 3/5

 10 −3 4
−3 1 7

4 7 49

 1 0 0
0 −3/5 4/5
0 4/5 3/5


=

 10 5 0
5 25 25
0 25 25

 .

Note that we can also use Givens rotations to effect the reduction to upper
Hessenberg form.

1.3. Reduction to Hessenberg form 17

1.3.2 Reduction to Hessenberg form using Gauss transformations

The reduction of an n × n matrix to upper Hessenberg form can also be accom-
plished through the use of similarity transformations which are not unitary, e.g., by
using permutation matrices and Gauss transformations of the type defined in Chap-
ter ??. The following proposition and its proof is similar to that of Proposition 1.9
except we use Gauss transformation matrices and permutation matrices instead of
Householder transformations to effect the reduction. The proof is also reminiscent
of Proposition ?? for the reduction of a matrix to one with row echelon structure,
except that now we postmultiply as well as premultiply by permutation matrices
and Gauss transformations since we must now perform similarity transformations.

Proposition 1.12 Let A be a given n×n matrix. Then there exist Gauss transfor-
mations matrices M (k+1), k = 1, . . . , n − 2, and permutation matrices P(k+1,pk+1),
k + 1 ≤ pk+1 ≤ n, k = 1, . . . , n− 2, such that

A0 = GAG−1 with G = M (n−1)P(n−1,pn−1) · · ·M
(2)P(2,p2)(1.19)

is upper Hessenberg and similar to A. If A is real, then M (k), k = 2, . . . , n− 1, and
A0 are real as well.

Proof. Starting with A(1) = A, we assume that the k-th stage of the procedure
begins with a matrix of the form

A(k) =
(

U (k) a(k) B(k)

0 c(k) D(k)

)
,

where U (k) is a k × (k − 1) upper Hessenberg matrix, a(k) ∈ Ckk, c(k) ∈ Ckn− k,
B(k) is k × (n − k) and D(k) is (n − k) × (n − k). Thus, A(k) has its first (k − 1)
columns in upper Hessenberg form.

If ck = 0 or if c(k) is a multiple of e(1), the first unit vector in RI n−k, then the k-th
column of A(k) is also in upper Hessenberg form so that we choose P(k+1,pk+1) = I,
i.e., pk+1 = k +1, and M (k+1) = I and set A(k+1) = A(k). Otherwise, we choose an
integer pk+1 such that k + 1 ≤ pk+1 ≤ n and such that P(k+1,pk+1)y has a nonzero
(k +1)-st component, where y = (ak ck)T . We then choose a Gauss transformation
M (k+1) such that the components of M (k+1)P(k+1,pk+1)y with indices j = k +
2, . . . , n vanish. We write M (k+1) in the block form(

Ik 0
0 M̃ (k+1)

)
,

where M̃ (k+1) is an (n−k)×(n−k) Gauss transformation formed by setting x = c(k)

in Proposition ??, i.e., such that M̃ (k+1)ck = (c, 0, · · · , 0)T , where c denotes the
(pk+1 − k)-th component of c(k). We then have that

A(k+1) = M (k+1)P(k+1,pk+1)A
(k)P(k+1,pk+1)(M

(k+1))
−1

18 1. Eigenvalues and Eigenvectors

=


U (k) a(k) B̂(k)

0 c
0 0
...

... M̃ (k+1)D̂(k)(M̃ (k+1))
−1

0 0

 ,

where B̂(k) is determined by interchanging the first and (pk+1 − k)-th columns
of B(k) and D̂(k) is determined by interchanging the first and (pk+1 − k)-th row
and the first and (pk+1 − k)-th columns of D(k). Clearly A(k+1) is similar to A(k)

and has the same structure as A(k) with the index augmented by one, i.e., the
first k columns of A(k+1) are in upper Hessenberg form. Thus the inductive step is
complete.

Note that after the (n − 2)-nd stage that the matrix A0 = A(n−1) has its first
(n − 2) columns in upper Hessenberg form so that A0 is an upper Hessenberg
matrix. Thus the total number of stages necessary is (n − 2). Also if A is real
then, throughout, only real arithmetic is employed so that all the matrices M (k+1),
k = 1, . . . , n− 2, are real as well as A0. 2

As was the case for the proof of Proposition 1.9, the above proof is a constructive
one. In practice, at the k-th stage one chooses the integer pk+1 through a search
for a maximal element in a column as was the case for triangular factorizations.

The reduction to upper Hessenberg form using Gauss transformations can be
performed in approximately half the amount of work as the reduction using House-
holder transformations so that for general matrices the former is preferred. This
is entirely analogous to the situation for the reduction to row echelon structure
encountered in Chapters ?? and ??. However, if one uses Gauss transformations to
determine a similar upper Hessenberg matrix, Hermitian structure is not preserved,
i.e., A(k) Hermitian does not imply that A(k+1) is Hermitian. Therefore, if A is Her-
mitian, A0 will not in general be tridiagonal; all one can infer about the structure
of A0 is that it is upper Hessenberg. For this reason, the reduction to Hessenberg
form using Householder transformations is preferable for Hermitian matrices and,
in particular, for real symmetric matrices.

Example 1.8 Let A be given by

A =


6 0 2 2
0 2 4 2
2 4 8 4
2 2 4 4

 .

Then A is similar to the upper Hessenberg matrix

A0 =
(
M (3)M (2)

) (
P(2,3)AP(2,3)

) (
(M (2))

−1
(M (3))

−1
)

1.3. Reduction to Hessenberg form 19

=


1 0 0 0
0 1 0 0
0 0 1 0
0 −1 2/3 1




6 2 0 2
2 8 4 4
0 4 2 2
2 4 2 4




1 0 0 0
0 1 0 0
0 0 1 0
0 1 −2/3 1



=


6 4 −4/3 2
2 12 4/3 4
0 6 2/3 2
0 0 −14/9 4/3

 .

Note that although A is symmetric, A0 is not.

1.3.3 Algorithms for reduction to upper Hessenberg form

We now consider algorithms for determining upper Hessenberg matrices that are
similar to a given matrix. We give an algorithm for effecting the similarity transfor-
mation using Householder transformations. This algorithm, which is based on the
proof of Proposition 1.9, is similar to Algorithm ?? for the unitary triangulation
of a matrix except it differs in three important respects. First, of course, since
we now want to use similarity transformations, we must postmultiply as well as
premultiply by Householder transformations. Second, since we are now aiming for
an upper Hessenberg matrix, we use the Householder transformations to zero out
the elements below but not on the first subdiagonal. Lastly, since we now do not
require row echelon structure, we have no need to determine σk, the pivot position
in row k.

Algorithm 1.1 Reduction to upper Hessenberg form using Householder
transformations. Let A be a given n×n matrix. This algorithm reduces A to upper
Hessenberg form using Householder transformations. The matrix A is overwritten
for i > j+1 with the entries of the resulting upper Hessenberg matrix. The remaining
entries of A are overwritten with information needed to generate the Householder
matrices which effected the reduction. In particular, the vector which defines the
Householder matrix used to zero out the k-th column below the (k + 1)-st entry is
written over column k of A for rows k + 2, . . . , n and the (k + 1)-st entry is stored
in the k-th component of the additional vector µ.

For k = 1, . . . , n− 2

Set γ = max(|ai,k|, i = k + 1, . . . , n) and φk = 0

If γ 6= 0

Set α = 0 and β =
{

1 if ak+1,k = 0
ak+1,k/|ak+1,k| if ak+1,k 6= 0

For i = k + 1, . . . , n

ui = ai,k/γ

20 1. Eigenvalues and Eigenvectors

α← α + |ui|2

Set α←
√

α

φk = 1/(α(α + |uk+1|)
uk+1 ← uk+1 + βα

For s = k + 1, . . . , n

t =
n∑

i=k+1

ūiai,s

t← φkt

For j = k + 1, . . . , n

aj,s ← aj,s − tuj .

For s = 1, . . . , n

t =
n∑

j=k+1

as,juj

t← φkt

For j = k + 1, . . . , n

as,j ← as,j − tūj .

ak+1,k = −α

µk = uk+1

For s = k + 2, . . . , n

as,k = us

k ← k + 1 2

This algorithm requires approximately 5n3/3 multiplications and a like number of
additions and subtractions. Furthermore, little storage over that needed to store
the original matrix A is necessary. The upper Hessenberg matrix resulting from
the algorithm may be stored over the corresponding entries of A and, if desired,
the vectors that define the Householder transformations may be stored over the
remaining entries of the original matrix.

If A is Hermitian, then Algorithm 1.1 results in a tridiagonal matrix. However,
that algorithm does not take advantage of the Hermitian structure of A so that
many of the computations are used to determine elements of the tridiagonal matrix
that are known a priori to vanish. Note that if A is Hermitian, then

(I − φuu∗)A(I − φuu∗) = A− φAuu∗ − φuu∗A + φ2uu∗Auu∗

= A− tu∗ − ut∗ + ru∗ + ur∗ ,

1.3. Reduction to Hessenberg form 21

where t = φAu and r = 1
2φ2uu∗Au. The following algorithm uses this result to

take advantage of the Hermitian structure of A and is therefore less costly than
Algorithm 1.1. In this case the resulting Hermitian tridiagonal matrix is stored in
two vectors instead of overwriting A.

Algorithm 1.2 Tridiagonalization of a Hermitian matrix using House-
holder transformations. Let A be an n × n Hermitian matrix. This algorithm
reduces A to a Hermitian tridiagonal matrix using Householder similarity trans-
formations. The main diagonal of the resulting matrix is stored in the vector bk,
k = 1, . . . , n, and the subdiagonal in the vector ck, k = 1, . . . , n− 1.

For k = 1, . . . , n− 2

bk = ak,k

Set γ = max(|ai,k|, i = k + 1, . . . , n) and φk = 0

If γ = 0, set ck = 0

If γ 6= 0

Set α = 0 and β =
{

1 if ak+1,k = 0
ak+1,k/|ak+1,k| if ak+1,k 6= 0

For i = k + 1, . . . , n, set

ui = ai,k/γ and α← α + |ui|2

Set α←
√

α, ck = −α, φk = 1/(α(α+|uk+1|) and uk+1 ← uk+1+βα

ρ = 0

For s = k + 1, . . . , n

ts =
s∑

j=k+1

as,juj +
n∑

j=s+1

aj,suj

ts ← φkts

ρ← ρ + ūsts

For s = k + 1, . . . , n

rs = φkρus/2

For i = k + 1, . . . , n

For j = k + 1, . . . , i

· ai,j ← ai,j − tiūj − uit̄j + uir̄j + riūj

k ← k + 1

22 1. Eigenvalues and Eigenvectors

Set cn−1 = an,n−1 , bn−1 = an−1,n−1 , and bn = an,n. 2

This algorithm requires only about 2n3/3 multiplications and a like number of
additions and subtractions. Again, an efficient storage scheme is possible, i.e.,
the numbers that define the tridiagonal result of the algorithm and the vectors that
define the Householder transformations may be stored in the same locations as those
originally used to store either the upper of lower triangular parts of the Hermitian
matrix A.

We close this section by remarking that an algorithm for similarity reduction to
upper Hessenberg form using Gauss transformations can be easily developed. This
algorithm is similar to Algorithm 1.1 except now we use the pivoting strategies
and Gauss transformations matrices of Algorithm ??. An analysis of the operation
count demonstrates that the similarity reduction to upper Hessenberg form using
Gauss transformations requires approximately one-half the work of the reduction
using Householder transformations.

1.4 Methods for computing a few eigenvalues and eigenvec-
tors

In this section we consider techniques for finding one or a few eigenvalues and
corresponding eigenvectors of an n×n matrix. Most of the methods we discuss are
based on the power method, a simple iterative scheme involving increasing powers
of the matrix. Included in this class of methods are the inverse power method,
the Rayleigh quotient iteration, and subspace iteration. In addition we consider a
method based on Sturm sequences which is applicable to finding some eigenvalues
of Hermitian tridiagonal matrices. If most or all of the eigenvalues and eigenvectors
are desired, then the QR method considered in Section 1.5 is preferred.

1.4.1 The power method

The power method is a means for determining an eigenvector corresponding to the
eigenvalue of largest modulus. It also forms the basis for the definition of other
methods for eigenvalue/eigenvector determination and is a necessary ingredient in
the analysis of many such methods. However, the iterates determined by the power
method may converge extremely slowly, and sometimes may fail to converge.

Let A be an n×n matrix. We first consider in some detail the power method for
the case when A is nondefective, i.e., A has a complete set of linearly independent
eigenvectors. For example, if A is Hermitian then it satisfies this condition. The
basic algorithm is to choose an initial vector q(0) 6= 0 ∈ Cn and then generate the
iterates by

q(k) =
1
αk

Aq(k−1) for k = 1, 2, . . . ,(1.20)

where αk, k = 1, 2, . . ., are scale factors. One choice for the scale factor αk is the

1.4. Methods for computing a few eigenvalues and eigenvectors 23

component of the vector Aq(k−1) which has the maximal absolute value, i.e.,

αk = (Aq(k−1))p for k = 1, 2, . . . ,(1.21)

where p is the smallest integer such that

|(Aq(k−1))p| = max
j=1,...,n

|(Aq(k−1))j | = ‖Aq(k−1)‖∞ .

Another choice for the scale factor αk is the product of the Euclidean length of
the vector Aq(k−1) and the phase (the sign if A and q(k−1) are real) of a nonzero
component of Aq(k−1) . Specifically, we have

αk =
(Aq(k−1))`

|(Aq(k−1))`|
√

(Aq(k−1))∗(Aq(k−1))

=
(Aq(k−1))`

|(Aq(k−1))`|
‖Aq(k−1)‖2 for k = 1, 2, . . . ,

(1.22)

where we choose ` to be the smallest component index such that

|(Aq(k−1))`|/‖Aq(k−1)‖2 ≥ 1/n .

Such an `, 1 ≤ ` ≤ n, exists by virtue of the fact that Aq(k−1)/‖Aq(k−1)‖2 is a unit
vector. We shall see below that the scale factors αk are used to avoid underflows or
overflows during the calculations of the power method iterates q(k) for k ≥ 1. The
scale factor αk often is chosen according to αk = ‖(Aq(k−1)‖∞ or αk = ‖Aq(k−1)‖2,
and not by (1.21) or (1.22), respectively. Below, we will examine why the choices
(1.21) or (1.22) are preferable.

Let {x(1),x(2), . . . ,x(n)} denote a linearly independent set of n eigenvectors of
A corresponding to the eigenvalues λj , j = 1, . . . , n; such a set exists by virtue of
the assumption that A is nondefective. This set forms a basis for Cn so that we
can express q(0) as a linear combination of the eigenvectors x(i), i.e.,

q(0) = c1x(1) + c2x(2) + · · ·+ cnx(n)(1.23)

for some complex-valued constants c1, c2, . . . , cn.
If A and q(0) are real, then with either choice (1.21) or (1.22) for the scale

factors, the iterates q(k), k = 1, 2, . . . , are real as well. Thus, immediately, one sees
a potential difficulty with the power method: if the initial vector is chosen to be
real, it is impossible for the iterates of the power method to converge to a complex
eigenvector of a real matrix A. We will discuss this in more detail below. For now
we assume that the eigenvalues of A satisfy

λ1 = λ2 = · · · = λm(1.24)

and
|λ1| > |λm+1| ≥ |λm+2| ≥ · · · ≥ |λn| .(1.25)

24 1. Eigenvalues and Eigenvectors

These imply that the dominant eigenvalue λ1 is unique, nonvanishing, and has
algebraic multiplicity m. Since A is nondefective, λ1 also has geometric multiplicity
m and {x(1),x(2), . . . ,x(m)} then denotes a set of linearly independent eigenvectors
corresponding to λ1. (Note that if A is real, then, as a result of (1.24) and (1.25),
λ1 is necessarily real and the vectors x(j), j = 1, . . . ,m, may be chosen to be real
as well.) Under these assumptions we can show that if the scale factors αk are
chosen by either (1.21) or (1.22), then the sequence q(0),q(1), . . . ,q(k), . . . of power
method iterates converges to an eigenvector corresponding to λ1. To do this we
will demonstrate that ‖q(k) − q‖2 = O

(
|λm+1/λ1|k

)
for k = 1, 2, . . . , where the

notation γ(k) = O(β(k)) implies that the ratio γ(k)/β(k) remains finite as k →∞.

Proposition 1.13 Let A be a nondefective n × n matrix; denote its eigenvalues
and corresponding eigenvectors by λj and x(j), j = 1, . . . , n, respectively. Let
the eigenvalues of A satisfy (1.24) and (1.25). Let q(0) be a given initial vec-
tor such that

∑m
j=1 |cj | 6= 0, where the constants cj, j = 1, . . . ,m, are defined

through (1.23). Let the scale factors αk, k = 1, 2, . . ., be defined by either (1.21) or
(1.22). Let the sequence of vectors {q(k)}, k = 1, 2, . . ., be defined by (1.20), i.e.,
q(k) = (1/αk)Aq(k−1) for k = 1, 2, Then there exists an eigenvector q of A
corresponding to λ1 such that

‖q(k) − q‖2 = O

(∣∣∣∣λm+1

λ1

∣∣∣∣k
)

for k = 1, 2, . . . ,(1.26)

i.e., as k →∞, q(k) converges to an eigenvector q of A corresponding to the unique
dominant eigenvalue λ1. If A is real and the initial vector q(0) is chosen to be real,
then all subsequent iterates q(k), k = 1, 2, . . ., are real as well and converge to a real
eigenvector of A corresponding to the real dominant eigenvalue λ1.

Proof. Since

q(k) =
1
αk

Aq(k−1) =
1

αkαk−1
A2q(k−2) = · · · = (

k∏
j=1

1
αj

)Akq(0)

and λ1 = λ2 = · · · = λm, we have that

q(k) =

 k∏
j=1

1
αj

Ak
(
c1x(1) + c2x(2) + · · ·+ cnx(n)

)

=

 k∏
j=1

1
αj

 (c1λ
k
1x

(1) + c2λ
k
2x

(2) + · · ·+ cnλk
nx(n))

= λk
1

 k∏
j=1

1
αj

 m∑
j=1

cjx(j) +
n∑

j=m+1

(
λj

λ1

)k

cjx(j)

 ,(1.27)

1.4. Methods for computing a few eigenvalues and eigenvectors 25

where we have used the fact that if λ is an eigenvalue of A with corrresponding
eigenvector x, then λk is an eigenvalue of Ak with the same corresponding eigen-
vector. Then, since |λm+1| ≥ |λj | for j = m + 2, . . . , n,

q(k) = λk
1

 k∏
j=1

1
αj

 m∑
j=1

cjx(j) + O

(∣∣∣∣λm+1

λ1

∣∣∣∣k
) for k = 1, 2,(1.28)

Now, for the choice (1.21) for the scale factors, it follows from (1.28) and∑m
j=1 |cj | 6= 0 that

‖q(k) − q‖2 = O

(∣∣∣∣λm+1

λ1

∣∣∣∣k
)

for k = 1, 2, . . . ,(1.29)

where

q =
x
‖x‖∞

with x =
m∑

j=1

cjx(j) .(1.30)

Since x(j), j = 1, . . . ,m, are all eigenvectors corresponding to the same eigen-
value λ1, then q defined by (1.30) is also an eigenvector of A corresponding to λ1.
Then (1.26) holds with q given by (1.30) and, since |λ1| > |λm+1|, it follows from
(1.29) that the power method iterates q(k) converge as k →∞ to an eigenvector q
of A corresponding to the dominant eigenvalue λ1.

