

Introduction to ARC Systems

Presenter Name Advanced Research Computing Division of IT Feb 20, 2018

Before We Start

• Sign in

www.arc.vt.edu

Request account if necessary

Terminal Sessions View X server Settings Macros Tools Games Help **++** ÷ X Windows Users: Session Servers Tools Sessions MultiExec Tunneling Setting Help X server Ouick connect.. 2 /home/mobaxterm MobaXterm User sessions MobaXterm Professional v3.6 (X server, SSH client and network tools) AIX Servers Ŧ Linux Desktops X11-Forwarding: SSH-Agent: **PuTTY** 🚺 Linux Laptops Active SSH tunnels: Linux Servers ➤ Active services: 192.168.36.2:0.0 X11 display: Mac Computers Web Interface: My Virtual Machines 2012-06-27 16:27.55] PuTTY sessions James.Laptop360] > Solaris Servers H ETX newriver.arc. (H Windows Desktops ± Windows Laptops 🗄 📴 Windows Servers _{My}Satellite

KobaXterm

 \times

Exit

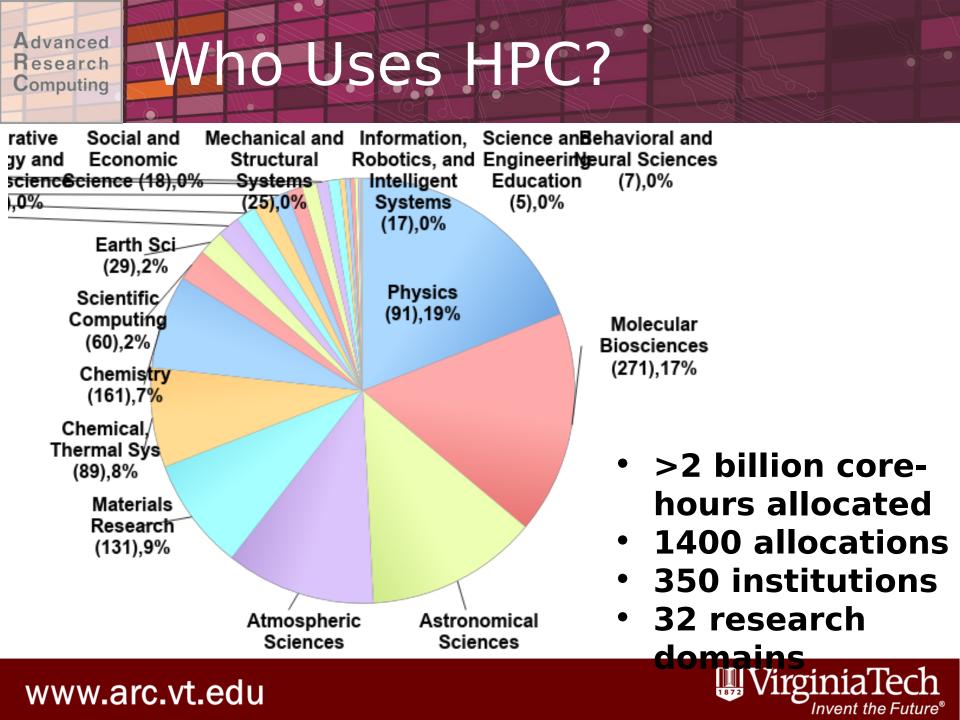
Advanced Research Computing TOday's goals

- Introduce ARC
- Give overview of HPC today
- Give overview of VT-HPC resources
- Familiarize audience with interacting with VT-ARC systems

Advanced Research Computing Should I Pursue HPC?

- •Necessity: Are local resources insufficient to meet your needs?
 - -Very large jobs
 - -Very many jobs
 - -Large data
- •Convenience: Do you have collaborators?
 - -Share projects between different entities

nvent the Future


-Convenient mechanisms for data www.arsh/t.aduj

Advanced Research Computing Research in HPC is Broad

- Earthquake Science and Civil Engineering
- Molecular Dynamics
- Nanotechnology
- Plant Science
- Storm modeling
- Epidemiology
- Particle Physics
- Economic analysis of phone network patterns

