
Parallel MATLAB at VT

Justin Krometis (ARC/ICAM - jkrometis@vt.edu)
2:30 - 3:30pm, Thursday, 16 September 2015

.......... NLI

ARC: Advanced Research Computing

1 / 1

MATLAB Parallel Computing

Introduction

Programming Models

Execution

Example: Quadrature

Conclusion

2 / 1

INTRO: Parallel MATLAB

Parallel MATLAB is an extension of MATLAB that takes
advantage of multicore desktop machines and clusters.

The Parallel Computing Toolbox or PCT runs on a desktop, and
can take advantage of cores (R2014a has no limit, R2013b limit is
12, ...). Parallel programs can be run interactively or in batch.

The Matlab Distributed Computing Server (MDCS) controls
parallel execution of MATLAB on a cluster with tens or hundreds
of cores.

ARC’s clusters (Ithaca, BlueRidge, NewRiver) provides MDCS
services for up to 224 cores. Currently, single users are restricted to
96 cores.

3 / 1

http://www.arc.vt.edu/ithaca
http://www.arc.vt.edu/blueridge
http://www.arc.vt.edu/newriver

INTRO: What Do You Need?

1 Your machine should have multiple processors or cores:

On a PC: Start :: Settings :: Control Panel :: System
On a Mac: Apple Menu :: About this Mac :: More Info...

2 Your MATLAB must be version 2012a or later:

Go to the HELP menu, and choose About Matlab.

3 You must have the Parallel Computing Toolbox:

At VT, the concurrent (& student) license includes the PCT.
The standalone license does not include the PCT.
To list all your toolboxes, type the MATLAB command ver.
When using an MDCS (server) be sure to use the same
version of Matlab on your client machine.
Ithaca supports R2012a to R2015a. BlueRidge and
NewRiver support R2015a.

4 / 1

MATLAB Parallel Computing

Introduction

Programming Models

Execution

Example: Quadrature

Conclusion

5 / 1

PROGRAMMING: Obtaining Parallelism

Three ways to write a parallel MATLAB program:

suitable for loops can be made into parfor loops;

the spmd statement can define cooperating synchronized
processing;

the task feature creates multiple independent programs.

The parfor approach is a limited but simple way to get started.
spmd is powerful, but may require rethinking the program/data.
The task approach is simple, but suitable only for computations
that need almost no communication.

6 / 1

PROGRAMMING: PARFOR: Parallel FOR Loops

Lecture #2: PARFOR

The simplest path to parallelism is the parfor statement, which
indicates that a given for loop can be executed in parallel.

When the “client” MATLAB reaches such a loop, the iterations of
the loop are automatically divided up among the workers, and the
results gathered back onto the client.

Using parfor requires that the iterations are completely
independent; there are also some restrictions on array-data access.

OpenMP implements a directive for ’parallel for loops’

7 / 1

PROGRAMMING: ”SPMD” Single Program Multiple Data

Lecture #3: SPMD

MATLAB can also work in a simplified kind of MPI model.

There is always a special “client” process.

Each worker process has its own memory and separate ID.

There is a single program, but it is divided into client and worker
sections; the latter marked by special spmd/end statements.

Workers can “see” the client’s data; the client can access and
change worker data.

The workers can also send messages to other workers.

OpenMP includes constructs similar to spmd.

8 / 1

PROGRAMMING: ”SPMD” Distributed Arrays

SPMD programming includes distributed arrays.

A distributed array is logically one array, and a large set of
MATLAB commands can treat it that way (e.g. ‘backslash’).

However, portions of the array are scattered across multiple
processors. This means such an array can be really large.

The local part of a distributed array can be operated on by that
processor very quickly.

A distributed array can be operated on by explicit commands to
the SPMD workers that “own” pieces of the array, or implicitly by
commands at the global or client level.

9 / 1

MATLAB Parallel Computing

Introduction

Programming Models

Execution

Example: Quadrature

Conclusion

10 / 1

EXECUTION: Models

There are several ways to execute a parallel MATLAB program:

Model Command Where It Runs

Interactive matlabpool This machine

Interactive
parpool

(R2013b)
This machine

Indirect local batch This machine

Indirect remote batch Remote machine

11 / 1

EXECUTION: Direct using parpool

Parallel MATLAB jobs can be run directly, that is, interactively.

The parpool (previously matlabpool) command is used to reserve
a given number of workers on the local (or perhaps remote)
machine.

Once these workers are available, the user can type commands, run
scripts, or evaluate functions, which contain parfor statements.
The workers will cooperate in producing results.

Interactive parallel execution is great for desktop debugging of
short jobs.

