
Implicit Scheme for the Heat Equation

Implicit scheme for the one-dimensional heat equation

Once again we consider the one-dimensional heat equation where we seek a u(x, t) satisfying

ut = νuxx + f(x, t) (x, t) ∈ (0, 1) × (0, T ]
u(x, 0) = u0(x) x ∈ [0, 1]
u(0, t) = 0 t ∈ [0, T ]
u(1, t) = 0 t ∈ [0, T ]

(1)

When we derived the explicit scheme we used a forward difference approximation for the time derivative ut. Let’s see what
happens if we use a backward difference approximation.

We write the scheme at the point (xi, t
n) so that the difference equation now becomes

Un
i − Un−1

i

∆t
= ν

Un
i+1 − 2Un

i + Un
i−1

(∆x)2
+ f(xi, t

n) for i = 1, . . . , M − 1

Now when we simplify this expression, we see that only Un−1

i is known and we move it to the right hand side. The equation
then becomes

−λUn
i+1 + (1 + 2λ)Un

i − λUn
i−1 = Un−1

i + ∆tf(xi, t
n)

where once again λ = ν∆t/(∆x)2. We write our scheme as

Let U0
i = u0(xi) i = 0, 1, . . . , M

For n = 0, 1, 2, . . .

−λUn
i+1 + (1 + 2λ)Un

i − λUn
i−1 = Un−1

i + ∆tf(xi, t
n) for i = 1, . . . , M − 1

Un+1

0 = 0
Un+1

M = 0

(2)
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We can no longer solve for Un
1 and then Un

2 , etc. All of the values Un
1 , Un

2 . . . Un
M−1 are coupled. We must solve for all of them

at once. This requires us to solve a linear system at each timestep and so we call the method implicit.

Writing the difference equation as a linear system we arrive at the following tridiagonal system
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n) + Un−1

2

...
∆tf(xM−2, t

n) + Un−1

M−2

∆tf(xM−1, t
n) + Un−1

M−1













(3)

Remark: Note that if we had inhomogeneous Dirichlet boundary conditions then we would have to include additional terms
in the right hand side.

Exercise Write down the right hand side for the difference equations when we solve the following IBVP using this implicit
scheme.

ut = νuxx + f(x, t) (x, t) ∈ (0, 1) × (0, T ]
u(x, 0) = u0(x) x ∈ [0, 1]
u(0, t) = 2 t ∈ [0, T ]
u(1, t) = −1 t ∈ [0, T ]

What are the properties of this matrix?

Clearly the matrix is tridiagonal and symmetric.

Exercise Show that the matrix is invertible.

How do we efficiently solve this system of equations?

First note that the coefficient matrix remains the same for all timesteps if we keep the timestep fixed. Consequently all we have
to do is factor the matrix once and at each timestep perform a backsolve and a forward solve. In particular if we write the
system as Ax = f then A can be factored as

A = LLT
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and thus we can solve the system as
Ly = f

LT x = y

The second advantage is that the matrix is tridiagonal and so the system is “cheap” to solve. To factor a general symmetric
n×n tridiagonal matrix A we write A = LLT where L is a lower triangular (actually bidiagonal) matrix and LT is its transpose.
Specifically we have













a1 b1

b1 a2 b2

. . .
. . .

. . .
bn−2 an−1 bn−1

bn−1 an













=
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. . .
. . .

βn−2 αn−1

βn−1 αn
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α2 β2

. . .
. . .

. . .
αn−1 βn−1

αn













(4)

where the αi, βi can be found from the formulas
α1 =

√
a1

and for i = 2, . . . , n

βi−1 =
bi−1

αi−1

αi = ai − β2

i−1

The solution of the forward solve Ly = f is given by the equations

y1 =
f1

α1

, for i = 2, . . . , n yi =
fi − βi−1yi−1

αi

and the backward solve LT x = y is given by

xn =
yn

αn

for i = n − 1, . . . , 1 xi =
yi − βixi+1

αi

Remark: For clarity we have used separate notation for the ai and αi, etc. but when the algorithm is implemented we simply
overwrite each ai with the αi and similarly for the bi, xi. Consequently our total storage is four vectors.
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Analysis of the scheme