- Brain science
- Analysis of large cosmological simulations
- DNA sequencing
- Computational Molecular Sciences
- Neutron Science
- International Collaboration in Cosmology and Plasma Physics

nvent the Fu

Advanced Research Computing Packages

- •Molecular Dynamics: Gromacs, LAMMPS, NAMD, Amber
- •CFD: OpenFOAM, Ansys, Star-CCM+
- Finite Elements: Deal II, Abaqus
- •Chemistry: VASP, Gaussian, PSI4, QCHEM
- •Climate: CESM
- Bioinformatics: Mothur, QIIME, MPIBLAST
- •Numerical Computing/Statistics: R, Matlab, Julia
- •Visualization: ParaView, VisIt, Ensight
- Deep Learning: Caffe, TensorFlow, Torch, Theano

Learning Curve

- •Linux: Command-line interface
- •Scheduler: Shares resources among multiple users
- Parallel Computing:
 - Need to parallelize code to take advantage of supercomputer's resources
 Third party programs or libraries make this easier

Advanced Research Computing

- •Unit within the Office of the Vice President of Information Technology
- Provide centralized resources for:
 –Research computing
 - -Visualization
- Staff to assist users
- •Website: <u>http://www.arc.vt.edu</u>

- Advance the use of computing and visualization in VT research
- Centralize resource acquisition, maintenance, and support for research community
- Provide support to facilitate usage of resources and minimize barriers to entry
- •Enable and participate in research collaborations between departicipate ww.arc.vt.edu

- •Associate VP for Research Computing: Terry Herdman
- Director, HPC: Terry Herdman
- Director, Visualization: Nicholas Polys
- Computational Scientists
 - -John Burkhardt
 - -Justin Krometis
 - -James McClure
 - -Srijith Rajamohan
 - -Bob Settlage
 - -Ahmed Ibrahim

Personnel (Continued)

- •System Administrators (UAS)
 - -Matt Strickler
 - -Josh Akers
- -Solutions Architects
 - -Brandon Sawyers
 - -Chris Snapp
- Business Manager: Alana Romanella
- •User Support GRAs: Mai Dahshan, Negin Forouzesh, Xiaolong Li.

Advanced Research Computing Personnel (Continued)

•System & Software Engineers –Nathan Liles –Open

Computational Resources

- NewRiver
 - -Cluster targeting data-Intensive problems
- DragonsTooth

-jobs that don't require low latency interconnect i.e. pleasingly parallel

- -long running, e.g. 30 day wall time
- •Blue Ridge
 - -Large scale cluster equipped with Intel Xeon Phi Co-Processors
- Cascades large general compute with GPU nodes
- •Huckleberry Machine Learning cluster

•Cloud based access (bring your user story) WirginiaTe Invent the Fu

Compute Resources

System	Usage	Node s	Node Description	Special Features
<u>BlueRidge</u>	Large-scale CPU, MIC	408	16 cores, 64 GB (2× Intel Sandy Bridge)	260 Intel Xeon Phi 4 K40 GPU 18 128GB nodes
<u>NewRiver</u>	Large-scale, Data Intensive	134	24 cores, 128 GB (2× Intel Haswell)	8 K80 GPGPU 16 "big data" nodes 24 512GB nodes 2 3TB nodes 40 P100 nodes
<u>DragonsToot</u> <u>h</u>	Pleasingly parallel, long jobs	48	24 cores, 256 GB (2× Intel Haswell)	2TB SSD local storage 30 day walltime
Huckleberry	DeepLearnin g	14	Power 8, 256 GB (2x IBM "Minsky S822LC)	4xP100 / Node NVLink

Computational Resources

Name	NewRiver	<u>DragonsToot</u> h	<u>BlueRidge</u>	Huckleberry
Key Features, Uses	Scalable CPU, Data Intensive	Pleasingly parallel, long running jobs	Scalable CPU or MIC	DeepLearning
Available	August 2015	August 2016	March 2013	Supt 2017
Theoretical Peak (TFlops/s)	152.6	.806	398.7	
Nodes	134	48	408	14
Cores	3,288	576	6,528	
Cores/Node	24	24	16	
Accelerators/C oprocessors	8 Nvidia K80 GPU	N/A	260 Intel Xeon Phi 8 Nvidia K40 GPU	56 Nvidia P100 GPUs
Memory Size	34.4 TB	12.3 TB	27.3 TB	
Memory/Core	5.3 GB*	10.6 GB	4 GB*	
Memory/Node	128 GB*	256 GB	64 GB*	512 GB