Note: Starting in R2013b, if you try to execute a parallel program
and a pool of workers is not already open, MATLAB will open it
for you. The pool of workers will then remain open for a time that
can be specified under Parallel → Parallel Preferences (default =
30 minutes).

12 / 1

EXECUTION: Indirect Local using batch

Parallel MATLAB jobs can be run indirectly.

The batch command is used to specify a MATLAB code to be
executed, to indicate any files that will be needed, and how many
workers are requested.

The batch command starts the computation in the background.
The user can work on other things, and collect the results when
the job is completed.

The batch command works on the desktop, and can be set up to
access ARC clusters (e.g. Ithaca).

13 / 1

EXECUTION: Local and Remote MATLAB Workers

14 / 1

EXECUTION: Managing Cluster Profiles

MATLAB uses Cluster Profiles (previously called “configurations”)
to set the location of a job. ‘local’ is the default. Others can be
added to send jobs to other clusters (e.g. Ithaca).

15 / 1

EXECUTION: Ways to Run

Interactively, we call parpool and then our function:

mypool = parpool (’local’, 4)

q = quad_fun (n, a, b);

delete(mypool)

’local’ is a default Cluster Profile defined as part of the PCT.
The batch command runs a script, with a Pool argument:

job = batch (’quad_script’, ’Pool’, 4)

(or)

job = batch (’Profile’,’local’, ’quad_script’, ...

’Pool’, 4)

16 / 1

EXECUTION: ARC Clusters

ARC offers resources with Matlab installed, including:

System Usage Nodes Node Description Special Features

Ithaca Beginners, MATLAB 79 8 cores, 24GB 10 double-memory nodes

(2× Intel Nehalem)

BlueRidge Large-scale CPU, MIC 408 16 cores, 64 GB 260 Intel Xeon Phi

(2× Intel Sandy Bridge) 4 K40 GPU

18 128GB nodes

NewRiver Data Intensive 126 24 cores, 128 GB 8 K80 GPGPU

(2× Intel Haswell) 16 “big data” nodes

24 512GB nodes

2 3TB nodes

ARC has a MDCS that can currently accommodate a combination
of jobs with a total of 224 workers. At this time the queueing
software imposes a limit of 96 workers per job.

17 / 1

http://www.arc.vt.edu/ithaca
http://www.arc.vt.edu/blueridge
http://www.arc.vt.edu/newriver

EXECUTION: Configuring Desktop-to-Cluster Submission

If you want to work with parallel MATLAB on ARC resources,
you must first get an account. Go to

http://www.arc.vt.edu/account

Log in (PID and password), select the systems you want to
work with and MATLAB in the Software section, and submit.

Steps to set up submission from your desktop include:
1 Download and add some files to your MATLAB directory
2 Run a script to create a new profile on your desktop.

A new cluster profile (e.g. ithaca R2015a) will be created
that can be used in batch().
These steps are described in detail here:

http://www.arc.vt.edu/matlabremote

18 / 1

EXECUTION: Intracluster Submission

You can also submit jobs to ARC clusters from a cluster login
node.

Pros: Easier to set up. Only one file system to manage.

Cons: Requires logging into the cluster (e.g., with SSH). Have
to use Matlab command line (except on NewRiver).

Setting up intracluster submission is very simple - running a
one-question script at the Matlab command line on the ARC
cluster.
The full steps are described here:

http://www.arc.vt.edu/matlabremote#intracluster

19 / 1

MATLAB Parallel Computing

Introduction

Programming Models

Execution

Example: Quadrature

Conclusion

20 / 1

QUAD: Estimating an Integral

21 / 1

QUAD: The QUAD FUN Function

funct ion q = quad fun (n , a , b)

q =0.0 ;
w=(b−a)/ n ;
f o r i =1:n

x = ((n− i)∗ a+(i −1)∗b) / (n−1);
f x= 4./(1+ x . ˆ 2) ;
q = q+w∗ f x ;

end

return
end

22 / 1

QUAD: Comments

The function quad fun estimates the integral of a particular
function over the interval [a, b].

It does this by evaluating the function at n evenly spaced points,
multiplying each value by the weight (b − a)/n.

These quantities can be regarded as the areas of little rectangles
that lie under the curve, and their sum is an estimate for the total
area under the curve from a to b.

We could compute these subareas in any order we want.

We could even compute the subareas at the same time, assuming
there is some method to save the partial results and add them
together in an organized way.