The same result holds for the choice (1.22) for the scale factors, except that now

q =
|x`|

x`‖x‖2
x with x =

m∑
j=1

cjx(j)(1.31)

where ` is the smallest index such that x`/‖x‖2 ≥ 1/n .
If A is real, it follows from the hypotheses that λ1 is real. If q(0) is also real,

then clearly all subsequent iterates are real. The eigenvectors corresponding to λ1

may be chosen to be real in which case the constants cj , j = 1, . . . ,m, in (1.23) are
necessarily real. Then, as a result of (1.28), the power method iterates converge to
a real eigenvector of A. 2

We now consider the choices (1.21) and (1.22) for the scale factors αk, k ≥ 1,
in more detail. First, we note that if αk = 1 for all k, then instead of (1.29) and
(1.30) or (1.31), we would have that

q(k) → λk
1

m∑
j=1

cjx(j) as k →∞ .(1.32)

If |λ1| 6= 1, then λk
1 tends to infinity or zero as k → ∞. On a computer, this

may cause overflows or underflows if q(k) satisfies (1.32). On the other hand, if the

26 1. Eigenvalues and Eigenvectors

choice (1.21) is made for the scale factors, then it follows that ‖q(k))‖∞ = 1 for all
k so that one avoids overflow or underflow problems due to the growth or decay
of λk

1 . (In fact, in the latter case, the maximal element is actually equal to unity.)
Similarly, these overflow or underflow problems are avoided for the choice (1.22) for
the scale factors since in this case ‖q(k)‖2 = 1 for all k so that 1/n ≤ ‖q(k)‖∞ ≤ 1
for all k.

These underflow and overflow problems are also avoided for the choices αk =
‖Aq(k−1))‖∞ or αk = ‖Aq(k−1)‖2. However, if we choose αk = ‖Aq(k−1))‖∞
instead of (1.21), we then obtain

q(k) →

(
λ1

k

|λ1|k

)
x
‖x‖∞

as k →∞ ,(1.33)

instead of (1.29) and (1.30), where again we have set x =
m∑

j=1

cjx(j). Similarly, if

we choose αk = ‖Aq(k−1)‖2 instead of (1.22), we then obtain

q(k) →

(
λ1

k

|λ1|k

)
x
‖x‖2

(1.34)

instead of (1.29) and (1.31). However, unless λ1 is real and positive, we see that the
right-hand sides of (1.33) and (1.34) do not converge as k → ∞. In the following
example we see that if λ1 is real and negative then these right-hand sides oscillate
in sign, i.e., q(k) = −q(k−1) as k →∞. If it is known that the dominant eigenvalue
is real and positive, e.g., if A is Hermitian and positive definite, then one may
use, instead of (1.21) or (1.22), the more standard choices αk = ‖Aq(k−1)‖∞ or
αk = ‖Aq(k−1)‖2, respectively, for the scale factors.

Example 1.9 Consider the matrix

A =

 −4 1 −1
1 −3 2
−1 2 −3

 ,

which has eigenvalues −6, −3 and −1 and x(1) = (1,−1, 1)T . We apply the power
method to find the dominant eigenvalue using the choice of αk = ‖Aq(k−1)‖∞
and the choice defined by (1.21). As described above, we see that the eigenvector
oscillates in sign with the first choice of αk but converges in the direction of x(1)

with the latter choice.

1.4. Methods for computing a few eigenvalues and eigenvectors 27

αk = ‖Aq(k−1)‖∞ αk = (Aq(k−1))p

k q
(k)
1 q

(k)
2 q

(k)
3 q

(k)
1 q

(k)
2 q

(k)
3

0 1.00000 .00000 .00000 1.00000 .00000 .00000
1 -1.00000 .25000 -.25000 1.00000 -.25000 .25000
2 1.00000 -.50000 .50000 1.00000 -.50000 .50000
3 -1.00000 .70000 -.70000 1.00000 -.70000 .70000
4 1.00000 -.83333 .83333 1.00000 -.83333 .83333
5 -1.00000 .91176 -.91176 1.00000 -.91176 .91176
6 1.00000 -.95455 .95455 1.00000 -.95455 .95455
7 -1.00000 .97692 -.97692 1.00000 -.97692 .976920
8 1.00000 -.98837 .98837 1.00000 -.98837 .98837
9 -1.00000 .99416 -.99416 1.00000 -.99416 .994160

10 1.00000 -.99708 .99708 1.00000 -.99708 .997080

From (1.26) one sees that the rate at which q(k) converges to an eigenvector of
A depends on the separation between |λ1| and |λm+1|, i.e., between the moduli of
the dominant and second most dominant eigenvalue. Thus, if the ratio |λm+1|/|λ1|
is close to unity, the rate at which q(k) converges may be exceedingly slow. In the
following example we illustrate these observations.

Example 1.10 Let A be given by

A =

 −8.1 10.4 14.3
4.9 −5. −7.9

−9.05 10.4 15.25

 ,

for which λ(A) = {1, .95, .2}; note that (1−.5 1)T is an eigenvector corresponding to
the eigenvalue λ = 1. Since |λ2/λ1| = .95, the iterates are theoretically of O(.95k).
The approximations µk to the eigenvalue λ1 are computed using (1.35).

28 1. Eigenvalues and Eigenvectors

k q
(k)
1 q

(k)
2 q

(k)
3 µk |λ2

λ1
|
k

|λ1 − µk|

0 1.00000 .00000 .00000
1 .89503 -.54144 1.00000 -.27000E+01 .95000E+00 .37000E+01
2 .93435 -.53137 1.00000 .15406E+01 .90250E+00 .54064E+00
3 .95081 -.52437 1.00000 .12747E+01 .85737E+00 .27473E+00
4 .96079 -.51957 1.00000 .11956E+01 .81451E+00 .19558E+00
5 .96765 -.51617 1.00000 .11539E+01 .77378E+00 .15389E+00
6 .97267 -.51366 1.00000 .11264E+01 .73509E+00 .12645E+00
7 .97651 -.51175 1.00000 .11066E+01 .69834E+00 .10661E+00
8 .97953 -.51023 1.00000 .10915E+01 .66342E+00 .91515E-01
9 .98198 -.50901 1.00000 .10797E+01 .63025E+00 .79651E-01

10 .98399 -.50800 1.00000 .10701E+01 .59874E+00 .70092E-01
20 .99359 -.50321 1.00000 .10269E+01 .35849E+00 .26870E-01
30 .99680 -.50160 1.00000 .10132E+01 .21464E+00 .13234E-01
40 .99825 -.50087 1.00000 .10072E+01 .12851E+00 .71610E-01
50 .99901 -.50050 1.00000 .10041E+01 .76945E-01 .40621E-02
75 .99974 -.50013 1.00000 .10011E+01 .21344E-01 .10736E-02

100 .99993 -.50004 1.00000 .10003E+01 .59205E-02 .29409E-03

It can be concluded from Proposition 1.13 that the power method is a means of
determining an eigenvector corresponding to the dominant eigenvalue of a matrix.
Using (1.3) or (1.4) one may obtain, from the sequence of approximate eigenvectors
q(k), a sequence µ(k), k = 0, 1, 2, . . ., of approximations to the dominant eigenvalue
itself.

Proposition 1.14 Let the hypothesis of Proposition 1.13 hold. Let the sequence of
scalars µ(k), k = 0, 1, 2, . . . , be determined by either

µ(k) =
q(k)∗Aq(k)

q(k)∗q(k)
= αk+1

q(k)∗q(k+1)

q(k)∗q(k)
(1.35)

or

µ(k) =

(
Aq(k)

)
`(

q(k)
)
`

= αk+1

(
q(k+1)

)
`(

q(k)
)
`

,(1.36)

where the index ` is chosen so that (q(k))` 6= 0. Then

|µ(k) − λ1| = O

(∣∣∣∣λm+1

λ1

∣∣∣∣k
)

for k = 0, 1, 2, . . . ,(1.37)

i.e., the sequence {µ(k)} converges to λ1 as k →∞ at the same rate of convergence
as that for the sequence of approximate eigenvectors {q(k)}. If A is a normal matrix

1.4. Methods for computing a few eigenvalues and eigenvectors 29

so that A possesses an orthonormal set of eigenvectors, and if the approximate
eigenvalues µ(k) are chosen according to (1.35), then

|µ(k) − λ1| = O

(∣∣∣∣λm+1

λ1

∣∣∣∣2k
)

for k = 0, 1, 2,(1.38)

Proof. First, let µ(k) be determined by (1.35). It is easily seen that

µ(k) =
q(k)∗Aq(k)

q(k)∗q(k)

=

(∑n
j=1 cjλj

kx(j)
)∗ (∑n

j=1 cjλj
k+1x(j)

)
(∑n

j=1 cjλj
kx(j)

)∗ (∑n
j=1 cjλj

kx(j)
)(1.39)

= λ1 + O

(∣∣∣∣λm+1

λ1

∣∣∣∣k
)

so that (1.37) is valid. If the eigenvectors {x(j)}nj=1 are orthonormal, then from
(1.39)

µ(k) =

∑n
j=1 λj |cjλj

k|2∑n
j=1 |cjλj

k|2
= λ1

∑m
j=1 |cj |2 + O(|λm+1/λ1|2k)∑m
j=1 |cj |2 + O(|λm+1/λ1|2k)

so that (1.38) holds.
Now, let µ(k) be determined (1.36). Then it is easily seen that

µ(k) =
(Aq(k))`

(q(k))`
=

(∑n
j=1 cjλj

k+1x(j)
)

`(∑n
j=1 cjλj

kx(j)
)

`

= λ1

(∑m
j=1 cjx(j)

)
`
+ O(|λm+1/λ1|k)(∑m

j=1 cjx(j)
)

`
+ O(|λm+1/λ1|k)

so that (1.38) is valid. 2

Thus, if A is normal, e.g., Hermitian or skew-Hermitian, the use of (1.35) is
preferable to that of (1.36). Also, note that with either (1.35) or (1.36) we have
that µ(k) − αk+1 → 0 as k → ∞ so that, using (1.38), we may conclude that the
scale factors αk+1 converge to the eigenvalue λ1.

We have analyzed the power method for the case where a given matrix A is
nondefective and has a unique dominant eigenvalue. We now discuss the behavior
of the power method iterates when the assumptions of Proposition 1.13 do not
hold. First, let us see that the convergence of the power method is essentially
unaffected if eigenvalues other than the dominant eigenvalue are defective. For

30 1. Eigenvalues and Eigenvectors

example, suppose that A is a 3×3 matrix with a unique, simple dominant eigenvalue
λ1 and another eigenvalue λ2 of algebraic multiplicity 2 and geometric multiplicity
1. Then there exists a linearly independent set {x(1),x(2),x(3)} whose elements
satisfy Ax(1) = λ1x(1), Ax(2) = λ2x(2), and Ax(3) = λ2x(3) + x(2). Then, if we
express the initial vector in the form q(0) = c1x(1) + c2x(2) + c3x(3), we have that

Akq(0) = λk
1

[
c1x(1) +

(
λ2

λ1

)k (
c2x(2) +

k

λ2
c3x(2) + c3x(3)

)]

from which one can easily show that the power method iterates converge to an
eigenvector of A with an error proportional to k|λ2/λ1|k. Except for the factor of k,
this is the same convergence behavior as that for the case of A being nondefective.

On the other hand, if the dominant eigenvalue, although unique, is defective,
then the convergence behavior of the power method is vastly different. For example,
suppose that again A is a 3×3 matrix but that now the unique dominant eigenvalue
λ1 is defective with algebraic multiplicity 2 and geometric multiplicity 1. Then there
exists a linearly independent set {x(1),x(2),x(3)} whose elements satisfy Ax(1) =
λ1x(1), Ax(2) = λ1x(2) + x(1), and Ax(3) = λ3x(3). If we express the initial vector
in the form q(0) = c1x(1) + c2x(2) + c3x(3), we have that

Akq(0) = kλk
1

[(
c1

k
+

c2

λ1

)
x(1) +

c2

k
x(2) +

c3

k

(
λ3

λ1

)k

x(3)

]

from which one can easily show that the power method iterates converge to an
eigenvector of A with an error proportional to 1/k. This algebraic convergence
behavior should be contrasted with the exponential behavior in the case when the
dominant eigenvalue is unique and nondefective.

If the dominant eigenvalue is not unique, then the power method iterates do
not converge. Again, suppose that A is a 3 × 3 matrix with 3 distinct eigenvalues
satisfying |λ1| = |λ2| > |λ3| and λ1 6= λ2. Then, assuming the usual expansion of
the initial vector in terms of three eigenvectors, we have that

Akq(0) = λk
1

(
c1x(1) +

(
λ2

λ1

)k

c2x(2) +
(

λ3

λ1

)k

c3x(3)

)
.(1.40)

Two special cases are of greatest interest. First, suppose A is real and λ1 and λ2

are real and λ2 = −λ1. Then, from (1.40), we have that

Akq(0) = λk
1

(
c1x(1) + (−1)kc2x(2) +

(
λ3

λ1

)k

c3x(3)

)

so that as k → ∞ the power method iterates will oscillate between vectors in the
direction of c1x(1) + c2x(2) and c1x(1) − c2x(2). Second, suppose A is real and λ1

1.4. Methods for computing a few eigenvalues and eigenvectors 31

and λ2 are complex so that λ1 = λ̄2 = |λ1|eiθ. Also, assume that q(0) is real so that
q(0) = c1x(1) + c̄1x̄(1) + c3x(3) and, from (1.40),

Akq(0) = λk
1

(
c1x(1) + c̄1e

−2ikθx̄(1) +
(

λ3

λ1

)k

c3x(3)

)
.

Again, it is clear that the iterates will not converge, even in direction.

It should be noted that even in these cases in which the power method does
not converge, it is possible to combine information gleaned from a few successive
iterates to determine a convergent subsequence.

The following example illustrates the convergence behavior of the power method
for different types of matrices.

Example 1.11 For each of the following matrices we apply the power method
using (1.21) for the scale factors and determine the approximate eigenvalue µk us-
ing the Rayleigh quotient. We tabulate the approximate eigenvector, approximate
eigenvalue, the theoretical rate of convergence, and the actual error in the eigen-
value.

Let A1 be given by

A1 =

 12 6 6
−3 3 −3
−6 −6 0

 ,

so that λ(A1) = {6, 6, 3} and A1 is nondefective. We see that in this case the iterates
converge and the rate of convergence is not affected by the repeated eigenvalue
since A1 is nondefective. For example, one may easily verify that the error in the
eigenvalue approximation is indeed proportional to |λ3/λ1|k = 1/2k.

32 1. Eigenvalues and Eigenvectors

k q
(k)
1 q

(k)
2 q

(k)
3 µk |λ3

λ1
|
k

|λ1 − µk|

0 1.00000 .00000 .00000
1 1.00000 -.25000 -.50000 .40000E+01 .75000E+00 .20000E+01
2 1.00000 -.30000 -.60000 .78571E+01 .14579E+00 .18571E+01
3 1.00000 -.31818 -.63636 .67241E+01 .88808E-01 .72414E+00
4 1.00000 -.32609 -.65217 .63251E+01 .50607E-01 .32510E+00
5 1.00000 -.32979 -.65957 .61546E+01 .27518E-01 .15458E+00
6 1.00000 -.33158 -.66316 .60754E+01 .14497E-01 .75434E-01
7 1.00000 -.33246 -.66492 .60373E+01 .74811E-02 .37268E-01
8 1.00000 -.33290 -.66580 .60185E+01 .38111E-02 .18524E-01
9 1.00000 -.33312 -.66623 .60092E+01 .19263E-02 .92344E-02

10 1.00000 -.33322 -.66645 .60046E+01 .96909E-03 .46096E-02
11 1.00000 -.33328 -.66656 .60023E+01 .48622E-03 .23026E-02
12 1.00000 -.33331 -.66661 .60012E+01 .24358E-03 .11501E-02
13 1.00000 -.33332 -.66664 .60006E+01 .12192E-03 .57507E-03
14 1.00000 -.33333 -.66665 .60003E+01 .60994E-04 .28753E-03
15 1.00000 -.33333 -.66666 .60001E+01 .30507E-04 .14496E-03

Let A2 be the defective matrix

A2 =

 6 −1 −1
5 2 −9
−1 0 7

 ,

where λ(A2) = {6, 6, 3} and the geometric multiplicity of λ1 is one. Note that the
iterates seemingly are converging, but that the rate of convergence is very slow. For
example, one may easily verify that the error in the eigenvalue approximation is
roughly proportional to 1/k.

1.4. Methods for computing a few eigenvalues and eigenvectors 33

k q
(k)
1 q

(k)
2 q

(k)
3 µk 1/k |λ1 − µk|

0 .10000E+01 .00000 .00000
1 .10000E+01 .83333 -.16667 .20000E+01 .10000E+01 .40000E+01
2 .65306E+00 1.00000 -.26531 .72581E+01 .50000E+00 .12581E+01
3 .41600E+00 1.00000 -.32800 .69466E+01 .33333E+00 .94658E+00
4 .25939E+00 1.00000 -.38567 .67781E+01 .25000E+00 .77811E+00
5 .13918E+00 1.00000 -.43722 .67050E+01 .20000E+00 .70504E+00
6 .41068E-01 1.00000 -.48255 .66646E+01 .16667E+00 .66462E+00
7 -.41392E-01 1.00000 -.52211 .66316E+01 .14286E+00 .63155E+00
8 -.11187E+00 1.00000 -.55659 .65986E+01 .12500E+00 .59858E+00
9 -.17281E+00 1.00000 -.58671 .65650E+01 .11111E+00 .56497E+00

10 -.22601E+00 1.00000 -.61315 .65317E+01 .10000E+00 .53168E+00
11 -.27283E+00 1.00000 -.63648 .64997E+01 .90909E-01 .49969E+00
12 -.31434E+00 1.00000 -.65720 .64696E+01 .83333E-01 .46962E+00
13 -.35138E+00 1.00000 -.67570 .64418E+01 .76923E-01 .44175E+00
14 -.38463E+00 1.00000 -.69232 .64162E+01 .71429E-01 .41616E+00
15 -.41464E+00 1.00000 -.70732 .63928E+01 .66667E-01 .39276E+00
16 -.44186E+00 1.00000 -.72093 .63714E+01 .62500E-01 .37141E+00
17 -.46667E+00 1.00000 -.73333 .63519E+01 .58824E-01 .35195E+00
18 -.48936E+00 1.00000 -.74468 .63342E+01 .55556E-01 .33418E+00
19 -.51020E+00 1.00000 -.75510 .63179E+01 .52632E-01 .31794E+00
20 -.52941E+00 1.00000 -.76471 .63031E+01 .50000E-01 .30307E+00
50 -.78378E+00 1.00000 -.89189 .61225E+01 .20000E-01 .12246E+00

100 -.88626E+00 1.00000 -.94313 .60608E+01 .10000E-01 .60763E-01

Finally let A3 be the matrix

A3 =

 57 153 144
−30 −84 −84

9 27 30

 ,

where λ(A3) = {6,−6, 3}, i.e., A3 does not have a unique dominant eigenvalue. As
expected, in this case the computed iterates show no tendency towards converging.