NewRiver

- •134 Nodes
- •3,288 Cores
- •34.4 TB Memory
- •EDR InfiniBand (IB) Interconnect
- •Data-intensive, large-memory, visualization, and GPGPU specialpurpose hardware
 - -8 K80 GPGPU
 - -16 "big data" nodes
 - -24 512GB nodes
 - -2 3TB nodes

-40 dual P100 nodes www.arc.vt.edu

NewRiver Nodes

Description	#	Hosts	CPU	Cores	Memory	Local Disk	Other Features
General	100	nr027-nr126	2 x E5-2680 v3 (Haswell)	24	128 GB, 2133 MHz	1.8 TB	
GPU	8	nr019-nr026	2 x E5-2680 v3 (Haswell)	24	512 GB	3.6 TB (2 x 1.8 TB)	NVIDIA K80 GPU
I/O	16	nr003-nr018	2 x E5-2680 v3 (Haswell)	24	512 GB	43.2 TB (24 x 1.8 TB)	2x 200 GB SSD
Large Memory	2	nr001-nr002	4 x E7-4890 v2 (Ivy Bridge)	60	3 TB	10.8 TB (6 x 1.8 TB)	
Interactive	8	newriver1- newriver8	2 x E5-2680 v3 (Haswell)	24	256 GB		NVIDIA K1200 GPU

Storage Resources

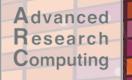
Name	Intent	File System	Environme nt Variable	Per User Maximum	Data Lifespan	Available On
<u>Home</u>	Long-term storage of files	GPFS (NewRiver) NFS (Other)	\$HOME	500 GB (NewRiver) 100 GB (Other)	Unlimited	Login and Compute Nodes
Group	Shared Data Storage for Research Groups	GPFS (NewRiver)	\$GROUP	10 TB Free per faculty researcher	Unlimited	Login and Compute Nodes
<u>Work</u>	Fast I/O, Temporary storage	GPFS (NewRiver) Lustre (BlueRidge) GPFS (Other)	\$WORK	20 TB (NewRiver) 14 TB (Other) 3 million files	120 days	Login and Compute Nodes

Storage Resources (continued)

Name	Intent	File System	Environme nt Variable	Per User Maximum	Data Lifespan	Available On
<u>Archive</u>	Long-term storage for infrequently -accessed files	CXFS	\$ARCHIVE	-	Unlimited	Login Nodes
<u>Local Scrat</u> <u>ch</u>	Local disk (hard drives)		\$TMPDIR	Size of node hard drive	Length of Job	Compute Nodes
<u>Memory (tmp</u> <u>fs)</u>	Very fast I/O	Memory (RAM)	\$TMPFS	Size of node memory	Length of Job	Compute Nodes

Visualization Resources

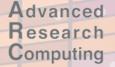
- •VisCube: 3D immersive environment with three 10' by 10' walls and a floor of 1920×1920 stereo projection screens
- •DeepSix: Six tiled monitors with combined resolution of 7680×3200
- ROVR Stereo Wall
- •AISB Stereo Wall



Getting Started with ARC

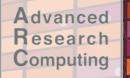
- Review ARC's system specifications and choose the right system(s) for you
 - -Specialty software
- •Apply for an account online the Advanced Research Computing website
- •When your account is ready, you will receive confirmation from ARC's

system administrators www.arc.vt.edu



Resources

- •ARC Website: <u>http://www.arc.vt.edu</u>
- •ARC Compute Resources & Documentation: http://www.arc.vt.edu/hpc
- •New Users Guide: <u>http://www.arc.vt.edu/newusers</u>
- Frequently Asked Questions: <u>http://www.arc.vt.edu/faq</u>
- •Linux Introduction: <u>http://www.arc.vt.edu/unix</u>



Thank you

Questions?

•Log in via SSH

- -Mac/Linux have built-in client
- -Windows need to download client (e.g.

System	Login Address (xxx.arc.vt.edu)
NewRiver	newriver1 to newriver8
Dragonstooth	dragonstooth1
BlueRidge	blueridge1 or blueridge2
HokieSpeed	hokiespeed1 or hokiespeed2
HokieOne	hokieone

Browser-based Access

- Browse to http://newriver.arc.vt.edu
- •Xterm: Opens an SSH session with X11 forwarding (but faster)
- •Other profiles: Vislt, ParaView, Matlab, Allinea
- •Create your own!