We expect this implicit scheme to be order (2, 1) accurate, i.e., O(∆x2 + ∆t). Substitution of the exact solution into the
differential equation will demonstrate the consistency of the scheme for the inhomogeneous heat equation and give the accuracy.
We perform this computation here is to illustrate two differences from the consistency analysis of our explicit scheme. The first
is to demonstrate consistency in the norm. Pointwise consistency is demonstrated identically to the case of the explicit scheme.
The second is to illustrate how one handles the forcing function f(x, t) in the analysis.

remainder = −λu(xi+1, t
n) + (1 + 2λ)u(xi, t

n) − λu(xi−1, t
n) − u(xi, t

n−1) − ∆tf(xi, t
n)

= −λ
[

u(xi, t
n) + ∆x ux(xi, t

n) +
(∆x)2

2!
uxx(xi, t

n) +
(∆x)3

3!
uxxx(xi, t

n) +
(∆x)4

4!
uxxxx(Θ1, t

n)
]

+(1 + 2λ)u(xi, t
n)

−λ
[

u(xi, t
n) − ∆x ux(xi, t

n) +
(∆x)2

2!
uxx(xi, t

n) − (∆x)3

3!
uxxx(xi, t

n) +
(∆x)4

4!
uxxxx(Θ2, t

n)
]

−
[

u(xi, t
n) − ∆tut(xi, t

n) +
(∆t)2

2!
utt(xi, τ

n)
]

− ∆tf(xi, t
n)

= −λ(∆x)2uxx(xi, t
n) + ∆tut(xi, t

n) − λ
(∆x)4

4!
uxxxx(Θ1, t

n) − λ
(∆x)4

4!
uxxxx(Θ2t

n) − (∆t)2

2!
utt(xi, τ

n) − ∆tf(xi, t
n)

Now u(x, t) satisfies the inhomogeneous DE ut = νuxx + f so that

remainder = − ν∆t

(∆x)2
(∆x)2uxx(xi, t

n) + ∆t(νuxx(xi, t
n) + f(xi, t

n))

− ν∆t

(∆x)2

(∆x)4

4!

[

uxxxx(Θ1, t
n) + uxxxx(Θ2t

n)
]

− (∆t)2

2!
utt(xi, τ

n) − ∆tf(xi, t
n)

= −ν∆t(∆x)2

4!

[

uxxxx(Θ1, t
n) + uxxxx(Θ2t

n)
]

− (∆t)2

2!
utt(xi, τ

n)

So
|remainder| = ∆tO

(

(∆x)2 + ∆t
)

and we have pointwise consistency.
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In order to show consistency in the norm we need to go a step further. Our definition states that a 2-level scheme which we
write as

~Un+1 = Q~Un + ∆t ~F n (5)

is consistent provided u satisfies
~un+1 = Q~un + ∆t ~F n + ∆t~τn

where ‖~τn‖ → 0 as ∆x, ∆t → 0.

Our first goal is to write our difference scheme in the general form (5). We have that

A~Un+1 = I ~Un + ∆t ~F n

where I is the identity matrix and A is the tridiagonal matrix we derived for the scheme. Now to put this equation into the
form of (5) we need to write

~Un+1 = A−1~Un + ∆tA−1 ~F n

Comparing this to (5) we see that Q = A−1 which is well defined since we know that A is invertible.

From our previous calculations for pointwise consistency we then know that

~un+1 = A−1~un + ∆tA−1 ~F n + A−1∆t~rn

where ~rn is the residual vector where we know each entry is ∆tO((∆x)2 + ∆t).

Consequently, ~τn = A−1~rn and so we must simply show that A−1 is bounded to get the desired result since

‖~τn‖ =
∥

∥A−1~rn
∥

∥ ≤
∥

∥A−1
∥

∥ ‖~rn‖

Now if we choose ‖·‖
∞

then we know that ‖~rn‖
∞

is bounded (provided of course that the derivatives utt and uxxxx are bounded)
and

1 + 3λle‖A‖
∞

≤ 1 + 4λ

since the infinity norm can be computed by taking the maximum row sum of a matrix. Since ‖A‖
∞

is bounded below we know
that ‖A−1‖

∞
is bounded and our result follows.
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What is different in the implicit scheme from the explicit scheme we investigated is the stability.