34 1. Eigenvalues and Eigenvectors

k q
(k)
1 q

(k)
2 q

(k)
3 µk

0 1.00000 1.00000 1.00000 .00000E+00
1 1.00000 -.55932 .18644 .74000E+02
2 1.00000 -.76470 .29412 -.19019E+01
3 1.00000 -.54000 .16000 -.15416E+02
4 1.00000 -.74418 .30232 -.28406E+01
5 1.00000 -.53403 .15183 -.11690E+02
6 1.00000 -.74033 .30387 -.31325E+01
7 1.00000 -.53245 .14967 -.10982E+02
8 1.00000 -.73943 .30423 -.32099E+01
9 1.00000 -.53205 .14912 -.10816E+02

10 1.00000 -.73921 .30432 -.32296E+01

Before giving an algorithm for the power method we remark that some criterion
must be established in order to stop the iteration. There are several such criteria.
For example, the iterations could be terminated when a norm of the difference in
successive iterates for the eigenvectors are less than some prescribed tolerance ε,
i.e.,

‖q(k+1) − q(k)‖2 ≤ ε or ‖q(k+1) − q(k)‖∞ ≤ ε .(1.41)

Of course, no such stopping criterion can be absolutely foolproof and also, an upper
limit on the number of iterations should always be specified.

Algorithm 1.3 The power method. Let A be an n× n matrix. This algorithm
determines a sequence of vectors which in many, but not all cases, converges to an
eigenvector of A corresponding to its dominant eigenvalue. From the approximate
eigenvector a corresponding approximate eigenvalue is determined using (1.35).

Let k = 0 and choose an initial vector s such that ‖s‖2 = 1, a tolerance ε, and
a maximum number of iterations K

For k = 1, 2, . . . ,K

set q = As

set α = ‖q‖2

set α← (q)`

|(q)`|
α where ` is any index such that

(q)`

α
≥ 1

n

set q← 1
α
q

if ‖q− s‖2 > ε

set s = q
set k ← k + 1

otherwise

1.4. Methods for computing a few eigenvalues and eigenvectors 35

set λ = αs∗q then stop . 2

If it is known that the dominant eigenvalue is real and positive, i.e., if A is
a symmetric positive definite matrix, then the step involving the index ` may be
omitted.

1.4.2 Inverse power method

We have seen that the power method provides a means for determining an eigenvec-
tor corresponding to the dominant eigenvalue of a matrix. If the power method is
applied to the inverse of a given matrix, one would expect the iterates to converge
to an eigenvector corresponding to the dominant eigenvalue of the inverse matrix,
or, equivalently, corresponding to the least dominant eigenvalue of the original ma-
trix. This observation leads us to the inverse power method. Another novel feature
that may be incorporated into this algorithm is an eigenvalue shift that, in princi-
ple, can be used to force the inverse power iterates to converge to an eigenvector
corresponding to any eigenvalue one chooses. (Shift strategies may also be used in
conjunction with the ordinary power method, but there their utility is not so great
as it is for the inverse power method.)

Let A be a nondefective n×n matrix and let µ be a given scalar; one can view µ
as being a guess for an eigenvalue of A. Let λj , j = 1, . . . , n, denote the eigenvalues
of A. For simplicity, we assume that there is a unique eigenvalue closest to µ, i.e.,
there is an integer r such that 1 ≤ r ≤ n and such that

|λr − µ| ≤ |λj − µ| for j = 1, . . . , n, j 6= r, with

|λr − µ| = |λj − µ| if and only if λj = λr .
(1.42)

The behavior of the inverse power method in more general situations, e.g., A being
defective or the eigenvalue λr being non-unique, can be determined in a similar
manner to that for the power method.

Consider the matrix (A− µI)−1 which has eigenvalues 1/(λj − µ), j = 1, . . . , n.
We now apply the power method to this matrix. Thus, given an initial vector q(0),
we determine q(k) for k = 1, 2, . . ., from

q(k) =
1
βk

(A− µI)−1q(k−1) for k = 1, 2, . . .

or equivalently from

(A− µI)q̃(k) = q(k−1) and q(k) =
1
βk

q̃(k) for k = 1, 2, . . . ,(1.43)

where the scale factors βk, k = 1, 2, . . ., are chosen according to the same principles
as were the scale factors αk in the power method. Note that to find q(k) from q(k−1)

one solves a linear system of equations, i.e., one does not explicitly form (A− µI)−1

36 1. Eigenvalues and Eigenvectors

and then form the product (A− µI)−1q(k−1), but rather one solves the system (A−
µI)q̃(k) = q(k−1). It is important to note, however, that the matrix (A− µI) does
not change with the index k, i.e., it is the same for all iterations so that one needs
to perform an LU factorization once, store this factorization, and for each iteration
perform a single forward and a single backsolve. Thus, if an LU factorization is used,
the initial factorization requires, for large n, approximately n3/3 multiplications
and a like number of additions or subtractions, but subsequently, the forward and
backsolve for each iteration require approximately n2 multiplications and a like
number of additions or subtractions. Thus, K steps of the inverse power method
require, for large n, approximately (n3/3)+Kn2 multiplications and a like number of
additions or subtractions. This can be contrasted to the work required for the power
method which is dominated by the matrix-vector multiplication which must be
effected at every iteration. Thus, K steps of the power method require, for large n,
approximately Kn2 multiplications and a like number of additions or subtractions.

If A is nondefective we expect the sequence of vectors generated through (1.43) to
converge to an eigenvector of (A− µI)−1 corresponding to its dominant eigenvalue,
i.e., to an eigenvector corresponding to the eigenvalue 1/(λr − µ). If µ is not an
eigenvalue of A, then a vector x is an eigenvector of (A− µI)−1 corresponding to
an eigenvalue 1/(λr−µ) if and only if it is an eigenvector of A corresponding to the
eigenvalue λr. Thus we expect the sequence of vectors generated through (1.43) to
converge to an eigenvector of A corresponding to the eigenvalue closest to µ, i.e.,
corresponding to the eigenvalue λr defined by (1.42). In fact this is the case, as is
demonstrated by the following result whose proof is essentially the same as that for
Proposition 1.13.

Proposition 1.15 Let A be a nondefective n × n matrix and let µ ∈ Ck be a
given scalar. Denote the eigenvalues of A by λj and let λr be an eigenvalue of A
satisfying (1.42). Let q(0) be a general given initial vector. Let the sequence of
vectors q(k), k = 1, 2, . . ., be defined by (1.43), i.e., (A−µI)q(k) = (1/βk)q(k−1) for
k = 1, 2, . . ., for suitably chosen scale factors. Then, there exists an eigenvector q
of A corresponding to λr such that

‖q(k) − q‖2 = O

(∣∣∣∣λr − µ

λs − µ

∣∣∣∣k
)

for k = 0, 1, 2, . . . ,(1.44)

where λs is an eigenvalue of A second closest to µ. Thus, as k →∞, q(k) converges
to an eigenvector q of A corresponding to the unique eigenvalue λr closest to µ. If
A and µ are real and the initial vector q(0) is chosen to be real, then all subsequent
iterates q(k), k = 1, 2, . . ., are real as well and converge to a real eigenvector of A
corresponding to the unique eigenvalue λr of A closest to µ. 2

The advantage resulting from the introduction of the shift µ is now evident.
Suppose one has in hand an approximation µ to an eigenvalue λr of the matrix A.
Then, even if µ is a coarse approximation, the ratio |(λr−µ)/(λs − µ)| will be small
and thus the inverse power iterates will converge quickly.

1.4. Methods for computing a few eigenvalues and eigenvectors 37

It is clear from (1.44) that the closer the shift µ is to an eigenvalue λr, the faster
the inverse power method iterates q(k) converge to an eigenvector q. On the other
hand, the inverse power method requires the solution of linear systems all having a
coefficient matrix given by (A−µI); thus, the closer µ is to an eigenvalue, the more
“nearly singular”, i.e., ill-conditioned, is this matrix. Naturally, one may then ask
if errors due to round-off can destroy the theoretical behavior of the inverse power
method as predicted by Proposition 1.15. Fortunately, it can be shown, at least for
symmetric matrices, that if µ is close to λr, then the error in q(k) due to round-off
is mostly in the direction of the desired eigenvector q, so that round-off errors may
actually help the inverse power method converge!

Accurate approximations for the eigenvalue λr closest to µ may be obtained
from the inverse power iterates q(k) in exactly the same manner as was done for
the power method; the rate of convergence for the eigenvalues is the same as that
for the eigenvectors, i.e.,

|µk − λr| = O

(∣∣∣∣λr − µ

λs − µ

∣∣∣∣k
)

,

except when A is normal and the Rayleigh quotient is used to find eigenvalue ap-
proximations, in which case

|µk − λr| = O

(∣∣∣∣λr − µ

λs − µ

∣∣∣∣2k
)

.

Algorithm 1.4 The inverse power method. Let A be an n × n matrix and
let the scalar µ be given. This algorithm determines a sequence of vectors which
in many, but not all cases, converges to an eigenvector of A corresponding to the
eigenvalue of A closest to µ. From the approximate eigenvector a corresponding
approximate eigenvalue is determined using (1.35).

Let k = 0 and choose an initial vector s such that ‖s‖2 = 1, a tolerance ε, and
a maximum number of iterations K

Factor A− µI

For k = 1, 2, . . . ,K

solve the factored system (A− µI)q = s

set α = ‖q‖2

set α← (q)`

|(q)`|
α where ` is any index such that

(q)`

α
≥ 1

n

set q← 1
α
q

if ‖q− s‖2 > ε

set s = q

38 1. Eigenvalues and Eigenvectors

set k ← k + 1

otherwise

set λ = µ +
1

αs∗q
then stop 2

1.4.3 The Rayleigh quotient and subspace iterations

In this section we discuss two variants of the inverse power method. The first,
the Rayleigh quotient iteration, is a variant in which the shift µ is updated at
each iteration. The second, subspace iteration, simultaneously uses more than one
eigenvector. Both methods, in their own way, improve the speed of convergence
of the inverse power method and both methods are usually applied to Hermitian
matrices, so that we restrict ourselves to this case. Similar variants of the power
method can also be defined.

Rayleigh quotient iteration

To motivate the Rayleigh quotient iteration, suppose that we have an approximation
q to an eigenvector of a Hermitian matrix. Then we can use the Rayleigh quotient
to approximate the corresponding eigenvalue, i.e.,

µ =
q∗Aq
q∗q

.

We can then use the pair (µ,q) for one step of the inverse power method to compute
a new approximation to the eigenvector. The process may be repeated. Unlike the
inverse power method, this method requires the solution of a different linear system
of equations at each iteration. We summarize the method in the following algorithm.
For simplicity, we omit the use of the phase in the determination of the scale factor.
Such a procedure may be easily incorporated into the algorithm; see Algorithms
1.3 or 1.4.

Algorithm 1.5 The Rayleigh quotient iteration. Let A be an n×n Hermitian
matrix. This algorithm determines a sequence of vectors which in many, but not
all cases, converges to an eigenvector of A. From the sequence of approximate
eigenvectors a corresponding sequence of approximate eigenvalues is generated using
(1.35).

Let k = 0 and assume that a vector s such that ‖s‖2 = 1, a tolerance ε, and
a maximum number of iterations K are given

For k = 1, 2, . . . ,K

set µ = s∗As

solve the system (A− µI)q = s

1.4. Methods for computing a few eigenvalues and eigenvectors 39

set α = ‖q‖2

if α ≥ 1
ε

stop

set q← 1
α
q

set s = q

set k ← k + 1 . 2

We have chosen a different termination criterion than that used for the inverse
power method. We terminate the Rayleigh quotient iteration whenever the solution
of the system (A − µI)q = s satisfies ‖q‖2 ≥ 1/ε since this infers that the matrix
(A− µI) is nearly singular.

The following result, which we state without proof, is an example of the type
of local convergence result that is obtainable for the Rayleigh quotient iteration.
Note that if the matrix A is symmetric, then the Rayleigh quotient iteration can be
carried out using only real arithmetic.

Proposition 1.16 Assume that the Rayleigh quotient iterates converge to a (real)
eigenvector of a real symmetric matrix. Let θk denote the angle between the k-th
iterate and the eigenvector. Then,

lim
k→∞

∣∣∣∣θk+1

θ3
k

∣∣∣∣ ≤ 1 .

2

This local cubic convergence property of the Rayleigh quotient iteration also
holds for Hermitian matrices. For general matrices, only quadratic local convergence
is attainable.

The above result is a local convergence result, i.e., we have assumed that the
Rayleigh quotient iteration converges. It can also be shown, at least for Hermitian
matrices, that the Rayleigh quotient iteration is almost always globally convergent,
i.e., the iterates almost surely converge to an eigenvector for any initial vector. Un-
fortunately, it is in general impossible to predict to which eigenvector the iteration
will converge.

Since the Rayleigh quotient iteration requires the solution of a linear system of
equations for each iteration, we see that for arbitrary Hermitian matrices, the algo-
rithm requires approximately k̂n3/6 multiplications and a like number of additions,
where k̂ is the actual number of iterations performed. Hence, for this method to
be computationally feasible, it must converge very quickly. On the other hand, if
the Hermitian matrix A is first reduced to tridiagonal form (using Algorithm 1.2)
and subsequently the Rayleigh quotient iteration is applied to the resulting matrix,
then the total number of multiplications required is approximately 2n3/3 + 4k̂n,
where the first term accounts for the cost of reduction to tridiagonal form and the

40 1. Eigenvalues and Eigenvectors

second accounts for the approximately 4n multiplications needed to solve each of
the linear systems that have a tridiagonal coefficient matrix. (There is an additonal
cost incurred when computing the eigenvector of the original matrix from that of
the tridiagonal matrix.)

Example 1.12 The matrix

A =

 4 −1 1
−1 3 −2

1 −2 3


has eigenvalues λ1 = 6, λ2 = 3, and λ3 = 1 and corresponding orthonormal eigen-
vectors

x(1) =
1√
3

 1
−1

1

 x(2) =
1√
6

 2
1
−1

 x(3) =
1√
2

 0
1
1

 .

We apply the inverse power method having a fixed shift and the Rayleigh quo-
tient iteration for which the shift is updated. For two different initial vectors, we
give results for three choices of the inverse power method shift; the initial shift for
the Rayleigh quotient iteration was chosen to be the same as that for the inverse
power method.

The first six rows of the table are for the initial vector 1/
√

29(2 3 − 4)T and
the three shifts µ = −1, 3.5, and 8. We give results for certain iteration numbers
k. The last six rows are analogous results for the initial vector 1/

√
74(7 3 4)T .

Inverse Power Method Rayleigh Quotient Iteration
µ k q(k)

1 q(k)
2 q(k)

3 k µk q(k)
1 q(k)

2 q(k)
3

-1.0 5 .15453 -.60969 -.77743 2 3.00023 .82858 .37833 -.41269
-1.0 21 .00000 -.70711 -.70711 3 3.00000 .81659 .40825 -.40825
3.5 3 -.81945 -.40438 .40616 1 3.04678 -.88302 -.30906 .35321
3.5 7 -.81650 -.40825 .40825 3 3.00000 -.81650 -.40825 .40825
8.0 7 .56427 -.58344 .58411 3 5.99931 .56494 -.58309 .58382
8.0 17 .57735 -.57735 .57735 4 6.00000 .57735 -.57735 .57735

-1.0 5 .00053 .70657 .70765 2 1.00004 .00158 .70869 .70552
-1.0 10 .00000 .70711 .70711 3 1.00000 .00000 .70711 .70711
3.5 15 .25400 -.88900 -.38100 2 1.06818 .06742 .63485 .76969
3.5 30 -.81647 -.40821 .40834 4 1.00000 .00000 .70711 .70711
8.0 5 -.57735 .57459 -.58009 3 5.99970 -.57733 .57181 -.58285
8.0 11 -.57735 .57735 -.57735 4 6.00000 -.57735 .57735 -.57735

Note that all iterations converge; indeed, for each combination of initial con-
dition and shift, the iterates converged to the number of places displayed in the

1.4. Methods for computing a few eigenvalues and eigenvectors 41

number of iterations shown except for the case that took 30 iterations. Note that
the inverse power method iterates always converge to the eigenvector closest to the
shift µ. However, the Rayleigh quotient iteration does not necessarily converge to
the eigenvector corresponding to the eigenvalue closest to the initial shift µ0. For
example, for the first initial condition and an initial shift µ0 = −1, the Rayleigh quo-
tient iterates converge to x(2) and not to x(3). As expected, the Rayleigh quotient
iterates converge must faster than those determined by the inverse power method.

Subspace iteration

We now turn to the second variant of the inverse power method, subspace iteration.
For simplicity, we assume that a few of the least dominant eigenvalues of a (real)
symmetric positive definite matrix A are to be determined. We choose an integer p
which is somewhat larger than the number of desired eigenvalues and eigenvectors.
We assume the eigenvalues satisfy

λ1 ≤ λ2 ≤ · · · ≤ λp < λp+1 ≤ · · · ≤ λn .(1.45)

A set of orthonormal corresponding eigenvectors is denoted by x(i), i = 1, . . . , n.
Let X denote the n×p matrix whose columns are the eigenvectors x(i), i = 1, . . . , p,
and let Λ = diag(λ1, . . . , λp); note that Λ is a p× p matrix. Then we have that

AX = XΛ .

Thus, we are interested in computing approximations to X and Λ, i.e., the p least
dominant eigenpairs of A.

Having knowledge of the inverse power method, the obvious thing to do is to
define a starting matrix S(0), and then compute the sequence S(k), k = 1, 2, . . .,
from

AS(k) = S(k−1) , k = 1, 2, . . . ,

with perhaps some subsequent scaling of the columns of S(k) in order to prevent
overflows and underflows.

A difficulty with this scheme is that, if λ1 < λ2, all the columns of S(k) are likely
to converge in direction to the single eigenvector x(1). To see this one merely needs
to observe that the iteration AS(k) = S(k−1), k = 1, 2, . . ., is equivalent to

As(k)
i = s(k−1)

i , i = 1, . . . , p , , k = 1, 2, . . . ,(1.46)

where s(k)
i denotes the i-th column of S(k). Each of the p iterations of (1.46) is

an inverse power iteration; they differ only in the choice of starting vector, i.e.,
s(0)
i . But, of course, for almost any starting vector the inverse power method will

converge to an eigenvector corresponding to the least dominant eigenvalue so that,
at least in direction, s(k)

i → x(1) for all i = 1, . . . , p.