ALLOCATION SYSTEM

www.arc.vt.edu

27

Allocations

- "System unit" (roughly, core-hour) account that tracks system usage
- Applies only to NewRiver and BlueRidge

http://www.arc.vt.edu/allocations

Allocation System: Goals

- Track projects that use ARC systems and document how resources are being used
- Ensure that computational resources are allocated appropriately based on needs
 - -Research: Provide computational resources for your research lab

 Instructional: System access for courses or other training events

Allocation Eligibility

To qualify for an allocation, you must meet at least one of the following:

- •Be a Ph.D. level researcher (postdocs qualify)
- •Be an employee of Virginia Tech and the PI for research computing
- •Be an employee of Virginia Tech and the co-PI for a research project led by non-VT PI

Allocation Application Process

- •Create a research project in ARC database
- Add grants and publications associated with project
- Create an allocation request using the web-based interface
- Allocation review may take several days
- Users may be added to run jobs

www.arc.vt.eduyour allocation once UnigniaTech

Allocation Tiers

- Research allocations fall into three tiers:
- Less than 200,000 system units (SUs)
 - -200 word abstract
- •200,000 to 1 million SUs
 - -1-2 page justification
- More than 1 million SUs
 - -3-5 page justification

Allocation Management

- •Web-based:
 - -User Dashboard -> Projects -> Allocations
 - -Systems units allocated/remaining
 - -Add/remove users
- •Command line:
 - -Allocation name and membership: glsaccount
 - -Allocation size and amount remaining:
 - gbalance -h -a <name>
 - -Usage (by job): gstatement -h -a <name>

USER ENVIRONMENT

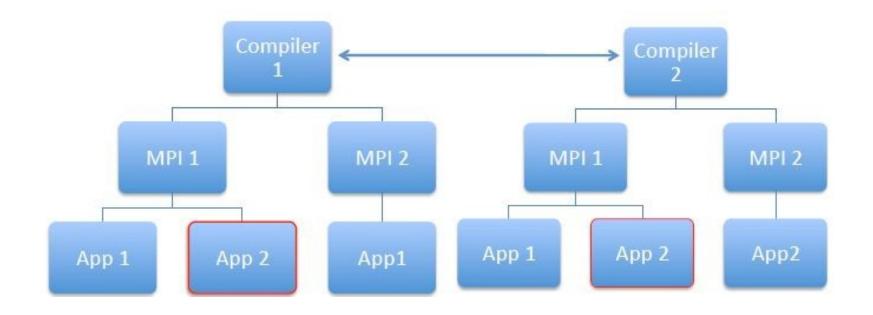
Consistent Environment

- •Operating system (CentOS)
- Storage locations
- Scheduler
- Hierarchical module tree for system tools and applications

- Modules are used to set the PATH and other environment variables
- Modules provide the environment for building and running applications
 - -Multiple compiler vendors (Intel vs GCC) and versions
 - -Multiple software stacks: MPI implementations and versions
 - -Multiple applications and their versions
- •An application is built with a certain compiler and a certain software stack (MPI, CUDA)
 - -Modules for software stack, compiler, applications
- User loads the modules associated with an application, compiler, or software stack
 modules can be loaded in job scripts