23 / 1

QUAD: The Parallel QUAD FUN Function

funct ion q = quad fun (n , a , b)

q =0.0 ;
w=(b−a)/ n ;

% f o r i =1:n % avo i d s t a r t i n g poo l
p a r f o r i =1:n

x = ((n− i)∗ a+(i −1)∗b) / (n−1);
f x= 4./(1+ x . ˆ 2) ;
q = q+w∗ f x ;

end

return
end

24 / 1

QUAD: Comments

The parallel version of quad fun does the same calculations.

The parfor statement changes how this program does the
calculations. It asserts that all the iterations of the loop are
independent, and can be done in any order, or in parallel.

Execution begins with a single processor, the client. When a parfor
loop is encountered, the client is helped by a “pool” of workers.

Each worker is assigned some iterations of the loop. Once the loop
is completed, the client resumes control of the execution.

MATLAB ensures that the results are the same (with exceptions)
whether the program is executed sequentially, or with the help of
workers.

The user can wait until execution time to specify how many
workers are actually available.

25 / 1

QUAD: Interactive

To run quad fun.m in parallel on your desktop, type:

n = 10000; a = 0.5; b = 1;

pool = parpool(’local’,4)

q = quad_fun (n, a, b);

delete(pool)

The word local is choosing the local profile, that is, the cores
assigned to be workers will be on the local machine.

The value ”4” is the number of workers you are asking for. It can
be up to 12 on a local machine. It does not have to match the
number of cores you have.

26 / 1

QUAD: Indirect Local BATCH

The batch command, for indirect execution, accepts scripts (and
since R2010b functions). We can make a suitable script called
quad script.m:

n = 10000; a = 0.5; b = 1;

q = quad_fun (n, a, b)

Now we assemble the job information needed to run the script and
submit the job:

job = batch (’quad_script’, ’Pool’, 4, ...

’Profile’, ’local’, ...

’AttachedFiles’, { ’quad_fun’ })

27 / 1

QUAD: Indirect Local BATCH

After issuing batch(), the following commands wait for the job
to finish, gather the results, and clear out the job information:

wait (job); % no prompt until the job is finished

load (job); % load data from the job’s Workspace

delete (job); % clean up (destroy prior to R2012a)

28 / 1

QUAD: Indirect Remote BATCH

The batch command can send your job anywhere, and get the
results back, as long as you have set up an account on the remote
machine, and you have defined a Cluster Profile on your desktop
that tells it how to access the remote machine.

At Virginia Tech, with proper set up, your desktop can send a
batch job to an ARC cluster as easily as running locally:

job = batch (’quad_script’, ’Pool’, 4, ...

’Profile’, ’ithaca_R2015a, ...

’AttachedFiles’, { ’quad_fun’ })

The job is submitted. You may wait for it, load it and
destroy/delete it, all in the same way as for a local batch job.

29 / 1

MATLAB Parallel Computing

Introduction

Programming Models

Execution

Example: Quadrature

Conclusion

30 / 1

CONCLUSION: Summary

Introduction: Parallel Computing Toolbox

Models of parallelism: parfor, spmd, distributed

Models of execution: Interactive vs. Indirect, Local vs.
Remote

ARC clusters

Quadrature example: Parallelizing and Running

31 / 1

CONCLUSION: Desktop Experiments

Virginia Tech has a limited number of concurrent MATLAB
licenses, and including the Parallel Computing Toolbox.

Since Fall 2011, the PCT is included with the student license.

Run ver in the Matlab Command Window to see what licenses
you have available.

If you don’t have a multicore machine, you won’t see any speedup,
but you may still be able to run some ‘parallel’programs.

32 / 1

CONCLUSION: VT MATLAB LISTSERV

There is a local LISTSERV for people interested in MATLAB on
the Virginia Tech campus. We try not to post messages here
unless we really consider them of importance!

Important messages include information about workshops, special
MATLAB events, and other issues affecting MATLAB users.

To subscribe to this email list, send a blank email to

mathworks-g+subscribe@vt.edu

The subject and body of the message should both be empty.

33 / 1

CONCLUSION: Where is it?

Matlab Parallel Computing Toolbox Product Documentation
http://www.mathworks.com/help/toolbox/distcomp/

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing, International
Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

An Adobe PDF with these notes, along with a zipped-folder
containing the Matlab codes can be downloaded from the
ARC website at

http://www.arc.vt.edu/matlab#resources

34 / 1

CONCLUSION: Upcoming Classes

1 Parallel Matlab II: Parfor
(Wednesday, 21 October 2015, 9-10am, Torgersen 1100)

2 Parallel Matlab III: Single Program Multiple Data (SPMD)
(Thursday, 5 November 2015, 3:30-4:30pm, Torgersen 1100)

35 / 1

THE END

Please complete the evaluation form

Thanks

36 / 1