42 1. Eigenvalues and Eigenvectors

To prevent the simultaneous convergence of all the columns of S(k) to x(1), one
should orthonormalize these columns. For example, after S(k) is determined from
the previous iterate, we could compute the QR factorization of S(k), i.e., determine
an n × p matrix Q(k) having orthonormal columns and a p × p upper triangular
matrix R(k) such that S(k) = Q(k)R(k). If S(k) is of full rank p, then so is R(k)

and therefore S(k) and Q(k) have the same column space. The incorporation of this
orthonormalization results in the following algorithm. Start with an initial matrix
S(0); then compute the QR factorization S(0) = Q(0)R(0); then, for k = 1, 2, . . . ,
determine the sequence Q(k), k = 1, 2, . . ., from

AS(k) = Q(k−1) and S(k) = Q(k)R(k) , k = 1, 2,(1.47)

By forcing the columns of the iterates Q(k) to be orthonormal, we prevent these
columns from all converging to an eigenvector corresponding to the least dominant
eigenvalue.

The columns of the matrix Q(k) are viewed as approximations to the eigen-
vectors contained in the columns of X. Moreover, if q(k)

i , i = 1, . . . , p, denote the
columns of Q(k), then span{q(k)

1 , . . . ,q(k)
p } = R(Q(k)) = R(S(k)) is thought of as an

approximation to span{x(1), . . . ,x(p)} = R(X). However, the columns of Q(k) are
not, in general, optimal approximations to R(X) out of R(Q(k)). As we shall see,
the following algorithm not only produces orthonormal iterates, but also chooses
optimal approximations to R(X) out of R(Q(k)).

Algorithm 1.6 Subspace iteration. Let A be an n×n real, symmetric, positive
definite matrix. This algorithm determines a sequence of n × p matrices having
orthonormal columns. If the eigenvalues of A satisfy (1.45), these columns almost
surely converge to p linearly independent eigenvectors of A corresponding to the p
least dominant eigenvalues. A sequence of approximate eigenvalues is also gener-
ated.

Choose an n× p starting matrix S(0).

For k = 1, 2, . . . ,

solve AY (k) = S(k−1) for Y (k)

determine the factorization Y (k) = Q(k)R(k) where Q(k) is an n×p matrix
having orthonormal columns and R(k) is a p× p upper triangular matrix

form the p× p matrix B(k) =
(
Q(k)

)T
AQ(k)

solve the p× p eigensystem B(k)Z(k) = Z(k)Θ(k) for the diagonal matrix
Θ(k) and the orthogonal matrix Z(k)

set S(k) = Q(k)Z(k). 2

The first step in the algorithm is the generalization of the inverse power method
to multiple vectors. It requires the solution of p linear systems for the columns

1.4. Methods for computing a few eigenvalues and eigenvectors 43

of Y (k). Note that all of the linear systems have the same cofficient matrix A,
so that, e.g., only one Cholesky factorization is required. Indeed, the coefficient
matrix is also fixed from iteration to iteration, i.e., is independent of k. The second
step is merely the orthogonalization introduced in (1.47) of the columns of Y (k)

through a QR factorization. The third step determines the projection B(k) of A
onto R(Y (k)); note that since A is symmetric, so is B. Since usually p << n,
the eigenvalue problem to be solved in the fourth step is much smaller than the
original one. With B symmetric, the matrix Z(k) of eigenvectors of B may be
chosen to be an orthogonal matrix, i.e., (Z(k))T Z(k) = I. As a result, the matrix
S(k) computed in the fifth step has orthonormal columns, i.e., (S(k))T S(k) = I, and
R(S(k)) = R(Q(k)) = R(Y (k)).

Under mild assumptions about the columns of the starting matrix S(0), we have
that Θ(k) → Λ and R(S(k))→ R(X) as k →∞. Note that Y (k) may be overwritten
onto S(k−1), Q(k) onto Y (k), B(k) onto R(k), and Z(k) onto B(k) so that if p << n,
the required storage, in addition to that required for the given matrix A, is only
roughly that necessary for the initial matrix S(0).

The novelty in the algorithm, compared to (1.47), is the use of the eigensystem
of the projected matrix B(k) to compute the new basis for R(Q(k)) given by the
columns of S(k). The latter is optimal.

If we view the columns of an n×p matrix S, p < n, having orthonormal columns
as approximations to p eigenvectors of the symmetric, positive definite matrix A
and also view the diagonal entries of a p× p diagonal matrix Ξ as approximations
to the corresponding eigenvalues, we can define the residual matrix

W = AS − SΞ .(1.48)

Of course, if the columns of S are true eigenvectors and the diagonal entries of Ξ are
true corresponding eigenvalues, we have that W = 0. Now, given an n×p matrix Q
having orthonormal columns, consider the following problem: among all matrices S
with columns defining orthonormal bases for R(Q), i.e., such that R(S) = R(Q),
find one that minimizes ‖W‖2. The solution is given in the following proposition
which we do not prove.

Proposition 1.17 Let A be a real, symmetric, positive definite n× n matrix. For
p ≤ n, let Q be an n× p matrix having orthonormal columns and let S denote any
matrix having orthonormal columns that satisfies R(S) = R(Q). Let Ξ denote an
arbitrary p×p diagonal matrix and, for given S and Ξ, let the residual W be defined
by (1.48). Let B = QT AQ denote the projection of A onto R(Q). Arrange the
eigenvectors of B as columns of the p×p orthogonal matrix Z and the corresponding
eigenvalues as the corresponding diagonal entries of the diagonal p × p matrix Θ.
Then, (Ξ, S) minimizes ‖W‖2 if and only if S = QZ and Ξ = Θ. 2

The last three steps of the algorithm accomplish a change to the optimal basis,
where optimality is defined in the sense of best approximations out of R(Q(k)) to
the eigenvectors of A. Thus, each iteration involves a step of the inverse power

44 1. Eigenvalues and Eigenvectors

method (step 1), a change to an orthonormal basis (step 2), and then a change to
an optimal basis (steps 3,4, and 5).

The next proposition, which we also do not prove, concerns the convergence of
the subspace iteration algorithm.

Theorem 1.18 Let A be a real, symmetric, positive definite n×n matrix and let the
eigenvalues of A satisfy (1.45). For k = 0, 1, 2, . . . , let S(k) denote the n×p matrices
determined from Algorithm 1.6. Let s(k)

j , j = 1, . . . , p, denote the columns of S(k).
Then, there exists an n×p matrix X having orthonormal columns x(j), j = 1, . . . , p,
that are eigenvectors of A corresponding to the p least dominant eigenvalues of A
such that, if XT S(0) is nonsingular, then, as k →∞,

‖s(k)
j − x(j)‖2 ≤

(
λj

λp+1

)k

‖s(0)
j − x(j)‖2 for j = 1, . . . , p .(1.49)

Moreover, if θ
(k)
j , j = 1, . . . , p, denote the diagonal entries of the diagonal matrix

Θ(k) determined in the algorithm, then, as k →∞,

|θ(k)
j − λj | = O(λj/λp+1)2k for j = 1, . . . , p .(1.50)

The requirement that XT S(0) be nonsingular guarantees that each starting vector,
i.e., each column of S(0) is not orthogonal to the subspace spanned by the columns
of X, i.e., the subspace we are seeking to approximate.

Thus we see that eigenvector convergence is linear in λj/λp+1 and the eigenvalue
convergence is quadratic. Also note that under the hypotheses, all p columns of S(k)

converge to eigenvectors. However, as a result of (1.50), we see that the smaller
eigenvalues converge faster than do the larger ones; from (1.49), the same observa-
tion holds for the corresponding eigenvectors. Also, if we examine the convergence
of the first column of S(k) to the least dominant eigenvector x(1), we see an improve-
ment over the inverse power method. For example, if λ1 < λ2, the present iterates
approximate that eigenvector to O(λ1/λp+1), while the inverse power method iter-
ates are only O(λ1/λ2) approximations. On the other hand, each subspace iteration
iterate costs more to obtain than an inverse power method iterate.

Example 1.13 We compare the performance of the inverse power method with
that of subspace iteration. Let A be the n × n symmetric triadiagonal matrix
having diagonal entries equal to 2 and sub- and superdiagonal entries equal to -1.
We give results for the two methods for various iteration indices. We use n = 10
and p = 3, i.e., we try to simultaneously approximate three of the ten eigenvectors
of A. The initial n × p matrix for the subspace iteration is given by Y

(0)
i1 = (−1)i

and Y
(0)
ij = |i−j| for j = 2 and 3. The initial vector for the inverse power method is

given by the first column of Y (0). We give the approximation to the least dominant
eigenvector after 9 and 35 iterations of the inverse power method; we also give S(k),
k = 3, 7 and 12, for subspace iteration.

1.4. Methods for computing a few eigenvalues and eigenvectors 45

Inv. Power Subspace Iteration
j q(9) q(35) S(3) S(7) S(12)

1 .231 .120 .118 .213 -.402 .120 .229 .329 .120 .231 .323
2 .388 .231 .227 .370 -.486 .231 .387 .428 .231 .388 .422
3 .422 .322 .318 .416 -.209 .322 .422 .229 .322 .422 .230
3 .322 .388 .385 .332 .169 .388 .323 -.127 .388 .322 -.121
5 .120 .422 .421 .141 .392 .422 .121 -.391 .422 .120 -.388
6 .120 .422 .423 -.099 .345 .422 -.119 -.384 .422 -.120 -.388
7 .322 .388 .391 -.311 .089 .388 -.322 -.114 .388 -.322 -.120
8 .422 .322 .327 -.428 -.208 .322 -.423 .231 .322 -.422 .231
9 .388 .231 .235 -.405 -.361 .231 -.389 .416 .231 -.388 .422

10 .231 .120 .123 -.246 -.274 .120 -.231 .316 .120 -.231 .322

It takes 35 inverse power iterations and only 7 subspace iterations to achieve
three significant digit accuracy for the approximation to the eigenvector correspond-
ing to the least dominant eigenvalue; thus, we see the predicted faster convergence
of subspace iteration to the first eigenvector. After 12 iterations, subspace itera-
tion has produced a three-place accurate approximation to the second eigenvector;
it takes 15 iterations to get a third eigenvector accurate to three significant fig-
ures. Thus it is also evident that the eigenvectors approximations corresponding to
smaller eigenvalues converge faster than those corresponding to larger eigenvalues.

1.4.4 Deflation

In this section we consider procedures for obtaining a second eigenvalue-eigenvector
pair once a first pair has been obtained. There are many such procedures available,
and they are collectively refered to as deflation; here, we only consider three of
these.

Deflation by subspace restriction

First, we consider a restriction method for n × n matrices having a complete or-
thonormal set of eigenvectors, i.e., normal matrices such as Hermitian matrices.
The key to the method is to restrict all computations to the (n − 1)-dimensional
subspace of Ckn orthogonal to the known eigenvector.

For i = 1, . . . , n, denote the eigenvalues and eigenvectors by λi and x(i), respec-
tively. For simplicity, assume that the eigenvalues of the matrix satisfy |λ1| > |λ2| >
|λi| for i = 3, . . . , n. Suppose we have obtained the dominant eigenpair (λ1,x(1)),
and now wish to obtain the second eigenpair (λ2,x(2)). Now, suppose the initial
vector is given by

q(0) = c2x(2) + c3x(3) + · · ·+ cnx(n)(1.51)

46 1. Eigenvalues and Eigenvectors

so that (x(1))∗q(0) = 0, i.e., the initial vector is orthogonal to the known eigenvector
x(1). Then, since

Akq(0) = c2λ
k
2x

(2) + c3λ
k
3x

(3) + · · ·+ cnλk
nx(n) ,

it is easy to see that the power method iterates resulting from this initial vector
will converge in direction to x(2) and seemingly one can, in this manner, compute
the second most dominant eigenpair once the first has been obtained.

There are two difficulties associated with this scheme. First, even if the initial
vector q(0) is exactly orthogonal to the first eigenvector x(1), there will be an intro-
duction of a small component in the direction of x(1) into the subsequent vectors
as a result of round-off errors. In some cases this component may grow sufficiently
rapidly so that the iteration starts heading towards x(1) before satisfactory con-
vergence to x(2) is achieved. The second difficulty is that x(1), having itself been
computed by the power method, is only an approximation to the true dominant
eigenvector so that the initial vector q(0) given in (1.51) is not exactly orthogonal
to the latter. Again, this means that subsequent power method iterates will have a
growing component in the direction of the dominant true eigenvector. Both of these
difficulties can be remedied by occasionally re-orthogonalizing the power method
iterates with respect to x(1). Thus, if q(k) denotes the k-th power method iterate,
every so often one sets

q(k) ← (I − x(1)x(1)∗)q(k) .(1.52)

Incidentally, the inital vector q(0) can be obtained in this manner as well.

From q(k) we can obtain an approximation µ(k) for the second most dominant
eigenvalue λ2, e.g., by using the Rayleigh quotient. The growth of the power method
iterates in the direction of x(1) is approximately |λ1/µ(k)|. Therefore, given a tol-
erance, an estimate for how frequently a re-orthogonalization step is necessary is
actually obtainable from λ1 and µ(k).

Example 1.14 The power method is applied to A of Example 1.4.3 to find an
approximation to x(1); then, using an initial unit vector that is orthogonal to this ap-
proximation, the power method is again applied to A. Different re-orthogonalization
strategies are employed, i.e., re-orthogonalizing every power method iteration, re-
orthogonalizing every 5 or 10 iterations, and never re-orthogonalizing. These cal-
culations are repeated for different levels of accuracy of the approximation to x(1)

that is used in the orthogonalization process.

1.4. Methods for computing a few eigenvalues and eigenvectors 47

k1 Approximation to x(1) f k2 Approximation to x(2)

3 -.71167 1.11522 -1.11795 1 12 2.23317 .71116 -.71218
5 15 2.23316 .70639 -.71693

10 10 2.23314 .70199 -.72130
∞ 20 1.00000 -1.00000 1.00000

6 -.96534 1.01688 -1.01689 1 12 2.03377 .96534 -.96534
5 15 2.03377 .96533 -.96535

10 20 2.03377 .96533 -.96535
∞ 23 1.00000 -1.00000 1.00000

10 -.99785 1.00107 -1.00107 1 11 2.00215 .99786 -.99784
5 15 2.00215 .99785 -.99785

10 20 2.00215 .99785 -.99785
∞ 27 1.00000 -1.00000 1.00000

20 -1.00000 1.00000 -1.00000 1 12 2.00000 1.00000 -1.00000
5 15 2.00000 1.00000 -1.00000

10 20 2.00000 1.00000 -1.00000
∞ 20 1.00000 -1.00000 1.00000

30 -1.00000 1.00000 -1.00000 ∞ 49 1.00000 -1.00000 1.00000

Reading from left to right, the table gives:

the number of steps k1 of the power method taken to compute the approxi-
mation to x(1);

the three components of the approximation to x(1) multiplied by
√

3;

the frequency f , measured in number of iterations, that the iterates are re-
orthogonalized during the power method iteration for approximating x(2);

the number k2 of power method steps necessary to converge the approximation
to x(2) to the number of places shown; and

the three components of the approximate second eigenvector multiplied by√
6; those for the case of never re-orthogonalizing are multiplied by

√
3.

The iterates resulting from re-orthonogalization every 5 or 10 steps are monitored
only after an orthogonalization. Note that every calculation of the second eigen-
vector is started with the vector 1/

√
74(7 3 4)T orthogonalized with respect to the

approximation to x(1).
It can be seen that even re-orthogonalizing every 10 iterations (for this small

3 × 3 matrix) is effective in forcing the iterates (or at least every tenth iterate) to
remain orthogonal to the approximate dominant eigenvector, even if this eigenvector
is inaccurate. On the other hand, if one never re-orthogonalizes, then the iteration
will eventually be drawn towards to the dominant eigenvector x(1). Note that the
greater the accuracy of the approximation to the dominant eigenvector, the slower
the attraction of the second iteration to that eigenvector. The reason for this is that

48 1. Eigenvalues and Eigenvectors

the initial condition for the second iteration is more nearly orthogonal to the true
dominant eigenvector when a better approximation to that eigenvector is known.

Two more tables further illuminate the performance of the method. First, we
give further details for one of the iterations that are never re-orthogonalized. We
start out by using a very good approximation to the dominant eigenvector x(1), i.e.,
an approximation good to at least eight significant figures. The first column of the
table gives the iteration number k and the last three columns give the components
of the corresponding iterate, normalized to unit length. Note that the seventh
and eleventh iterates are good approximatins to x(2) = .4082483(2 1 − 1)T , but
eventually, the iterates converge to x(1) = .5773503(1 − 1 1)T .

k Approximation to x(2)

0 .5971098 .7808359 .1837261
3 .8160099 .4324155 -.3835944
7 .8164966 .4085497 -.4079466

11 .8164983 .4082503 -.4082429
15 .8165240 .4082209 -.4082208
20 .8173727 .4073707 -.4073707
25 .8435674 .3797328 -.3797328
30 .9271727 -.2649065 .2649065
40 .5778627 -.5770939 .5770939
50 .5773508 -.5773500 .5773500
60 .5773503 -.5773503 .5773503

Finally, we illustrate what happens when one only occasionally re-orthogonalizes.
For the following table, re-orthogonalization was done every five iterations. We give
the approximate eigenvector for the first 16 iterates; in groups of five, subsequent
iterates repeat to the number of places shown. Orthogonalization is done with
respect to the approximation of x(1) found using six power method iterations. Note
that every fifth iteration the approximate eigenvector is pulled back, through the
re-orthogonalization process, towards the second eigenvector x(2); the intermediate
iterates are pushed away from that eigenvector because of the inaccuracy of the
approximation used for the first eigenvector.

1.4. Methods for computing a few eigenvalues and eigenvectors 49

k Approximation to x(2)

0 .61299 .76789 .18598
1 .80703 .56912 -.15747
2 .86412 .41980 -.27760
3 .91117 .31388 -.26692
4 .97017 .17869 -.16382
5 .83028 .39670 -.39149
6 .84357 .38060 -.37886
7 .86854 .35075 -.35017
8 .91169 .29063 -.29044
9 .97024 .17125 -.17119

10 .83029 .39411 -.39409
11 .84357 .37974 -.37973
12 .86854 .35046 -.35046
13 .91169 .29054 -.29054
14 .97024 .17122 -.17122
15 .83029 .39410 -.39410
16 .84357 .37973 -.37973

In principle, once two eigenpairs have been determined, a similar scheme can
be invoked to compute further eigenpairs. In fact, this technique easily gener-
alizes to the case wherein more than one eigenpair is known. The key is that,
given the orthonormal eigenvectors x(i), i = 1, . . . , s, then, for any vector q /∈
span{x(1), . . . ,x(s)}, the vector(

I −
s∑

i=1

x(s)x(s)∗
)

q

is orthogonal to the span{x(1), . . . ,x(s)}.