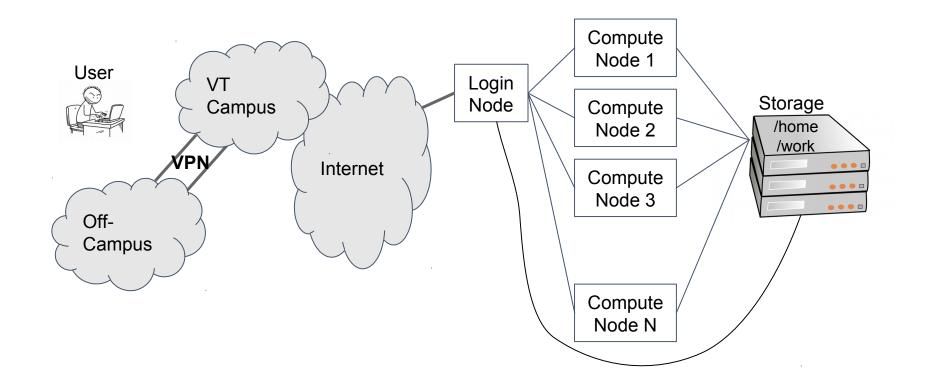
Module commands

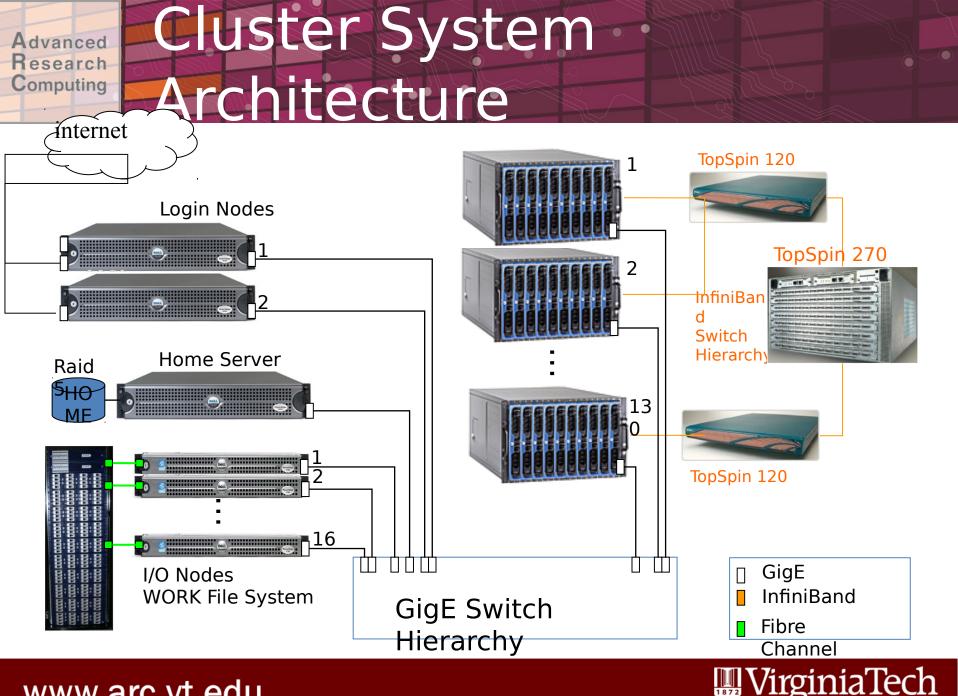
Command	Result
module	List options
module list	List loaded modules
module avail	List available modules
<pre>module load <module></module></pre>	Add a module
<pre>module unload <module></module></pre>	Remove a module
<pre>module swap <mod1> <mod2></mod2></mod1></pre>	Swap two modules
module help <module></module>	Module environment
module show <module></module>	Module description
<pre>module spider <module></module></pre>	Search modules
module reset	Reset to default
module purge	Unload all modules


WirginiaTech

- Available modules depend on:
 The compiler (eg. Intel, gcc) and
 The MPI stack selected
- •Defaults:
 - BlueRidge: Intel + mvapich2NewRiver, DragonsTooth: none

