
Hands On Session 4: Shared Memory Programming With OpenMP

John Burkardt
Information Technology Department

Virginia Tech
..........

HPPC-2008
High Performance Parallel Computing Bootcamp

31 July 2008

This hands on session introduces OpenMP, which can be used to write parallel programs on shared
memory systems.

We will use VT’s SGI system; in particular, we will log in to the node charon3.arc.vt.edu.
We will compile programs interactively on charon3, but (with one exception!), we will not run programs

interactively. We will use a script to submit a request to a batch system, so our jobs will run on some set of
compute nodes instead.

The exercises in this hands on session will have you:

1. access charon3, compile a HELLO program and submit a script to run it;

2. put together a simple OpenMP program called QUAD to estimate an integral

3. make an OpenMP version of the MD program, and determine the dependence of the wall clock time
on the problem size, and on the number of processors

4. make an OpenMP version of the FFT program, which will report a MegaFLOPS rate for various
problem sizes;

5. make an OpenMP version of the HEATED PLATE program and run it;

For most of the exercises, there is a source code program that you can use. The source code is generally
available in a C, C++, FORTRAN77 and FORTRAN90 version, so you can stick with your favorite language.

Start the hands on session by using SSH to connect to the SGI system:

ssh charon3.arc.vt.edu

1 Hello, OpenMP World!

Get a copy of the hello program

cp /home/BOOTCAMP/day4/hello/hello.c .

This program is more complicated than it should be. I added some extra sample OpenMP calls for you
to look at, including:

• How you get the “include” file.

• How you measure wall clock time.

1

• How you find out how many processors are available.

• How you find out which thread you are in a parallel section.

• How you find out how many threads are available in a parallel section.

• How you set the number of threads.

1.1 Compile “hello”

Compile the program. The SGI version of the Gnu compilers does not include OpenMP, so all our work
today will be with the Intel compilers only! Sample compilation statements include:

icc -openmp hello.c
icpc -openmp hello.cc
ifort -openmp -fpp hello.f
ifort -openmp -fpp hello.f90

Rename your executable program to hello. Especially when you use a batch system to run programs,
it’s important to distinguish your programs by name.

mv a.out hello

You could also do this renaming as part of the compilation statement, by including the -o name switch:

icc -openmp -o hello hello.c

We should not run programs interactively on the SGI compile node. However, just this once, go ahead
and run the executable program. Before an iteractive run, you need to define the number of threads, or it
will be stuck at 1.

export OMP_NUM_THREADS=2 <=== NO SPACES around the = sign!
hello

1.2 Run “hello” using the Queueing System

From now on, all our programs will be run using the batch system. That means that we compile the program,
give it a name, maybe put the program and its data in a special directory, and then send a request to the
batch system. Then we wait until our request is processed.

Copy the script that submits the hello program:

cp /home/BOOTCAMP/day4/hello/hello.sh .

Take a look at the script. There is almost nothing you have to change. The interesting features include

• something that controls the total time allowed;

• two items that request a number of cpus, and declare (the same number) of OpenMP threads;

• a statement that actually runs your program;

Submit the script

qsub hello.sh

You can issue the command

showq

to see the status of your job (unless it’s already run.)
Congratulations! Now we can try the harder stuff.

2

2 Estimate an Integral

In this exercise, you will be asked to finish a program, which is partially sketched out, to approximate the
integral ∫ b

a

50
π(2500x2 + 1)

dx

The method involves defining an array x of N equally spaced numbers between a and b, then estimating
the integral as the sum of the function values at these points, multiplied by b - a and divided by N.

The correct answer is about 0.49936338107645674464...
Get a copy of one of the quad programs. For instance:

cp /home/BOOTCAMP/day4/quad/quad.cc .

2.1 Make an OpenMP version

The program is not ready to run. For one thing, you need to make sure the appropriate include file is
invoked.

You also need to write the loop that adds up the function values at the N entries of the x array. Once
you have done that, you should count the number of floating point operations in your formula, and use that
in the statement that defines the value of flops.

Finally, you need to insert the appropriate OpenMP directive just before the loop. You should try to
make sure that you classify every variable used in the loop to be private or shared or reduction. And if
you are using FORTRAN, you must make sure you add a matching “end” directive.

Once you’ve got that all done, try to compile the program, name the executable quad, copy the quad.sh
script file, and submit it to the queueing system!

2.2 Don’t Give Up (Unless You Tried)!

Please try to fill in the blanks in the quad version. It’s the only way you’ll start to pick up the techniques
you need. But if you can’t get it to work, you can get a “complete” version of the program with the missing
parts filled in.

For instance:

cp /home/BOOTCAMP/day4/quad/quad_complete.cc .

If you can’t get your own code to work, and you want to move on, you can work from one of these complete
versions.

2.3 Measure MegaFLOPS against P and N

Investigate the behavior of the MegaFLOPS rate as a function of the number of integration points N. Since
1,000,000 is pretty large, do your comparison by halving N a few times.

You can also investigate the dependence of the MegaFLOPS rate as a function of the number of processors.
The only thing you have to change in that case is the values of NCPUS and OMP NUM THREADS in
your job script. Do you get a reasonable speedup?

3 The MD program for Molecular Dynamics

This exercise asks you to return to the MD molecular dynamics program that we considered on the first day.
At that time, we noted that the update function used a large part of the computational time. We are going
to try to make some simple modifications to this program so that it uses OpenMP and runs faster.