Deflation by subtraction

A related procedure, again applicable to normal matrices, is based on changing the
given matrix into another so that the known eigenvector x(1) no longer corresponds
to the dominant eigenvalue. Suppose (λ1,x(1)) are a known dominant eigenpair for
a normal n× n matrix A. (We again assume, for simplicity, that |λ1| > |λ2| > |λi|
for i = 3, . . . , n.) Let

Â = A− λ1x(1)x(1)∗ .(1.53)

One easily verifies that Âx(1) = 0 and, due to the orthogonality of the eigenvectors,
Âx(i) = λix(i) for i = 2, . . . , n. Thus, Â and A have the same eigenvectors and
eigenvalues except that the eigenvalue of Â corresponding to x(1) vanishes. In
particular, x(1) is not the eigenvector corresponding to the dominant eigenvalue of

50 1. Eigenvalues and Eigenvectors

Â. Thus, if we apply the power method to the matrix Â, the iterates will converge
to an eigenvector corresponding to λ2, the dominant eigenvalue of Â and the second
most dominant eigenvalue of A.

Example 1.15 We consider the matrix of Example 1.4.3. We determine an
approximation to x(2) by using the power method on (1.53), with an approximate
eigenvector x(1) determined by the power method applied to A itself and an approx-
imate eigenvalue λ1 determined by the Rayleigh quotient. The initial vector for the
iteration for the second eigenvector is 1/

√
74(7 3 4)T . Even for inaccurate approxi-

mations to x(1), the power method applied to (1.53) converges to an approximation
to x(2); of course, the quality of the latter was no better than the approximation to
x(1) used to determine Â.

Reading from left to right, the table gives:

the number of steps k1 of the power method taken to compute the approxi-
mation to x(1);

the three components the approximation to x(1) multiplied by
√

3;

the approximation to the dominant eigenvalue λ1 determined from the Rayleigh
quotient of the approximate eigenvector;

the number k2 of power method steps necessary to converge the approximation
to x(2) to the number of places shown; and

the three components of the approximate second eigenvector multiplied by√
6.

k1 Approximation to x(1) Appx. to λ1 k2 Approximation to x(2)

3 -.71167 1.11522 -1.11795 5.89069 12 2.37337 .42755 -.42932
6 -.96534 1.01688 -1.01689 5.99823 11 2.06629 .93018 -.93016

10 -.99785 1.00107 -1.00107 5.99999 12 2.00429 .99570 -.99570
20 -1.00000 1.00000 -1.00000 6.00000 12 2.00000 1.00000 -1.00000

Once again the effects due to round-off errors come into question. Fortunately
it can be shown that the totality of these effects are no worse than the effects due to
the unavoidable round-off errors occurring in the determination of Â from A and an
exact eigenpair (λ1,x(1)). Also, the method is easily generalized to the case wherein
more than one eigenpair is known since the matrix

A−
s∑

i=1

λsx(s)x(s)∗

has the same eigenvalues and (orthonormal) eigenvectors as does A, except that the
eigenvalues corresponding to the eigenvectors x(i), i = 1, . . . , s, all vanish.

1.4. Methods for computing a few eigenvalues and eigenvectors 51

Procedures similar to the ones discussed so far can clearly be applied to other
methods for locating eigenpairs such as the inverse power method. These methods
have proven to be popular, especially for sparse matrices.

Deflation by unitary similarity transformations

The deflation procedure based on (1.53) uses the n × n matrix Â to find a second
eigenpair. We now consider a procedure, applicable to general square matrices,
based on defining an (n − 1) × (n − 1) matrix whose eigenvalues are the same as
those of the original matrix, except for the known eigenvalue λ1.

Let (λ,x) denote an eigenpair for an n × n matrix A where x is normalized so
that ‖x‖2 = 1. Let Q be any n× (n− 1) matrix such that (x Q) is unitary. Since
Ax = λx, x∗x = 1, and Q∗x = 0, we have that x∗Ax = λ, Q∗Ax = λQ∗x = 0, and

B = (x Q)∗A(x Q) =
(

x∗Ax x∗AQ
Q∗Ax Q∗AQ

)
=
(

λ h∗

0 C

)
,(1.54)

where C = Q∗AQ and h∗ = x∗AQ. The matrix B is block triangular so that
its eigenvalues are λ and the eigenvalues of the (n − 1) × (n − 1) matrix C. But
(x Q) is an orthogonal matrix so that B is similar to A. Therefore, C has the same
eigenvalues as A, except for the known eigenvalue λ. Note that if A is Hermitian,
then so is B and therefore h = 0.

A Householder transformation may be used to construct the matrix (x Q).
Given the eigenvector x such that ‖x‖2 = 1, we let H be a Householder trans-
formation such that Hx = ±e(1); see Proposition ??. Then, since H = H∗ = H−1,
He(1) = ±x, i.e., H is an orthogonal matrix having the unit eigenvector x as its
first column. (In order to form the product H∗AH in (1.54) one does not have to
explicitly form H, but rather, one uses algorithms such as Algorithm ??.)

Once the matrix C has been determined, it can be used in conjunction with,
e.g., the power or inverse power methods, to find a second eigenpair of A.

Example 1.16 We again consider the matrix of Example 1.4.3. We determine
an approximation to x(2) by using the power method on the matrix C of (1.54),
with an approximate eigenvector x(1) determined by the power method applied to
A itself. An approximation to the dominant eigenvalue λ1 is also determined from
(1.54). Once an eigenvector z of C is determined, an eigenvector of A is determined
form (x(1) Q)(0 z)T . The initial vector for the iteration using the 2 × 2 matrix C
is (3/5 4/5)T . Even for inaccurate approximations to x(1), using the power method
on C leads to converged approximations to x(2); of course, the quality of the latter
was no better than that of the approximation to x(1) used to determine C.

The columns of the table provide the same information as the corresponding
columns of the table of Example 1.4.4.

52 1. Eigenvalues and Eigenvectors

k1 Approximation to x(1) Appx. to λ1 k2 Approximation to x(2)

3 -.71167 1.11522 -1.11795 5.89069 12 2.23317 .71115 -.71219
6 -.96534 1.01688 -1.01689 5.99823 12 2.03377 .96533 -.96535

10 -.99785 1.00107 -1.00107 5.99999 12 2.00215 .99784 -.99786
20 -1.00000 1.00000 -1.00000 6.00000 13 2.00000 1.00000 -1.00000

In general, the eigenpair (λ,x) used in (1.54) is only known approximately. If
we denote the approximate eigenpair by (µ, z), then B in (1.54) is replaced by

B̃ = H̃∗AH̃ =
(

z∗Az h̃∗

g̃ C̃

)
.(1.55)

where C̃ = Q̃∗AQ̃, h̃∗ = z∗AQ̃, and g̃ = Q̃∗Az. In (1.55), H̃ = (z Q̃) is a unitary
matrix.

If we use C̃ to find a second eigenpair, we are replacing g̃ in (1.55) with the
zero vector so that we make an error of size ‖g̃‖2. One might expect that one
needs a very accurate eigenvector approximation z in order to have ‖g̃‖2 small.
However, this is not always the case. To see this, define the residual vector r for
the approximate eigenpair (µ, z) by

r = Az− µz .(1.56)

If (µ, z) is an exact eigenpair, we of course have that r = 0, so that one may use ‖r‖2
as a measure of the accuracy of the approximate eigenpair. By Proposition 1.1, we
know that given an approximate eigenvector z, ‖r‖2 is minimized when µ is chosen
to be the Rayleigh quotient, i.e., µ = z∗Az/z∗z, or, if ‖z‖2 = 1, µ = z∗Az. Note
that this is exactly the approximate eigenvalue obtained by setting g̃ = 0 in (1.55).
The vector g̃ in (1.55) is related to the residual vector r in the following manner.

Proposition 1.19 Given the n× n matrix A and unit vector z, let H̃ = (z Q̃) be
a unitary matrix and let g̃ = Q̃∗Az. Let the scalar µ be the Rayleigh quotient for
A and z, i.e., µ = z∗Az. Let the residual vector for the pair (µ, z) be defined by
(1.56). Then

‖g̃‖ = ‖r‖2 .

Proof. Since H̃ is unitary, ‖r‖2 = ‖H̃r‖2. Then,

‖r‖2 = ‖(z Q̃)∗(Az− µz)‖2 =
∣∣∣∣∣∣∣∣(z∗Az− µz∗z

Q̃∗Az− µQ̃∗z

)∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣(0

g̃

)∣∣∣∣∣∣∣∣
2

= ‖g‖2 .

2

Thus, we see that g is the same size as the smallest residual that can be obtained
from the approximate eigenvector z. It is even possible for this residual to be very
small, even if z is a poor approximation. On the other hand, if A is ill-conditioned,

1.4. Methods for computing a few eigenvalues and eigenvectors 53

it is also possible for ‖g̃‖2 to be large, even if z is a very accurate eigenvector. The
following example illustrates these observations.

Example 1.17 The matrix

A =
(

1 + β −β
−β 1 + β

)
has eigenvalues λ1 = 1 and λ2 = 1 + 2β and corresponding unit eigenvectors x(1) =
(1/
√

2)(1 1)T and x(2) = (1/
√

2)(1 − 1)T . Note that x(1)T
x(2) = 0. Now let

z be another unit vector and denote by α the smaller angle between x(1) and z,
i.e., cosα = zT x(1). Then, sinα = zT x(2). The Rayleigh quotient for z is then
µ = (cosα)2 + (1 + 2β)(sinα)2. Also, ‖x(1) − z‖2 = 2|sin(α/2)| and the norm of the
residual for the pair (µ, z) is given by ‖r‖2 = ‖Az− µz‖2 = β|sin(2α)|.

Now, let β = ε, where 0 < ε << 1, and α = π/4. Thus, z makes an angle of
45 degrees with both eigenvectors, i.e., z is not close to any eigenvector. However,
r = ε, i.e., even though z is not close to an eigenvector, the residual is small. Note
that here the two eigenvalues are very close to each other and that µ = 1 + ε, the
average of the two eigenvalues. For example, if z = e(1), then in (1.55) H̃ = I and
B̃ = A so that g̃ is in this case the scalar −ε. The matrix C̃ is the scalar (1 + ε)
which, of course, is equal to its eigenvalue. Thus, if we neglect g̃ in (1.55), we would
conclude that the second eigenvalue of A is (1 + ε) which is within ε of the correct
value. This is the best one can expect since we neglected a term of order ε, i.e., g̃.

Next, let β = 1/ε, where again 0 < ε << 1 and α =
√

ε. Now z makes a small
angle with x(1). Note that the Rayleigh quotient is given by µ ≈ 3. Furthermore,
‖x(1) − z‖2 ≈ 2

√
ε. However, ‖r‖2 ≈ 2/

√
ε so that even though z is a good approx-

imation to the eigenvector x(1), the residual r and therefore also g̃ in (1.55) are not
small.

1.4.5 Sturm sequences and bisection

There are a variety of algorithms available for finding eigenvalues that are based on
finding the roots of the characteristic polynomial. We consider here the technique
which uses Sturm sequences and a bisection strategy to approximate the eigenvalues
of a Hermitian matrix. One advantage of this method is that the user can specify
which eigenvalues are to be computed, or, more precisely, can specify an interval
within which an eigenvalue is to be located. The algorithm requires a preliminary
reduction, using orthogonal similarity transformations, to Hermitian tridiagonal
form; see Algorithm 1.2.

Before describing the algorithm we recall the definition of a Sturm sequence for
a polynomial q(x).
Definition 1.1 The sequence q(x) = qn(x), qn−1(x), . . . , qn−m(x) of real polyno-
mials is called a Sturm sequence for the polynomial q(x) if the following conditions
are satisfied:

54 1. Eigenvalues and Eigenvectors

i. the real roots of q(x) = qn(x) are simple;

ii. if η is a real root of q(x) = qn(x), then sign qn−1(η) = −sign q′n(η) ;

iii. if η is a real root of qi(x), then, for i = n−1, n−2, . . . , n−m+1, qi+1(η)qi−1(η) <
0 ;

iv. qn−m(x), the last polynomial in the sequence, has no real roots.

The utility of a Sturm sequence for locating roots of polynomials is based on
the following result.

Proposition 1.20 Let s(c) denote the number of sign changes of a Sturm sequence
qn(x), qn−1(x), . . . , qn−m(x) evaluated at x = c, where whenver qi(c) = 0 that poly-
nomial is deleted from the sequence before the sign changes are counted. Then, the
number of real roots of q(x) = qn(x) in the interval [a, b) is given by s(b)− s(a).

Proof. As long as η is not a root of any of the polynomials qi(x), i = n, n−1, . . . , n−
m, then, for all x belonging to a sufficiently small neighborhood of η, s(x) = s(η),
i.e., there is no change in the number of sign changes.

Now, suppose that η is root of qi(x) for some i < n. The fourth clause of
the above definition implies that i > n − m so that the third clause implies that
qi−1(η) 6= 0, qi+1(η) 6= 0, and qi−1(η)qi+1(η) < 0. Therefore, for all x belonging to a
sufficiently small neighborhood of η, we have that qi−1(x)qi+1(x) < 0, i.e., qi−1(x)
and qi+1(x) have opposite signs. In that neighborhood, or perhaps a smaller one,
qi(x) has an unchanging sign for x < η, either the same or a different unchanging
sign for x > η, and of course, qi(η) = 0. In all cases there is exactly one sign change
in the subsequence {qi−1(x), qi(x), qi+1(x) } for all x belonging to the neighbor-
hood. From this one easily concludes that s(x) remains the same throughout the
neighborhood.

Next, suppose that qn(η) = 0. Then, from the first clause of the above definition,
qn(x) changes sign at η and from the second part, qn−1(x) has an unchanging sign
in a sufficiently small neighborhood of η. Furthermore, in that neighborhood, qn(x)
and qn−1(x) have the same sign for x < η and different signs for x > η. Thus, for
sufficiently small ε > 0, s(η − ε) = s(η) = s(η + ε) − 1, i.e., there is a gain of one
sign change as we pass a root of qn(x) = q(x) from left to right.

If a < b, for sufficiently small ε > 0 we then have that s(b) − s(a) = s(b − ε) −
s(a− ε) gives the number of roots of q(x) in the interval (a− ε, b− ε). Since ε > 0
may be chosen to be arbitrarily small, we have that s(b)− s(a) gives the number of
roots in the interval [a, b). 2

We now consider the Hermitian tridiagonal matrix A which we express in the

1.4. Methods for computing a few eigenvalues and eigenvectors 55

form

A =


α1 β̄2 0 · · · 0
β2 α2 β̄3 · · · 0

0
.

...
0 · · · βn−1 αn−1 β̄n

0 · · · 0 βn αn

 .(1.57)

The characteristic polynomial p(x) = det(A − λI) can be computed through the
following recursion

p0(λ) = 1
p1(λ) = α1 − λ

p2(λ) = (α2 − λ)(α1 − λ)− |β2|2 = (α2 − λ)p1(λ)− |β2|2p0(λ)(1.58)
pi(λ) = (αi − λ)pi−1(λ)− |βi|2pi−2(λ) for i = 3, . . . , n
pn(λ) = p(λ) = det(A− λI)

In this recursion, pi(λ) is the determinant of the i-th principal submatrix of (A−λI).
The roots of the polynomials p0(x), p1(x), . . . , pn(x) satisfy the following interlacing
result.

Proposition 1.21 Let αi, i = 1, . . . , n, be real numbers and let the complex num-
bers βi, i = 2, . . . , n, all satisfy βi 6= 0. Let the sequence of polynomials pi(λ),
i = 0, . . . , n be defined by (1.58). Then, all the roots λ

(i)
j , j = 1, . . . , i, of pi(λ),

i = 1, . . . , n, are real and simple. Moreover, the roots of pi−1(λ) and pi(λ) strictly
interlace each other, i.e., if the roots are ordered as λ

(i)
1 > λ

(i)
2 > · · · > λ

(i)
i , then

λ
(i)
1 > λ

(i−1)
1 > λ

(i)
2 > λ

(i−1)
2 > · · · > λ

(i−1)
i−1 > λ

(i)
i .(1.59)

Proof. The results are obviously true for i = 1. Now, assume they are true for some
i ≥ 1. It follows from (1.58) that pk(λ) is of exactly degree k and that it has the
form pk(λ) = (−1)kxk + · · ·. Thus, for λ > λ

(i−1)
1 , sign pi−1(λ) = (−1)i−1 and, by

(1.59),
sign p(i−1)(λ

(i)
j) = (−1)i+j for j = 1, . . . , i .(1.60)

Also, (1.58) implies that pi+1(λ
(i)
j) = −|βi|2pi−1(λ

(i)
j) 6= 0 . Then, it follows that

sign pi+1(λ
(i)
j) = (−1)i+1, j = 1, . . . , i,

sign pi+1(∞) = (−1)i+k+1, and sign pi+1(−∞) = 1 .
(1.61)

Thus, pi+1(λ) changes sign in each of the intervals (−∞, λ
(i)
i), (λ(i)

j+1, λ
(i)
j), j =

1, . . . , i− 1, and (λ(i)
1 ,∞), i.e., (1.59) holds with the index i augmented by 1. 2

Next we show that the sequence of polynomials pn(λ), pn−1(λ), . . . , p0(λ) forms
a Sturm sequence for the polynomial p(λ) = pn(λ).

56 1. Eigenvalues and Eigenvectors

Proposition 1.22 Let the hypotheses of Proposition 1.21 hold. Then, the sequence
of polynomials pn(λ), pn−1(λ), . . . , p0(λ) forms a Sturm sequence for the polynomial
p(λ) = pn(λ).

Proof. By Proposition 1.21, we have that part (i) of Definition 4.1 is satisfied;
clearly, part (iv) of that definition is also satisfied. Part (iii) easily follows from
(1.60) and (1.61). Since signpn(∞) = (−1)n, on can easily deduce that signp′n(λ(n)

j) =
(−1)n+j+1 for j = 1, . . . , n. Comparing with (1.60) shows that part (ii) of Definition
4.1 is also satisfied. 2

The algorithm given below requires that none of the subdiagonal entries βi,
i = 2, . . . , n, in the matrix A of (1.57) vanish. If this is not the case, we may clearly
partition A into the form

A =


A1

A2

. . .
As−1

As

 ,(1.62)

where each of the diagonal blocks is a Hermitian tridiagonal matrix having nonva-
nishing entries along the first subdiagonal. Since λ(A) = ∪s

i=1λ(Ai), we see that
the eigenvalues of A can be determined from those of the matrices Ai, i = 1, . . . , s.
Therefore, we may assume that βi 6= 0 for i = 2, . . . , n in the following algorithm
which is basically the bisection method within which the Sturm sequence property
is used to determine a subinterval which is known to contain the desired eigenvalue.