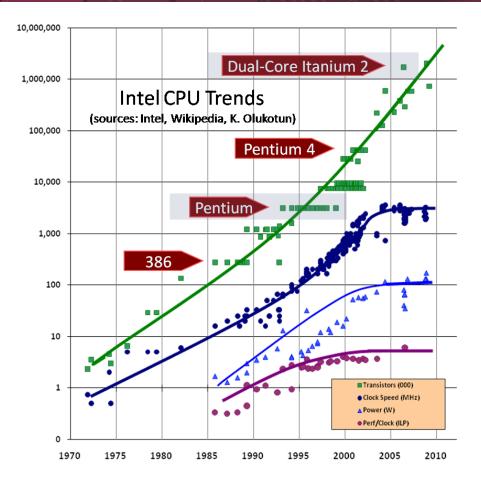
Advanced Besearch Computing Structure


JOB SUBMISSION & MONITORING


www.arc.vt.edu

40

Cluster System overview



www.arc.vt.edu

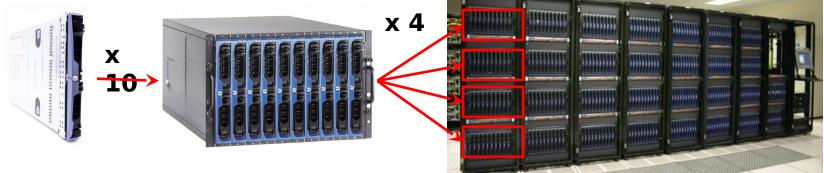
Invent the Future®

Advanced Parallelism is the New Moore's Law

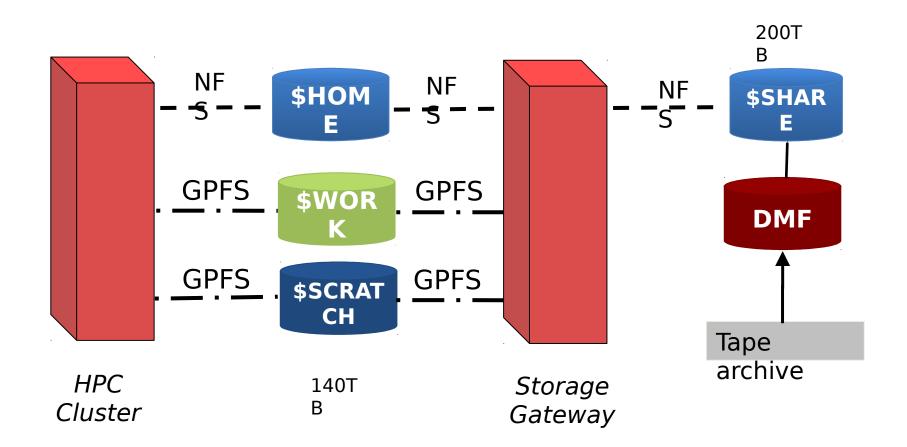
- Power and energy efficiency impose a key constraint on design of microarchitectures
- Clock speeds have plateaued
- •Hardware parallelism is increasing rapidly

Advanced Research Computing Essential Components of HPC

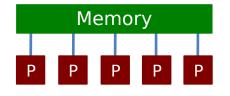
- Supercomputing resources
- Storage
- Visualization
- Data management
- Network infrastructure
- •Support


Terminology

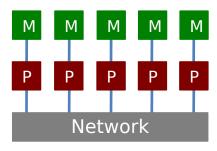
- •Core: A computational "unit"
- •Socket: A single CPU ("processor"). Includes roughly 4-15 cores.
- •Node: A single "computer". Includes roughly 2-8 sockets.
- •Cluster: A single "supercomputer" consisting of many nodes.
- •GPU: Graphics processing unit. Attached to some nodes. General purpose GPUs (GPGPUs) can be used to speed up certain kinds of codes.
- Xeon Phi: Intel's product name for its GPU competitor. Also called "MIC".


Blade: Rack: System

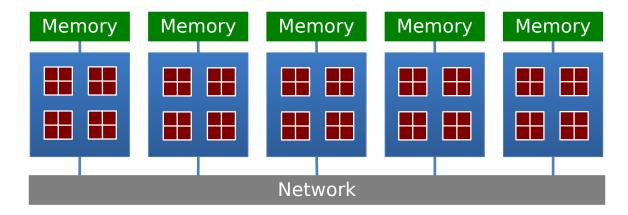
- •1 node : 2×8 cores = 16 cores
- •1 chassis : 10 nodes = 160 cores
- •1 rack (frame) : 4 chassis = 640 cores
- system : $10 \operatorname{racks} = 6400 \operatorname{cores}$



Advanced Research Computing HPC Storage

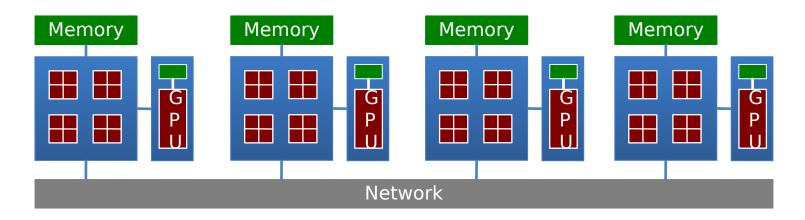


Shared vs. Distributed memory



- •All processors have access to a pool of shared memory
- Access times vary from CPU to CPU in NUMA systems
- •Example: SGI UV, CPUs on same node