Our implicit scheme is UNCONDITIONALLY STABLE

Remark: This means that we no longer have a restriction on our choice of ∆t.

Remark: The stability of this scheme is not easy to demonstrate using the technique we employed with the explicit scheme.
Consequently, we will delay the stability analysis until we learn Fourier stability analysis.

Remark: Since this is a 2-level scheme in time we can use the Lax Theorem to guarantee convergence (once we show the
scheme is stable).

How would our scheme change if we were solving the 2-D heat equation?

Consider finding u(x, y, t) satisfying

ut = ν(uxx + uyy) + f(x, y, t) (x, t) ∈ (0, 1) × (0, 1) × (0, T ]
u(x, y, 0) = u0(x, y)
u(0, y, t) = 0 u(1, y, t) = 0
u(x, 0, t) = 0 u(x, 1, t) = 0

(6)

Let Un
ij ≈ u(xi, yj, t

n). Our difference equation then becomes

Un
ij − Un−1

ij

∆t
= ν

(

Un
i+1,j − 2Un

ij + Un
i−1,j

(∆x)2
+

Un
i,j+1 − 2Un

ij + Un
i,j−1

(∆y)2

)

+ f(xi, yj, t
n)

for i = 1, . . . , M − 1 and j = 1, . . . , M − 1.

For simplicity of exposition, let’s assume that ∆x = ∆y. Then simplifying the expression we arrive at

−λUn
i+1,j + (1 + 4λ)Un

ij − λUn
i−1,j − λUn

i,j+1 − λUn
i,j−1 = Un−1

ij + ∆tf(xi, t
n)

If we number the unknowns as Un
11, Un

12, · · · , Un
1,M−1, Un

2,1, etc. then the linear system we must solve is a block tridiagonal
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matrix of the form








A −λI
−λI A −λI

. . .
. . .

. . .
−λI A









Each block is (M − 1) × (M − 1); here I represents the identity matrix and A is given by








1 + 4λ −λ
−λ 1 + 4λ −λ

. . .
. . .

. . .

−λ 1 + 4λ









We have written the vector of unknowns and right hand side as
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...
Un

1,M−1

−−−−−−
Un

21

...
Un

2,M−1

−−−−−−
...

−−−−−−
Un

M−1,1
...

Un
M−1,M−1

















































and



















































Un−1

11 + ∆tf(x1, y1, t
n)

...
Un−1

1,M−1
+ ∆tf(x1, yM−1, t

n)
−−−−−−−−−−
Un−1

21 + ∆tf(x2, y1, t
n)

...
Un−1

2,M−1
+ ∆tf(x2, yM−1, t

n)
−−−−−−−−−−

...
−−−−−−−−−−

Un−1

M−1,1 + ∆tf(xM−1, 1, t
n)

...
Un−1

M−1,M−1
+ ∆tf(xm−1, yM−1, t

n)



















































Remark: Of course if our problem had inhomogeneous Dirichlet boundary data then we would have had some additional
terms added onto the boundary.

Exercise Write out the right hand side for the implicit difference scheme approximating the IBVP
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ut = ν(uxx + uyy) (x, t) ∈ (0, 1) × (0, 1) × (0, T ]
u(x, y, 0) = u0(x) x ∈ [0, 1]
u(0, y, t) = 0 t ∈ [0, T ]
u(1, y, t) = 0
u(x, 0, t = 4

u(x, 1, t) = −5

Once again our coefficient matrix is symmetric and positive definite so we can perform an LLT decomposition and solve as
before.

A general n × n symmetric block tridiagonal matrix can be efficiently factored as









A1 B1

B1 A2 B2

. . .
. . .

. . .
Bn−1 An









=









C1

D1 C2

. . .
. . .

Dn−1 Cn

















CT
1 DT

1

CT
2 DT

2

. . .
. . .

CT
n









where
A1 = C1C

T
1 C1D

T
1 = B1, etc.

In our case A1, etc., are tridiagonal matrices so we simply perform an LLT decomposition to determine C1. For determining
the Di we simply solve a lower triangular systems.
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