The bisection algorithm for locating the k-th largest eigenvalue λk of A proceeds
as follows. First, determine an interval (a0, b0) which is known to contain λk, e.g.,
choose a0 < λn and b0 > λ1, where λn and λ1 denote the smallest and largest
eigenvalue of A, respectively. Then, for j = 0, 1, . . ., set

γj = (aj + bj)/2(1.63)

and determine the number of sign changes s(γj) in the sequence

{pn(γj), pn−1(γj), . . . , p0(γj)} ,

where the polynomials pi(λ) are determined by the recursion (1.58). Then,

if s(γj) ≥ n + 1− k, set aj+1 = aj and bj+1 = γj

if s(γj) < n + 1− k, set aj+1 = γj and bj+1 = bj .

For the sequence γj determined by this algorithm, one may easily obtain the fol-
lowing convergence result.

1.4. Methods for computing a few eigenvalues and eigenvectors 57

Theorem 1.23 Let A be the Hermitian tridiagonal matrix of (1.57). Asssume that
βi 6= 0 for i = 2, . . . , n. Arrange the eigenvalues λk, k = 1, . . . , n, of A in decreasing
order. Assume that the interval [a0, b0] contains the k-th eigenvalue λk of A. Then
the sequence γj, j = 0, 1, . . . , generated by (1.63) converges to λk and

|λk − γj | ≤
b0 − a0

2j
for j = 0, 1,

Proof. It is easily shown that λk ∈ [aj , bj], j = 1, 2, Then, the results follow
from the obvious relations

[aj+1, bj+1] ⊆ [aj , bj] and |bj+1 − aj+1| =
|bj − aj |

2
.

2

Some observations are in order. First, the requirement that βi 6= 0 for all i is
necessary for the characteristic polynomials of the principal submatrices of A to
form a Sturm sequence. Second, given a tolerance ε, Theorem 1.23 may be used
to determine the number of iterations required for the error in the eigenvalue to be
less than ε; indeed, given any ε > 0, one easily sees that after J ≥ log2[(b0 − a0)/ε]
iterations, |λk − γJ | ≤ ε. Third, in the algorithm one does not need the arrays
{aj} and {bj} to keep track of the j-th interval, or the array {νi} to determine the
number of sign changes. The new endpoints of the interval may be stored in the same
location as the old endpoints, and the number of sign changes in the sequence of
characteristic polynomials may be accumulated within the recursion that determines
that sequence. These observations are incorporated in the following algorithm.

Algorithm 1.7 Bisection/Sturm sequence method for Hermitian tridiag-
onal matrices. This algorithm uses the bisection method and the Sturm sequence
property of the characteristic polynomials of the principal submatrices of an n × n
Hermitian tridiagonal matrix in order to determine an eigenvalue of that matrix.
The diagonal entries of the matrix are stored in the array αi, i = 1, . . . , n, and those
along the first subdiagonal are stored in the array βi, i = 2, . . . , n. It is assumed
βi 6= 0 for i = 2, . . . , n. The entry β1 may be set to any value.

Assume that a tolerance ε and an integer k, 1 ≤ k ≤ n, are given. Assume
that an interval (a, b) which is known to contain the k-th largest eigenvalue
of the Hermitian tridiagonal matrix is given.

Set J to be an integer larger than log2[(b− a)/ε].

For j = 0, . . . , J ,

set s = 0

set γ = (a + b)/2

set ν0 = 0, ν1 = 1, and µ = ν1

58 1. Eigenvalues and Eigenvectors

for i = 1, . . . , n,

set ν = (αi − γ)ν1 − |βi|2ν0

if νµ < 0, set s← s + 1 and µ = ν

set ν0 = ν1 and ν1 = ν

if s ≥ n + 1− k, set b = γ; otherwise, set a = γ . 2

The advantages of the bisection/Sturm sequence algorithm include the following:
one can choose which eigenvalue is to be approximated; one has a computable bound
for the error in the eigenvalue approximation; and nearly equal eigenvalues pose little
problem. We also recall that for general Hermitian matrices, this algorithm may be
used after a preliminary reduction to tridiagonal form using orthogonal similarity
transformations and possibly a division into smaller block matrices as illustrated by
(1.62). On the other hand, the method is only linearly convergent, i.e., the error
may be only halved at each iteration. Furthermore, the error is not necessarily
monotonically decreasing.

Example 1.18 We illustrate the Sturm sequence/bisection method. Let A be the
n× n symmetric tridiagonal matrix having diagonal entries 2 and sub- and super-
diagonal entries -1. The exact eigenvalues of A are given by λk = 2+2cos(πk/n+1),
k = 1, . . . , n. We set a = 0, b = 5, and ε = 10−5; then the predicted number of
maximum iterations needed to determine an eigenvalue to within ε of the true value
is 18, independent of n. This was found to be the case, i.e., after 18 iterations, the
eigenvalue approximation was indeed that accurate. We give some selected results
for the case of n = 999 for which the exact eigenvalues are λk = 2 + 2cos(.001πk),
k = 1, . . . , 999. All entries were computed using 18 iterations. The first column
gives the eigenvalue index k used in the sign comparison step of the algorithm;
the second column gives, for each k, the approximate eigenvalue γ18 found after
18 iterations; and the third column the difference between the approximate and
exact eigenvalue,i.e., (γ18 − λk). We see that even for closely spaced eigenvalues,
the method has no difficulty determining accurate approximations.

k γ18 γ18 − λk

1 3.9999986 -.00000348
2 3.9999675 .00000705
3 3.9999103 -.00000082

499 2.0062923 .00000917
500 1.9999981 -.00000191
501 1.9937229 .00000609
997 0.0000858 -.00000300
998 0.0000477 .00000821
999 0.0000095 -.00000033

1.5. QR method 59

1.5 QR method

The methods of the previous section allow one to calculate a few eigenvalue and
corresponding eigenvectors of a matrix. If one desires all or most of the eigenvalues,
then the QR method is prefered. The basic QR method is very simple to describe.
Starting with A(0) = A, the sequence of matrices A(k), k = 1, 2, . . . , is determined
by

Algorithm 4.8 For k = 0, 1, 2, . . ., set

A(k) = Q(k+1)R(k+1) and A(k+1) = R(k+1)Q(k+1) .

Thus, one step of the QR method consists of performing a QR factorization of the
current iterate A(k) and then forming the new iterate by multiplying the factors in
reverse order. Remarkably, as the following example illustrates, often A(k) tends to
an upper triangular matrix which is unitarily similar to the original matrix.

Example 1.19 The following are some iterates of the QR method applied to
A = A(0).

A = A(0) =


3 −1 2/3 1/4 −1/5 1/3
4 6 −4/3 2 4/5 −1/3
6 −3 −3 −3/4 9/5 1/2
4 8 −4/3 −1 8/5 4/3
5 5 5 5/2 3 5/2

12 −3 2 3 18/5 5



A(10) =


9.086 −.2100 −2.101 7.536 −.9124 −10.06
.7445 9.338 2.686 −2.775 −1.029 −5.386
.0955 .0611 −5.711 .3987 −5.218 −6.456
.0002 .0004 −.0024 −3.402 −.5699 −1.777
−4 −4 .0051 .0850 2.885 3.257
−9 −10 −8 −6 −6 .8045



A(30) =


9.694 .3468 −3.383 6.294 .4840 −.6447
.1614 8.727 −.5014 5.005 −1.290 −11.44
−5 −4 −5.705 .4308 −5.207 −6.370
∗ −11 −7 −3.395 −.6480 −1.814
∗ ∗ −8 .0031 2.875 3.230
∗ ∗ ∗ ∗ ∗ .8045



A(60) =


9.637 .4494 −3.254 5.380 .6933 1.255
.0088 8.784 −1.054 5.977 −1.190 −11.39
∗ ∗ −5.705 .4333 −5.207 −6.370
∗ ∗ ∗ −3.395 −.6511 −1.815
∗ ∗ ∗ −4 2.874 3.229
∗ ∗ ∗ ∗ ∗ .8045



60 1. Eigenvalues and Eigenvectors

The entry −4 , for example, indicates that that entry is less than 10−4 in magnitude;
the entry ∗ indicates that that entry is less than 10−12 in magnitude. It takes over 90
iterations for all the diagonal entries to approximate eigenvalues to four significant
figures; it takes over 300 iterations for all the subdiagonal entries to become les than
10−12 in magnitude.

If A is a real matrix having complex eigenvalues and one uses real arithmetic,
the iterates may converge to a quasi-triangular matrix having 1×1 or 2×2 matrices
along the diagonal and which is unitarily similar to A. The 2 × 2 matrices have
complex conjugate eigenvalues. The following example illustrates the QR method
applied to a real matrix having complex eigenvalues.

Example 1.20 The following are some iterates of the QR method applied to the
skew-symmetric matrix A = A(0).

A = A(0) =


0 1 0 0 0
−1 0 2 0 0

0 −2 0 3 0
0 0 −3 0 4
0 0 0 −4 0



A(5) =


∗ .5156 ∗ ∗ ∗

−.5156 ∗ .2552 ∗ ∗
∗ −.2552 ∗ .1830 ∗
∗ ∗ −.1830 ∗ ∗
∗ ∗ ∗ ∗ ∗



A(10) =


∗ .5164 ∗ ∗ ∗

−.5164 ∗ .0014 ∗ ∗
∗ −.0014 ∗ .1827 ∗
∗ ∗ −.1827 ∗ ∗
∗ ∗ ∗ ∗ ∗



A(15) =


∗ .5164 ∗ ∗ ∗

−.5164 ∗ −5 ∗ ∗
∗ −5 ∗ .1827 ∗
∗ ∗ −.1827 ∗ ∗
∗ ∗ ∗ ∗ ∗


Notational conventions are as in the previous example. It takes over 30 iterations
to achieve quasi-triangular form to an accuracy of 10−12, i.e., for the entries labeled
−5 in A(15) to become less than 10−12 in magnitude.

The QR factorization required in Algorithm 4.8 may be effected by a simplified
version of the algorithm of Proposition ?? since we do not need to attain row echelon
structure; at the k-th stage, all that is required is that R(k+1) be upper triangular.

1.5. QR method 61

The QR method as defined by Algorithm 4.8 is impractical for two reasons.
First, each step of the method requires a QR factorization which costs O(n3) mul-
tiplications and a like number of additions or subtractions. Second, we have only
linear convergence of the subdiagonal entries of A(k+1) to zero. Thus, the method
of Algorithm 4.8 requires too many steps and each step is too costly. Therefore, we
examine modifications to the basic method Algorithm 4.8 that transform it into a
practical algortihm.

1.5.1 The practical QR method

The three essential ingredients in making the QR method practical are the use of
a preliminary reduction to upper Hessenberg form in order to reduce the cost per
iteration, the use of a deflation procedure whenever a subdiagonal entry effectively
vanishes, again in order to reduce the cost per iteration, and the use of a shift
strategy in order to accelerate convergence.

The Hessenberg QR iteration

In Section 1.3 it was shown that one may, in a finite number of arithmetic oper-
ations, use unitary similarity transformations to reduce any square matrix to an
upper Hessenberg matrix. In particular, we may use Algorithm 4.1 to find an upper
Hessenberg matrix A(0) that is unitarily similar to A. The following algorithm uses
this upper Hessenberg matrix as a starting point for the QR iteration.

Algorithm 4.9 Use Algorithm 1.1 to determine a matrix A(0) = Q(0)∗AQ(0) that
is upper Hessenberg and is unitarily similar to A.

For k = 0, 1, 2, . . ., set

A(k) = Q(k+1)R(k+1) and A(k+1) = R(k+1)Q(k+1) .

Another remarkable feature of the QR method is that it can always be arranged for
all the iterates A(k), k = 1, 2, . . . , to be upper Hessenberg whenever A(0) is upper
Hessenberg. To see this, we first need to discuss how to use Givens rotations to
efficiently determine the QR factorization of an upper Hessenberg matrix. Let C
be an arbitrary n× n upper Hessenberg matrix.

Set R = C.

For j = 1, . . . , n− 1,

determine a 2× 2 Givens rotation G̃(j,j+1) such that

G̃(j,j+1)

(
rj,j

rj+1,j

)
=

(√
r2
j,j + r2

j+1,j

0

)

62 1. Eigenvalues and Eigenvectors

set

G(j,j+1) =

 Ij−1 0
0 G̃(j,j+1) 0
0 0 In−j−1


set R← G(j,j+1)R .

Clearly, the final matrix R = G(n−1,n) · · ·G(1,2)C is upper triangular so that C =
G∗(1,2) · · ·G

∗
(n−1,n)R is a QR factorization of C with Q = G∗(1,2) · · ·G

∗
(n−1,n). Of

course, the step R← G(j,j+1)R should be effected taking advantage of the fact that
G(j,j+1) is a Givens rotation and thus has only two nontrivial rows and columns,
i.e., through the use of Algorithm ??. Of course, R may be overwritten onto C.

The reverse product RQ = RG∗(1,2) · · ·G
∗
(n−1,n) can also be efficiently determined

by taking advantage of the simple structure of the Givens rotations. Moreover, if C
is upper Hessenberg and the QR decomposition C = QR is determined using the
above algorithm, then the reverse product RQ is also upper Hessenberg.

Proposition 1.24 Let R be an n × n upper triangular matrix and let G(j,j+1),
j = 1, . . . , n − 1, be a sequence of Givens rotations. Let Q = G∗(1,2) · · ·G

∗
(n−1,n).

Then, the matrix RQ is upper Hessenberg.

Proof. Let the sequence of matrices S(j), j = 1, . . . , n, be defined by S(1) = R and
S(j+1) = S(j)G∗(j,j+1), j = 1, . . . , n − 1, so that S(n) = RQ. Suppose that S(j),
j ≥ 2, may be partitioned in the form

S(j) =

 S11 S12 S13

0 S22 S23

0 0 S33

 ,(1.64)

where S11 is j × (j − 1) and upper Hessenberg, S33 is (n − j − 1) × (n − j − 1)
and upper triangular, and S22 is 1× 2 and has the structure S22 = (0 ×). Clearly
S(2) = RG∗(1,2) has this structure. Moreover, it is easily determined that due to the
structure of G∗(j,j+1),

S(j+1) = S(j)G∗(j,j+1) =

 S11 S̃12 S13

0 S̃22 S23

0 0 S33

 ,

where now, in general, S̃22 has both its entries nonzero. In this case we may then
repartition S(j+1) into the form (1.64) with the index j augmented by one. Thus
the inductive step is complete and we conclude that the matrix S(n) = RQ is upper
Hessenberg. 2

We illustrate the above observations in the following example.

1.5. QR method 63

Example 1.21 Given the matrix

C =


1 2 3 4 5
6 7 8 9 10
0 11 12 13 14
0 0 15 16 17
0 0 0 18 19

 ,

we use the Givens rotations G(1,2), . . . , G(4,5) to succesively zero out the subdiagonal
entries, i.e.,

G(1,2)C =


.1644 .9864 0 0 0
−.9864 .1644 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

C

=


6.083 7.234 8.384 9.535 10.69

0 −.8220 −1.644 −2.466 −3.288
0 11 12 13 14
0 0 15 16 17
0 0 0 18 19



G(2,3)G(1,2)C =


1 0 0 0 0
0 −.07452 .9972 0 0
0 −.9972 −.07452 0 0
0 0 0 1 0
0 0 0 0 1

G(1,2)C

=


6.083 7.234 8.384 9.535 10.69

0 11.03 12.09 13.15 14.21
0 0 .7452 1.490 2.236
0 0 15 16 17
0 0 0 18 19



G(3,4)G(2,3)G(1,2)C =


1 0 0 0 0
0 1 0 0 0
0 0 .04962 .9988 0
0 0 −.9988 .04962 0
0 0 0 0 1

G(2,3)G(1,2)C

=


6.083 7.234 8.384 9.535 10.69

0 11.03 12.09 13.15 14.21
0 0 15.02 16.05 17.09
0 0 0 −.6947 −1.389
0 0 0 18 19



64 1. Eigenvalues and Eigenvectors

R = G(4,5)G(3,4)G(2,3)G(1,2)C =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −.03856 .9993
0 0 0 −.9993 −.03856

G(3,4)G(2,3)G(1,2)C

=


6.083 7.234 8.384 9.535 10.69

0 11.03 12.09 13.15 14.21
0 0 15.02 16.05 17.09
0 0 0 18.01 19.04
0 0 0 0 .6556

 .

We have displayed only four significant figures. Note that C is upper Hessenberg
and that R is upper triangular. The reverse product RQ = RG∗(1,2) · · ·G

∗
(4,5) is

given by

RQ = RG∗(1,2) · · ·G
∗
(4,5) =


8.135 8.720 9.730 10.82 3.280
10.88 11.92 13.00 14.07 −3.904

0 14.98 15.98 17.00 −2.572
0 0 17.99 18.99 −1.627
0 0 0 .6551 −2.528

 .

Note that RQ is upper Hessenberg.

We have shown a process such that if C is an upper Hessenberg matrix, then
a QR factorization of C always exists such that RQ is also upper Hessenberg.
However, as the following example illustrates, one cannot conclude in general that
C being upper Hessenberg and C = QR being a QR factorization of C necessarily
implies that RQ is also upper Hessenberg.

Example 1.22 Let

C =

 0 0 1
0 1 0
0 0 0

 , Q =

 0 0 1
0 1 0
1 0 0

 , and R =

 0 0 0
0 1 0
0 0 1

 .

Clearly, C is upper Hessenberg, Q is orthogonal, R is upper triangular, and C = QR.
However,

RQ =

 0 0 0
0 1 0
1 0 0


is not upper Hessenberg. On the other hand, if Givens rotations are used as indi-
cated above in order to determine a QR fatorization of C, we find that, since C
is already in upper triangular form, that Q = I and R = C. Thus, in this case
RQ = CI is upper Hessenberg.

We have seen that, given a matrix A, Algorithm 4.9 with a preliminary reduc-
tion to upper Hessenberg form produces a sequence of matrices A(k), k = 0, 1, . . .,

1.5. QR method 65

that are all upper Hessenberg and that are all unitarily similar to A. If each step
of Algorithm 4.9 is effected using Givens rotations as described above, then the
cost of each iteration is O(n2) multiplications and a like number of additions and
subtractions. This should be contrasted with the 0(n3) cost of each iteration of
Algorithm 4.8. Of course the cost of the initial reduction to upper Hessenberg form
in algortihm Algorithm 4.9 is also of O(n3); however, this cost is incurred only once
and thus maybe amortized over the subsequent QR iterations.

Although a preliminary reduction to upper Hessenberg form reduces the cost
per iteration of the QR method, it does not, in general, cut down the number of
iterations necessary for satisfactory convergence, i.e., it does not improve the speed
of convergence. This is illustrated in the following example.