3

3.1 Make an OpenMP version of the MD program

Before you make any “improvements” to the MD program, you need to reference the “’include file”.
The timing that we carry out will only involve the big loop in the main program, the one that calls

compute and update. Replace the CPU timings by calls to omp get wtime() .
Now we are ready to parallelize one loop, namely, the loop in the update routine. This is actually a

nested loop. Our directives will go just before the first of the two loop statements, so the parallelization will
be with respect to the J index.

If you’re using C/C++, your directive has the form:

pragma omp parallel for private (list) shared (list)

Try to explicitly place every loop variable into one list or the other. (There are no reduction variables in
this loop!)

Compile the program, copy the md.sh script and submit the job to be run through the queueing system.

3.2 Interchange I and J

It turns out that the nested loop in update could be also be written with the loops interchanged. In the
FORTRAN77 version, this would mean we could rewrite this code as:

do i = 1, nd
do j = 1, np

This will make no difference in the sequential version, and the parallel version will also run correctly - but
will it run efficiently? Our job script is asking for 4 processors, and the value of ND is 3. Parallelization only
takes place with respect to the outer loop index. What do you think will happen, especially if we increase
the number of processors we ask for?

3.3 The Compute Routine in MD

The compute routine also has a big loop in it, which forms almost the entire function. Although this
function does not use up so much time, we will consider making an parallel version of it. This loop has
more variables, and it has reduction variables, so you will need some time to set it up. If you’re using
FORTRAN77, your directive should have the form:

c$omp parallel do private (list) shared (list) reduction(+: list)

and don’t forget the

c$omp end parallel do

at the end.
Compare the times of your program before and after the improvements maked to the compute routine.

Unfortunately, one big cost in this routine is the many calls to the distance function. There are ways to
improve the distance calculation, but we won’t consider them today.

4 Make an OpenMP version of the FFT program

This exercise asks you to return to the FFT Fast Fourier Transform program that we considered on the first
day. We are going to make an OpenMP version of this program. By now you should be familiar with the
initial things you have to do, before we can even think about inserting any directives.

Make an OpenMP version of the program now!

4

That is, insert a reference to the “include” file, replace calls to the CPU timer by calls to omp get wtime,
get the script file fft.sh.

Since we haven’t set up any parallel loops yet, be nice to the system, and only ask for one thread. Do
this by changing the fft.sh script so that NCPUS and OMP NUM THREADS are both set to 1. (We’ll
change them back to 4 in a short time.)

Submit the script. When the program output returns, you have a nice sampling of the MegaFLOPS rate
on this machine for a variety of problem sizes N and just one processor P.

4.1 The STEP Function in FFT

Indications from the GPROF program suggest that a significant amount of time is spent in the step function.
We will try to parallelize the FFT program by working on the main loop in this function, whose loop index
is J.

Just before the J loop, insert your OpenMP directive. Note that you must be careful in this example.
There are a number of temporary variables which you must declare correctly. Your directive will mainly be
a list of which variables you think are shared or private. There are no reduction variables in this loop.

When you think you have set up the correct OpenMP directive, rerun the program on 4 processors and
see if you are getting a reasonable speedup compared to your 1 processor run.

5 Make an OpenMP version of the HEATED PLATE program

The “heated plate” program is designed to solve for the steady state temperature of a rectangular metal
plate which has three sides held at 100 degrees, and one side at 0 degrees.

A mesh of M by N points is defined. Points on the boundary are set to the prescribed values. Points
in the interior are given an initial value, but we then want to try to make their values reflect the way heat
behaves in real systems.

Our simplified algorithm is an iteration. Each step of the iteration updates the temperature at an interior
point by replacing it by the average of its north, south, east and west neighbors.

We continue the iteration until the largest change at any point is less than some user-specified tolerance
epsilon.

At that time, the program writes a rather big text file (whose name is stored as the variable output file),
containing the solution information, in case anyone wants to plot it.

Note that this program expects to read the values of epsilon and output file from the command line.
Thus, if you were going to run the program interactively, you might type something like

heated_plate 0.1 plot.txt

Make the usual changes so that the program is ready to be run as an OpenMP program. Your first run
will be using one processor.

Get a copy of the script heated plate.sh. Change it so the NCPUS and OMP NUM THREADS
are set to 1.

How do we get the commandline input into the program? It’s easy! The script file includes a line that is
what we would type to run the program interactively. The line in the script file already includes a dummy
value of epsilon and for the output file name. You can change either of these values if you want.

Compile your program, submit the job script (for one processor), and when you get the output back,
note how long your program takes to run on one processor.

5.1 Parallelize the temperature update loop

After you get your basic timing run, insert OpenMP directives on the loops inside the big loop. We are
talking about the double loops that save a copy of W, update W and compute the maximum change DIFF.

5

Each of these loops can be done in parallel, although you have to treat the variable DIFF with a little
care. In FORTRAN, you are allowed to declare DIFF as a reduction variable, as in

c$omp parallel do shared (i, j, N, u, w) reduction (max: diff)

However C and C++ are not able to work with a reduction variable that is a maximum or minimum, so
the computation of DIFF “poisons” the whole loop. If you are working on the C or C++ code, you will
have to break up the loop that updates W and computes DIFF into two separate loops. Then the update
loop will parallelize, and the DIFF loop will not.

When you get a parallel version you are satisfied with, it should compute exactly the same values as the
sequential version. (Don’t forget to check this!) But it should run much faster. Record the CPU time, using
the same value of epsilon, for 4 threads.

6