Example 1.23 Consider Algorithm 4.9 for the matrix A of Example 4.19. The
upper Hessenberg matrix

A(0) =


3.000 .9094 −.0649 .6263 .4811 −.4508
15.40 2.840 4.596 −4.751 1.497 −3.588

0 5.760 −.2736 4.013 −1.734 −3.918
0 0 1.843 1.850 4.557 −2.037
0 0 0 2.719 8.372 .3298
0 0 0 0 6.168 −2.788


is unitarily similar to A. In the following table we give the subdiagonal entries
a
(k)
i,i−1 of the QR iterates A(k) for selected values of k.

k a
(k)
2,1 a

(k)
3,2 a

(k)
4,3 a

(k)
5,4 a

(k)
6,5

0 15.40 5.760 1.843 2.719 6.168
10 .7506 1.917 .0042 3.450 -5
30 .1614 .0003 -7 .2517 *
60 .0088 -9 * .0017 *

100 .0002 * * -5 *

Again, the entry −4 , for example, indicates that that entry is less than 10−4 in
magnitude and the entry ∗ indicates that that entry is less than 10−12 in magnitude.
It takes over 100 iterations for all the diagonal entries to approximate eigenvalues
to four significant figures; it takes over 300 iterations for all the subdiagonal entries
to become less than 10−12 in magnitude. With regards to the convergence history
of the iterates, these results are comparable to those of Example 4.19.

Deflation to unreduced Hessenberg form

Suppose that C is an n×n upper Hessenberg matrix such that, for some integer k,
1 ≤ k ≤ (n−1), ck+1,k = 0. i.e., the subdiagonal entry in the k-th column vanishes.

66 1. Eigenvalues and Eigenvectors

We may then partition C into the block triangular structure

C =
(

C11 C12

0 C22

)
,

where C11 is k×k and upper Hessenberg and C22 is (n−k)× (n−k) and also upper
Hessenberg. Since the spectrum of C is the union of the spectra of C11 and C22, we
may determine the eigenvalues of the upper Hessenberg matrix C by determining
the eigenvalues of the pair of smaller upper Hessenberg matrices C11 and C22. Due
to the fact that C12 does not enter the later task, it is less costly than the former.

More generally, C may have more than one vanishing subdiagonal entry. If there
are exactly s such entries, one then has that the spectrum of C may be determined
from the spectra of (s+1) smaller upper Hessenberg matrices. Moreover, none of the
subdiagonal entries of each of these matrices vanishes. An upper Hessenberg matrix
having nonvanishing subdiagonal entries is called an unreduced upper Hessenberg
matrix. Thus, we conclude that the task of determining the eigenvalues of an upper
Hessenberg matrix can always be reduced to the task of determining the eigenvalues
of a sequence of smaller unreduced upper Hessenberg matrices. We illustrate this
observation with the following example.

Example 1.24 Let

C =



1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
0 0 17 18 19 20 21 22
0 0 23 24 25 26 27 28
0 0 0 29 30 31 32 33
0 0 0 0 34 35 36 37
0 0 0 0 0 38 39 40
0 0 0 0 0 0 0 41


.

Clearly C is upper Hessenberg; note that the two subdiagonal entries c3,2 and c8,7

vanish. The spectrum of C is the union of the spectra of the unreduced upper
Hessenberg matrices

(
1 2
9 10

)
,


17 18 19 20 21
23 24 25 26 27
0 29 30 31 32
0 0 34 35 36
0 0 0 38 39

 , and (41) .

The cost of determining the eigenvalues of these three matrices is less than that of
determining the eigenvalues of C directly.

In practice one does not encounter exactly vanishing subdiagonal entries so that
one must decide when a small number can be safely replaced by zero. Although

1.5. QR method 67

there is no foolproof scheme for this task, the following recipe has been found to
work well in practice. Suppose C is an upper Hessenberg matrix; then, whenever a
subdiagonal entry ci+1,i is “small” relative to its neighbors on the diagonal, we set
that entry to zero. More precisely,

Given a tolerance ε, for i = 1, . . . , n− 1,

if |ci+1,i| ≤ ε(|ci,i|+ |ci+1,i+1|) , set ci+1,i = 0 .(1.65)

The tolerance ε is usually chosen to be some small multiple of the unit roundoff
error of the computer.

Thus, from here on in, we can assume that we are dealing with unreduced upper
Hessenberg matrices since otherwise, we sould break up the problem into smaller
problems, each involving such a matrix.

Example 1.25 We see from the table of Example 4.23 that for all pratical
purposes the matrix A(k) for k ≥ 30 is no longer unreduced, i.e., |a(30)

6,5 | < 10−12.

Furthemore, we have that |a(60)
4,3 | < 10−12 as well so that for k ≥ 60 we effectively

have two vanishing entries along the subdiagonal. Thus, we may use deflation to
subdivide the problem into smaller problems. In fact, we have, using (1.65) with
ε = 10−12, that for the matrix A(0) of Example xx,

A(21) =


9.675 −.0871 −3.397 7.249 −1.405 −3.610
.4178 8.747 −.3856 −3.379 −.8047 10.88

0 .0140 −5.705 1.322 5.054 −6.359
0 0 −5 −3.098 1.697 −2.345
0 0 0 1.046 2.577 −2.868
0 0 0 0 0 .8045


so that, starting with the reduced matrix,

Ã(21) =


9.675 −.0871 −3.397 7.249 −1.405
.4178 8.747 −.3856 −3.379 −.8047

0 .0140 −5.705 1.322 5.0549
0 0 −5 −3.098 1.697
0 0 0 1.046 2.577


we may subsequently continue the iteration with 5× 5 matrices. We then find that

Ã(48) =


9.647 −.4811 3.276 −5.506 −.6570
.0271 8.774 −.9846 5.860 −1.216

0 −6 −5.705 .4230 −5.208
0 0 0 −3.396 −.6386
0 0 0 −.0125 2.876


so that, starting with

Â(48) =
(
−3.396 −.6386
−.0125 2.876

)
and Ǎ(48) =

 9.647 −.4811 3.276
.0271 8.774 −.9846

0 −6 −5.705



68 1. Eigenvalues and Eigenvectors

we may subsequently proceed with two separate iterations involving two smaller
matrices. For the first iteration, we find that

Â(177) =
(
−3.3395 −.6511

0 2.874

)
is triangular, so that iteration is terminated at that point. For the second iteration
we find that

Ǎ(70) =

 9.634 −.5047 3.247
.0035 8.787 −1.074

0 0 −5.705


so that subsequent iterations may work with 2× 2 matrices, starting with,

Ă(70) =
(

9.634 −.5050
.0032 8.787

)
.

We then find that

Ă(278) =
(

9.632 −.5082
0 8.789

)
.

The approximate eigenvalue .8045 of A(0) can then be deduced from A(21), the
approximate eigenvalues −3.395 and 2.874 from Â(177), the approximate eigenvlaue
−5.705 from Ǎ(70), and the approximate eigenvalues 9.632 and 8.789 from Ă(278).
(Actually, the eigenvalue approximations deduced by the above process are accurate
to many more significant figures than we have displayed.)

We shall see that in addition to reducing the cost of determinng eigenvalues by
the QR method, dealing with unreduced upper Hessenberg matrices simplifies the
analysis of such algorithms. In the latter regard, we have the following result.

Proposition 1.25 Let C be an unreduced n × n upper Hessenberg matrix and let
C = QR be a QR factorization of C. Then, necessarily, RQ is upper Hessenberg.

Proof. The first (n− 1) columns of an unreduced upper Hessenberg matrix clearly
form a linearly independent set of n-vectors. If C = (C1 C2) and R = (R1 R2),
where C1 and R1 are n× (n− 1) and C2 and R2 are n× 1, we have that C1 = QR1

so that rank(R1) = rank(C1) = (n − 1). Since R is upper triangular, this implies
that ri,i 6= 0 for i = 1, . . . , n − 1. Now, C = QR and R upper triangular implies
that ci,1 = qi,1r1,1 for i = 1, . . . , n. Since C is upper Hessenberg, ci,1 = 0 for i > 2
so that since r1,1 6= 0, we may conclude that qi,1 = 0 for i > 2 as well, i.e., the first
column of Q is in upper Hessenberg form. Now suppose that for some k < n − 1
the first k columns of Q are in upper Hessenberg form, i.e., qi,j = 0 for i > j + 1
and j = 1, . . . , k. Then, since C = QR and R upper triangular implies that

ci,j =
j∑

m=1

qi,mrm,j , i, j = 1, . . . , n ,

1.5. QR method 69

we have that the upper Hessenberg structure of the first k columns of Q implies that
ci,k+1 = qi,k+1rk+1,k+1 for i > k + 2. But, since C is upper Hessenberg and ri,i 6= 0
for i < n, we have that the (k + 1)-st column of Q is also in upper Hessenberg
form. Thus, the first (n− 1) columns of Q are in upper Hessenberg form and thus
Q is an upper Hessenberg matrix. Then RQ is the product of an upper triangular
matrix and an upper Hessenberg matrix which is easily shown to be itself an upper
Hessenberg matrix. 2

Note that the above result does not apply to the matrix C of Example 4.22 since
that matrix has vanishing subdiagonal entries, i.e., it is not unreduced.

The following useful result is concerned with the uniqueness of the reduction
of a matrix to upper Hessenberg form by unitary similarity transformations in the
case that the resulting upper Hessenberg matrix is unreduced. This result is known
as the implicit Q theorem.

Proposition 1.26 Given and n × n matrix A, suppose Q and Q̃ are unitary ma-
trices such that both Q∗AQ = B and Q̃∗AQ̃ = B̃ are upper Hessenberg matrices.
Suppose B is unreduced and suppose the first column of Q̃ is a multiple of the first
column of Q, i.e., Q̃e(1) = eiθ1Qe(1) for some real number θ1. Then, there exist real
numbers θj, j = 2, . . . , n, such that Q̃e(j) = eiθj Qe(j) for j = 2, . . . , n and such that
B̃ = D∗BD, where D = diag(eiθ1 , eiθ2 , . . . , eiθn). Moreover, B̃ is also unreduced.

Proof. Since A = QBQ∗ = Q̃B̃Q̃∗, we have that B̃Q̃∗Q = Q̃∗QB or B̃W = WB,
where W = Q̃∗Q.

Now, We(1) = Q̃∗Qe(1) = e−iθ1Q̃∗Q̃e(1) = e−iθ1e(1), i.e., the first column of W
is a multiple of the first unit vector e(1). Next, let wj denote the j-th column of
W . Then, from B̃W = WB, we may deduce that

bi,i−1wi = B̃wi−1 −
i−1∑
j=1

bj,i−1wj , i = 2, . . . , n .(1.66)

Now, suppose for some k < n, the first k columns of W are in upper triangular
form; clearly, since w1 = e−iθ1e(1) this is true for k = 1. Then, (1.65) yields that

bk+1,kwk+1 = B̃wk −
k∑

j=1

bj,kwj .(1.67)

The summation term is a linear combination of the first k columns of W ; the first
term is a linear combination of the first k columns of B̃. Thus, due to the induction
hypothesis on W and the upper Hessenberg structure of B̃, we have that the right-
hand side of (1.66) has vanishing (k + 2)-nd through n-th components. Then, since
B is unreduced, bk+1,k 6= 0, and we have that the (k + 1)-st column of W is in
upper triangular form, i.e., wk+2,k+1 = · · · = wn,k+1 = 0. The induction step is
complete so that we conclude that W is an upper triangular matrix. But W is also

70 1. Eigenvalues and Eigenvectors

unitary; therefore there necessarily exist real numbers θj , j = 2, . . . , n, such that
W = diag(e−iθ1 , e−iθ2 , . . . , e−iθn).

Let D = W ∗ = diag(eiθ1 , eiθ2 , . . . , eiθn). Then Q̃ = QW ∗ = QD so that, for
j = 2, . . . , n, Q̃e(j) = eiθj Qe(j). Moreover, B̃ = WBW ∗ = D∗BD. Finally, for
i = 1, . . . , n− 1,

b̃i+1,i = e(i+1)B̃e(i) = e(i+1)D∗BDe(i) = ei(θi+1−θi)bi+1,i .

Then, since bi+1,i 6= 0, i.e., B is unreduced, we have that b̃i+1,i 6= 0 as well so that
B̃ is also unreduced. 2

An immediate consequence of this proposition is that we can arrange for the
subdiagonal entries of the upper Hessenberg form of a matrix to always be real and
nonnegative. Furthermore, if we require that Qe(1) = Q̃e(1), that B = Q∗AQ and
B̃ = Q̃∗AQ̃ be upper Hessenberg with B unreduced, and in addition require that
B and B̃ have real, positive subdiagonal entries, then Q̃ = Q and B̃ = B.

The shifted QR iteration

We have shown that through a preliminary reduction to upper Hessenberg form
and that by using deflation techiques one can subtantially reduce the cost of each
iteration of the QR method. However, the number of iterations required to obtain
good approximations to the eigenvalues is not necessarily lowered. In order to effect
the latter cost reduction, shifts are introduced into the QR algorithm. Thus, we
have the following algorithm.

Algorithm 4.10 Use Algorithm 1.1 to determine a matrix A(0) = Q(0)∗AQ(0) that
is upper Hessenberg and is unitarily similar to A.

For k = 0, 1, 2, . . .,

find a scalar µk and set

A(k) − µkI = Q(k+1)R(k+1) and A(k+1) = R(k+1)Q(k+1) + µkI .

Since the shift only changes the diagonal of A(k) and A(k+1), we again have that
A(k+1) is upper Hesenberg whenever A(k) is. Moreover, since

A(k+1) = R(k+1)Q(k+1) + µkI

= (Qk+1)∗(A(k) − µkI)Q(k+1) + µkI = (Qk+1)∗A(k)Qk+1 ,

we see that A(k+1) is again unitarily similar to A(k).
One motivation for the shifted Algorithm 4.10 is provided by the following result

which shows that if any of the shifts is equal an eigenvalue, then exact deflation
occurs in one step.

1.5. QR method 71

Proposition 1.27 Suppose µ is an eigenvalue of an n × n unreduced upper Hes-
senberg matrix A. Let Ã = RQ + µI where A − µI = QR with Q unitary and R
upper triangular. Then, ãn−1,n = 0 and ãn,n = µ.

Proof. Since A is an unreduced upper Hessenberg matrix, then so is A−µI. Thus,
as in the proof of Proposition 1.25, we have that ri,i 6= 0 for i = 1, . . . , n− 1. But,
if µ is an eigenvalue of A then A− µI is singular so that r1,1r2,2 · · · rn,n = 0. Thus,
rn,n = 0 and (e(n))T Ã = (e(n))T µ = (0 0 · · · 0 µ). 2

We still have to specify how the shifts µk in Algorithm 4.10 are chosen; here we
only consider two of the many possibilities for shift strategies.

Since in the above proposition we have that ãn,n = µ, is is natural to choose the
shifts according to

µk = a(k)
n,n .(1.68)

We illustrate the use of this shift strategy in the following example.

Example 1.26 We again start the iteration with the unreduced upper Hessenberg
matrix A(0) of Example 4.23, with the deflation strategy determined by (1.65). We
then find that

A(5) =


.88334 −.9105 1.860 −5.821 −11.48 14.90
.4675 8.833 1.407 .6426 1.580 6.260

0 3.318 3.729 2.219 −7.846 .1848
0 0 .4277 −1.495 4.340 1.401
0 0 0 1.914 −3.505 .5051
0 0 0 0 0 −3.395


so that −3.395 is an approximate eigenvalue and, starting with the reduced matrix,

Ã(5) =


.88334 −.9105 1.860 −5.821 −11.48
.4675 8.833 1.407 .6426 1.580

0 3.318 3.729 2.219 −7.846
0 0 .4277 −1.495 4.340
0 0 0 1.914 −3.505


we may subsequently continue the iteration with 5× 5 matrices. We then find that

Ã(10) =


8.881 .0863 .9613 −9.994 −8.016
.6126 9.590 −1.830 2.338 −1.217

0 .1721 2.891 −2.329 −7.406
0 0 .0583 .7389 3.346
0 0 0 0 −5.705


so that −5.705 is an approximate eigenvalue and, starting with the reduced matrix,

Â(10) =


8.881 .0863 .9613 −9.994
.6126 9.590 −1.830 2.338

0 .1721 2.891 −2.329
0 0 .0583 .7389



72 1. Eigenvalues and Eigenvectors

we may subsequently continue the iteration with 4× 4 matrices. We then find that

Â(13) =


9.085 .2220 .2161 −9.162
.7302 9.336 −2.046 4.658

0 .0247 2.874 −2.471
0 0 0 .8045


so that .8045 is an approximate eigenvalue and, starting with the reduced matrix,

Ǎ(13) =

 9.085 .2220 .2161
.7302 9.336 −2.046

0 .0247 2.874


we may subsequently continue the iteration with 3× 3 matrices. We then find that

Ǎ(15) =

 9.314 .2272 −.2657
.7354 9.107 −2.043

0 0 2.874

 .

so that 2.874 is an approximate eigenvalue and, starting with the reduced matrix,

Ă(15) =
(

9.314 .2272
.7354 9.107

)
we may subsequently continue the iteration with 3× 3 matrices. We then find that

Ă(21) =
(

9.632 −.5082
0 8.789

)
so that 9.632 and 8.789 are approximate eigenvalues.

We see that using the shift (1.68) results in many fewer iterations than that
required in Example 4.25 for the unshifted algorithm.

A usually better choice for the shifts µk, k = 0, 1, . . ., is the eigenvalue of the
2× 2 matrix  a

(k)
n−1,n−1 a

(k)
n−1,n

a
(k)
n,n−1 a

(k)
n,n

(1.69)

closest to a
(k)
n,n. The shifts determined by this strategy are known as Wilkinson

shifts. We illustrate the use of this shift strategy in the following example.

Example 1.27 We again start the iteration with the unreduced upper Hessenberg
matrix A(0) of Example 4.23, with the deflation strategy determined by (1.65). We
then find that

A(4) =


8.903 −1.957 2.282 12.51 −2.769 −1.231
.5414 6.301 2.270 3.751 −1.500 −5.726

0 4.229 6.788 −5.165 3.623 −2.667
0 0 .7544 −2.498 2.388 −.8464
0 0 0 4.460 −3.099 −1.235
0 0 0 0 0 −3.395



1.5. QR method 73

so that −3.395 is an approximate eigenvalue and, starting with the reduced matrix,

Ã(4) =


8.903 −1.957 2.282 12.51 −2.769
.5414 6.301 2.270 3.751 −1.500

0 4.229 6.788 −5.165 3.623
0 0 .7544 −2.498 2.388
0 0 0 4.460 −3.0995


we may subsequently continue the iteration with 5× 5 matrices. We then find that

Ã(8) =


8.830 −.1046 1.475 −10.13 7.905
.5348 9.736 −1.203 1.535 1.345

0 .7593 2.876 −2.067 7.631
0 0 .1420 .6578 −3.063
0 0 0 0 −5.705


so that −5.705 is an approximate eigenvalue and, starting with the reduced matrix,

Â(8) =


8.830 −.1046 1.475 −10.13
.5348 9.736 −1.203 1.535

0 .7593 2.876 −2.067
0 0 .1420 .6578


we may subsequently continue the iteration with 4× 4 matrices. We then find that

Â(11) =


8.981 .1808 .4470 −9.633
.6893 9.443 −2.001 3.589

0 .0103 2.871 −2.466
0 0 0 .8045


so that .8045 is an approximate eigenvalue and, starting with the reduced matrix,

Ǎ(11) =

 8.981 .1808 .4470
.6893 9.443 −2.001

0 .0103 2.871


we may subsequently continue the iteration with 3× 3 matrices. We then find that

Ǎ(13) =

 9.198 .2381 −.0212
.7463 9.223 −2.060

0 0 2.874

 .

so that 2.874 is an approximate eigenvalue and, starting with the reduced matrix,

Ă(13) =
(

9.198 .2381
.7463 9.223

)

74 1. Eigenvalues and Eigenvectors

we may subsequently continue the iteration with 2× 2 matrices. We then find that

Ă(14) =
(

9.632 −.5082
0 8.789

)
so that 9.632 and 8.789 are approximate eigenvalues.

We see that using the Wilkinson shift strategy (1.69) results in fewer iterations
than that required in Example 4.26 for the shifted strategy (1.68).

The following example compares the convergence behavior of the different shift
strategies.

Example 1.28 In the following table we examine the convergence of the last
subdiagonal element a

(k)
n,n−1 to zero for the unshifted QR algorithm and for the

shift strategies (1.68) and (1.69).

k µk = 0 µk = a
(k)
n,n Wilkinson shift

1 .10729 + 01 .34499 + 00 .23930 + 00
2 .36512 + 00 .13854− 01 −.11924− 02
3 .79216− 01 −.22221− 04 .10521− 06
4 .18528− 01 .30470− 10 −.10195− 14
5 .46950− 02 −.12757− 21
6 .10648− 01
7 .28215− 03
8 .68352− 04
9 .17575− 04

10 .40268− 05
11 .11465− 05
12 .26967− 06
13 .78565− 07
14 .19129− 07
15 .56248− 08
16 .14178− 08
17 .41630− 09
18 .10803− 09
19 .31506− 10
20 .83585− 11
21 .24178− 11

The notation x± y used in the table should be read as x10±y.

The explicitly double shifted QR iteration

The method of Algorithm 4.10 with either of the shift strategies (1.68) or (1.69) is
suitable for complex matrices or for real matrices having real eigenvalues. However,

1.5. QR method 75

it is not suitable for real matrices having complex eigenvalues if one wishes to use
only real arithmetic. In fact, whenever the eigenvalues of the the 2×2 submatrix of
(1.69) has complex eigenvalues, then a

(k)
n,n remains a poor eigenvalue approximation

so that the choice of shift (1.68) does not accelerate covergence. On the other
hand, choosing the shift to be an eigenvalue of this submatrix necessitates the use
of complex arithmetic.

A variant of the Wilkinson shift strategy in case the matrix of (1.69) has com-
plex conjugate eigenvalues is to choose two succesive shifts to be these eigenvalues.
Suppose A(0) is a real unreduced upper Hessenberg matrix such that its trailing
2× 2 principal submatrix has complex conjugate eigenvalues µ1 and µ2. Then, the
first step of the double shift iteration is defined by

Algorithm 4.11

A(0) − µ1I = Q(1)R(1)

A(1) = R(1)Q(1) + µ1

A(1) − µ2I = Q(2)R(2)

A(2) = R(2)Q(2) + µ2I

Note that since µ1 and µ2 are complex, Q(1), Q(2), R(1), and R(2) are also complex.
Of course,

A(1) = (Q(1))∗A(0)Q(1) and A(2) = (Q(2))∗(Q(1))∗A(0)Q(1)Q(2) .

Furthermore,

R(2) = (A(2) − µ2I)(Q(2))∗ = (Q(2))∗(Q(1))∗(A(0) − µ2I)Q(1)Q(2)(Q(2))∗

= (Q(2))∗(Q(1))∗(A(0) − µ2I)Q(1)

so that, if we let S = Q(1)Q(2)R(2)R(1),

S = (A(0) − µ2I)Q(1)R(1) = (A(0) − µ2I)(A(0) − µ1I)(1.70)

=
(
A(0)

)2

− (µ1 + µ2)A(0) + µ1µ2I .

But µ2 = µ̄1 so that (µ1 + µ2) = 2<(µ1) and µ1µ2 = |µ1|2 so that S is a real
matrix. Then, S = Q(1)Q(2)R(2)R(1) is a QR factorization of a real matrix so
that we may choose Z = Q(1)Q(2) to be real orthogonal in which case A(2) =
(Q(2))∗(Q(1))∗A(0)Q(1)Q(2) is a real matrix. Thus, two consecutive shifted QR
steps using complex conjugate shifts results in a real matrix!

There are two problems with this strategy. In the first place, one has to use com-
plex arithmetic for the intermediary computations between A(0) and A(2). Second,
roundoff errors prevent an exact return to a real matrix after two steps.

76 1. Eigenvalues and Eigenvectors

One possible method for using only real arithmetic is to explicitly form the
matrix S = (A(0))2− (µ1 +µ2)A(0) +µ1µ2I and then compute its QR factorization
S = ZU where Z is orthogonal and U is upper triangular. Then, one may set
A(2) = ZT A(0)AZ. However, just the formation of S requires O(n3) operations, so
that this approach is too costly.

The implicitly double shifted QR iteration

Fortunately, there is clever alternate way to arrive at A(2) using real arithmetic that
is also less costly than explicitly forming the matrix S. The method consists of:

Algorithm 4.12

i. choose the shifts µ1 and µ2 to be the complex conjugate eigenvalues of the last
2× 2 diagonal block of A;

ii. determine the first column Se(1) of the matrix S of (1.70);

iii. determine a Householder matrix H0 such that H0Se(1) is a multiple of e(1);
and

iv. use Householder matrices H1,H2, . . . ,Hn−2 such that Q̃T AQ̃ is upper Hessen-
berg, where Q̃ = H0H1 · · ·Hn−2.

Before exploring what result is yielded by this process, we note that since A is
upper Hessenberg, we have that

Se(1) =



a2
1,1 − (µ1 + µ2)a1,1 + µ1µ2 + a1,2a2,1

a2,1(a1,1 + a2,2 − µ1 − µ2)
a2,1a3,2

0
...
0


.(1.71)

Thus, the first column of S is easily determined from from the shifts µ1 and µ2 and
from the first three columns of A.

We also have the following preliminary results.

Proposition 1.28 Let Q(1), Q(2), and S be defined as in Algorithm 4.11 and (1.70)
and let H0 be defined as in Step (iii) of the Algorithm 4.12. Then, H0Se(1) is a
multiple of Q(1)Q(2)e(1).

Proof. We have that S = Q(1)Q(2)R(2)R(1). Since R(2)R(1) is upper triangular.
the first column of S is a multiple of the first column of Q(2)Q(1), i.e., Se(1) =
γ1Q

(2)Q(1)e(1) for some complex number γ1. But, by construction, H0Se(1) =
γ2e(1) for some complex number γ2. Since H0 is a Househlder matrix, we then have
that Se(1) = γ2H0e(1). Thus, H0e(1) = (1/γ2)Se(1) = (γ1/γ2)Q(2)Q(1)e(1). 2

1.5. QR method 77

Proposition 1.29 Let A be upper Hessenberg. Let Q(1) and Q(2) be defined as in
Algorithm 4.11 and let Q̃ be defined as in step (iv) of Algorithm 4.12. Then, Q̃e(1)

is a multiple of Q(2)Q(1)e(1).

Proof. Since Se(1) has nonzero entries only in the first three rows, we have that

H0 =
(

H̃0

In−3

)
,

where H̃0 is a 3× 3 Householder matrix. We then have that H0AH0 differs from A
only in the first three rows and columns. In addition, it is easily seen that the only
nonzero entries in the first three columns of H0AH0 occur in the first four rows.
Then, it is easily shown, by induction, that

Hk =

 Ik

H̃k

In−k−3

 for k = 1, . . . , n− 3 ,

where H̃k are 3× 3 Householder matrices, and

Hn−2 =
(

In−2

H̃n−2

)
,

where Hn−2 is a 2 × 2 Householder matrix. Then, since Hke(1) = e(1) for k =
1, . . . , n− 2, it follows that

Q̃e(1) = H0H2 · · ·Hn−2e(1) = H0e(1)

so that by the previous proposition, Q̃e(1) is a multiple of Q(2)Q(1)e(1). 2

We can now easily show that the result of the above algrithm is essentially the
same as that of the explicitly double shifted QR algorithm.

Proposition 1.30 Let A(2) be the result of an explicit double shifted QR step ap-
plied to a real unreduced upper Hessenberg matrix A(0). Let Ã(2) = Q̃T A(0)Q̃, where
Q̃ is defined as in step (iv) of Algorithm 4.12. Then, A(2) = DÃ(2)D, where D is a
diagonal matrix with each diagonal entries given by either +1 or −1.

Proof. The result follows from Propositions 1.29 and 1.26 once on observes that
both A(2) and Ã2 are real and upper Hessenberg. 2

Thus the above algorithm can be used to effect a step of the double shifted
QR algorithm. Note that the above algorithm uses only real arithmetic. Due to
the structure of the Householder matrices Hk, k = 0, . . . , n − 2, each similarity
transformation involving one of these matrices can be effected in O(n) operations,
so that the total cost of computing Q̃T AQ̃ if of O(n2).

It should also be noted that one does not need to use double shifts in case the
matrix A is complex, or in case A is real with real eigenvalues; in these cases single

78 1. Eigenvalues and Eigenvectors

shifts will do. Furthermore, the double shifted QR algorithm does not converge for
all matrices. For example, a double shifted QR step leaves the matrix

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


unchanged. Such hang-ups may be avoided by first applying two single shifted steps
before applying the double shifted stategy.

The practical QR algorithm

We now incorporate the various aspects of the practical implementation of the QR
method into the following algorithm.

Algortihm 4.13

Given an n×n matrix A and a tolerance ε (usually ε > 0 is chosen to be some
small multiple of the machine precision):

Use Householder transformations P0, P1, . . . , Pn−2 to determine a matrix
B = Q∗AQ, Q = P0 · · ·Pn−2, that is upper Hessenberg and unitarily
similar to A;

Do while q < n

if |bi,i−1| ≤ ε(|bi,i|+ |bi−1,i−1|), i = 2, . . . , n, set bi,i−1 = 0 ;

find the largest integer q ≥ 0 and smallest integer p ≥ 0 such that

B =

 B11 B12 B13

0 B22 B23

0 0 B33

 ,

where B11 is p × p , B33 is q × q and quasi-triangular, and B22 is
unreduced upper Hessenberg (note that p or q may vanish);

apply the implicit double shifted QR step to the (n−p−q)×(n−p−q)
matrix B22 (set B22 ← Q̃T BQ̃);

Compute the eigenvalues of the 2× 2 diagonal blocks of B.

Experience shows that, on the average, approximately two double shifted QR
steps are needed per decoupling, i.e., until a zero is detected somewhere along the
subdiagonal. In this case, all the eigenvalues may be located in approximately 10n3

operations.

1.5. QR method 79

1.5.2 The QR method for Hermitian matrices

We briefly consider the QR method for Hermitian matrices. First, we note that for
such matrices, the preliminary reduction to upper Hessenberg form actually yields
a Hermitian tridiagonal matrix. Next, we use the single shifted algorithm

A(k) − µkI = Q(k+1)R(k+1) and A(k+1) = R(k+1)Q(k+1) + µkI ,

where A(0) is a Hermitian tridiagonal matrix that is unitarily similar to the given
matrix A. Since A(k+1) = (Q(k+1))∗A(k)Q(k+1), we have that A(k+1) is Hermitian
whenever A(k) is. Moerover, since a triadiagonal matrix is an upper Hessenberg
matrix, we have that A(k+1) is also upper Hessenberg. Thus, A(k+1) is tridiagonal,
i.e., the shifted QR step preserves the Hermitian tridiagonal structure of a matrix.
One may take advantage of this fact to implement each step of the QR iteration
for Hermiatian matrices in O(n) operations, as opposed to the O(n2) operations
required for general matrices.

Either of the shift startegies (1.68) or (1.69) may be used, although the Wilkinson
shift strategy (1.69) results in faster convergence. Note that since throughout the
iteration one only deals with Hermitian matrices, that the shifts obtained from
either (1.68) or (1.69) are always real so that for real symmetric matrices one does
not need to employ the double shift strategy in order to work in real arithmetic.

As a result, for real symmetric matrices, we have the following practical QR
algortihm.

Algortihm 4.14

Given an n× n real symmetric matrix A and a tolerance ε:

Use real Householder transformations P0, P1, . . . , Pn−2 to determine a
matrix B = Q∗AQ, Q = P0 · · ·Pn−2, that is symmetric, tridiagonal, and
unitarily similar to A;
Do while q < n

if |bi,i−1| ≤ ε(|bi,i|+ |bi−1,i−1|), i = 2, . . . , n, set bi,i−1 = 0 ;

find the largest integer q ≥ 0 and smallest integer p ≥ 0 such that

B =

 B11 B12 B13

0 B22 B23

0 0 B33

 ,

where B11 is p× p , B33 is q× q and diagonal, and B22 is unreduced
symmetric tridiagonal (note that p or q may vanish);

apply the single shifted QR step with Wilkinson shifts to the (n −
p− q)× (n− p− q) matrix B22.

Once again we note that this algorithm may be implemented in real arithmetic.
Also, one may define an implicit single shift strategy so that the matrix A(k) − µkI
need not be explicitly formed.

80 1. Eigenvalues and Eigenvectors

1.5.3 The convergence of the QR

There are two types of convergence results avialable for the QR method. (Here, we
only consider the general single shifted version of the method for general complex
matrices.) The first type examines the whole subdiagonal triangle of the iterates
and shows that all the entries of that triangle tend to zero, i.e., the iterates converge
to an upper triangular matrix. The second looks at a particular row or column of
the subdiagonal triangle and shows that the entries of that section of the matrix
converge to zero. Since once this happens one can deflate to a smaller matrix, the
second view also shows that the QR method converges to a triangular matrix.

From a practical point viewpoint as well, both types of convergence results are
important. The second view may be used to show why one is able to deflate, and
also how some particular subdiagonal elements converge to zero very quickly. These
are crucial to the understanding of the practical QR method. The first view is also
important because it shows that all of the subdiagonal entries are reduced during
the QR iteration, and although not all reduce very quickly, the fact that they do
reduce also helps explain the rapid convergence of the overall method.

Here, we will only consider the second viewpoint. We begin by considering the
coneection between the shifted QR method and the shifted power and inverse power
methods.

Given an n × n matrix A and a sequence of shifts µk, k = 0, 1, . . . , cosider the
following three sequences. First, we have sequence of matrices obtained from the
shifted QR method:

A(k+1) = (Q(k+1))∗A(k)Q(k+1) and A(k) − µkI = Q(k+1)R(k+1) ,(1.72)

where A(0) = A. The second is the shifted power method iteration for the matrix
A with shifts given by µk:

p(k+1) =
1
αk

(A− µkI)p(k) , ‖p(k+1)‖2 = 1 ,(1.73)

where p(0) is any unit vector. The scale factors αk are determined by the require-
ment that ‖p(k+1)‖2 = 1. The third is the shifted power method iteration for the
matrix A∗ with shifts given by µ̄k:

(A∗ − µ̄kI)u(k+1) = βku(k) , ‖u(k+1)‖2 = 1 ,(1.74)

where u(0) is any unit vector. Again, the scale factors βk are determined by the
requirement that ‖u(k+1)‖2 = 1.

The relation between these three iterations is given in the following result which
makes use of the matrices

V (0) = I and V (k) = Q(1) · · ·Q(k) , k = 1, 2,(1.75)

Note that for k ≥ 0,

A(k+1) = (Q(k+1))∗A(k)Q(k+1) = (V (k+1))∗AV (k+1) .(1.76)

1.5. QR method 81

Proposition 1.31 Let the matrices A(k) and unit vectors p(k) and u(k), k =
0, 1, . . . , be defined by (1.72), (1.73), and (1.74), respectively. Let none of the shifts
µk be an eigenvalue of A. Let p(0) = e(1) and u(0) = e(n). Then, for k = 1, 2, . . . ,

p(k) = V (k)e(1) and u(k) = V (k)e(n) .(1.77)

Proof. From (1.76) we have that

V (k)A(k) = AV (k)

so that, from (1.72) and (1.75),

V (k+1)R(k+1) = V (k)Q(k+1)R(k+1) = V (k)(A(k) − µkI) = (A− µkI)V (k) .(1.78)

Equating the first columns we have that

V (k+1)R(k+1)e(1) = (A− µkI)V (k)e(1)

and then, since R(k+1) is upper triangular,

V (k+1)e(1) =
1

r
(k+1)
1,1

(A− µkI)V (k)e(1) .

Since ‖V (k+1)e(1)‖2 = 1, comparison with (1.73) yields the first of (1.77).
Now, from (1.78), we have that

(R(k+1))∗(V (k+1))∗ = (V (k))∗(A∗ − µ̄kI)

so that
V (k)(R(k+1))∗ = (A∗ − µ̄kI)V (k+1) .

Then, since (R(k+1))∗ is lower triangular,

V (k)(R(k+1))∗e(n) = r̄(k+1)
n,n V (k)e(n) = (A∗ − µ̄kI)V (k+1)e(n) .

Since ‖V (k+1)e(n)‖2 = 1, comparison with (1.74) yields the second of (1.77). 2

The convergence proof we give applies to the basic, unshifted QR method.

Theorem 1.32 Let A be an n×n nondefective matrix. Let (λj ,q(j)), j = 1, . . . , n,
denote the eigenpairs of A. Assume that

0 < |λ1| < |λ2| ≤ |λ3| ≤ · · · ≤ |λn−1| < |λn|

and that ‖q(1)‖2 = ‖q(n)‖2 = 1. Assume that for j = 1 and n, (e(j))∗q(j) 6= 0.
Then, as k →∞,

A(k)e(1) → λne(1) and (e(n))T A(k) → λ1(e(n))T .

82 1. Eigenvalues and Eigenvectors

Proof. Due to the hypotheses, the power method iterates defined in (1.73) converge
to q(n), i.e., p(k) → q(n). Then, we have that

e(1) = (V (k))∗V (k)e(1) = (V (k))∗p(k) → (V (k))∗q(n)

and, using (1.74),

A(k)e(1) = A(k)(V (k))∗p(k) = (V (k))∗Ap(k) → λn(V (k))∗q(n) .

A comparison of the last two results yields that

A(k)e(1) → λne(1) .

Similarly, due to the hypotheses, the inverse power method iterates defined in
(1.74) converge to q(1), i.e., u(k) → q(1). Then, we have that

e(n) = (V (k))∗V (k)e(n) = (V (k))∗u(k) → (V (k))∗q(1)

and, using (1.74),

(A(k))−∗e(n) = (A(k))−∗(V (k))∗u(k) = (V (k))∗A−∗u(k) → 1
λ̄1

(V (k))∗q(1) .

A comparison of the last two results yields that

λ̄1(A(k))−∗e(n) → e(n)

or
(e(n))T A(k) → λ1(e(n))T .

2

This result shows that the entries of first column and last row of A(k) that are
not on the diagonal tend to zero as k →∞ and the diagonal entries tend to λn and
λ1, respectively.