- Memory is local to each processor
- Data exchange by message passing over a network
- Example: Clusters with single-socket blades


- •Current processors place multiple processor cores on a die
- •Communication details are increasingly complex
 - -Cache access

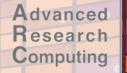
www.arc.vt.edu

- -Main memory access
- -Quick Path / Hyper Transport socket connections
- -Node to node connection via network

WirginiaTech Invent the Future[®]

Accelerator-based Systems

- •Calculations made in both CPUs and GPUs
- •No longer limited to single precision calculations
- Load balancing critical for performance
- •Requires specific libraries and compilers (CUDA, OpenCL)
- •Co-processor from Intel: MIC (Many Integrated Core)



Submitting a Job

- Submission via a shell script
 - -Job description: Resources required, run time, allocation
 - -Modules & dependencies
 - -Execution statements
- •Submit job script: qsub <job_script>
- Interactive options:
 - -Interactive job: qsub -I ...
 - -Interactive job with X11 forwarding: qsub

-I -X ...

Job Monitoring

•Determine job status, and if pending when it will run

Command	Meaning
checkjob -v JOBID	Get the status and resources of a job
showq	See what jobs are running and cluster utilization
showstart JOBID	Get expected job start time
qdel JOBID	Delete a job

Job Execution

- •Order of job execution depends on a variety of parameters:
 - -Submission Time
 - -Queue Priority
 - -Backfill Opportunities
 - -Fairshare Priority
 - -Advanced Reservations
 - -Number of Actively Scheduled Jobs per User

Examples: ARC Website

- •See the Examples section of each system page for sample submission scripts and step-by-step examples:
 - -http://www.arc.vt.edu/newriver
 - -<u>http://www.arc.vt.edu/dragonstooth</u>
 - -<u>http://www.arc.vt.edu/blueridge</u>
 - -<u>http://www.arc.vt.edu/</u> <u>huckleberry-user-guide</u>

A Step-by-Step Example

www.arc.vt.edu

55

Getting Started

- Find your training account (hpcXX)
- Log into NewRiver
 - -Mac: ssh
 - hpcXX@cascades1.arc.vt.edu
 - -Windows: Use PuTTY
 - Host Name: cascades1.arc.vt.edu

Example: Running MPI Quad

•Or copy from training directory:

cp /home/TRAINING/newriver/* ./

•Build the code

Compile the Code

- Intel compiler is already loaded module list
- Compile command (executable is mpiqd)

mpicc -o mpiqd mpi_quad.c

• To use GCC instead, swap it out: module swap intel gcc

Advanced Besearch Computing Script

- •Copy sample script:
 - cp /home/TRAINING/ARC_Intro/br.qsub
- •Edit sample script:
 - -Walltime
 - -Resource request (nodes/ppn)
 - -Module commands (add Intel & mvapich2)

-Command to run your job

Save it (e.g., mpiqd.qsub)

Submission Script (Typical)

#!/bin/bash

- #PBS -1 walltime=00:10:00
- #PBS -l nodes=2:ppn=16
- #PBS -q normal_q
- #PBS -W group_list=newriver
- #PBS -A AllocationName

<--Only for NewRiver/BlueRidge

module load intel mvapich2

```
cd $PBS_O_WORKDIR
echo "MPI Quadrature!"
mpirun -np $PBS NP ./mpiqd
```

exit;

Submission Script (Today)

#!/bin/bash

- #PBS -l walltime=00:10:00
- #PBS -l nodes=2:ppn=8
- #PBS -q normal_q
- **#PBS -W group_list=training**
- **#PBS** -A training
- **#PBS** -1 advres=NLI_ARC_Intro.26

module load intel mvapich2

```
cd $PBS_O_WORKDIR
echo "MPI Quadrature!"
mpirun -np $PBS NP ./mpiqd
```

exit;

Submit the job

- •Copy the files to \$WORK:
 - cp mpiqd \$WORK
 - cp mpiqd.qsub \$WORK
- Navigate to \$WORK
 - cd \$WORK

www.arc.vt.edu

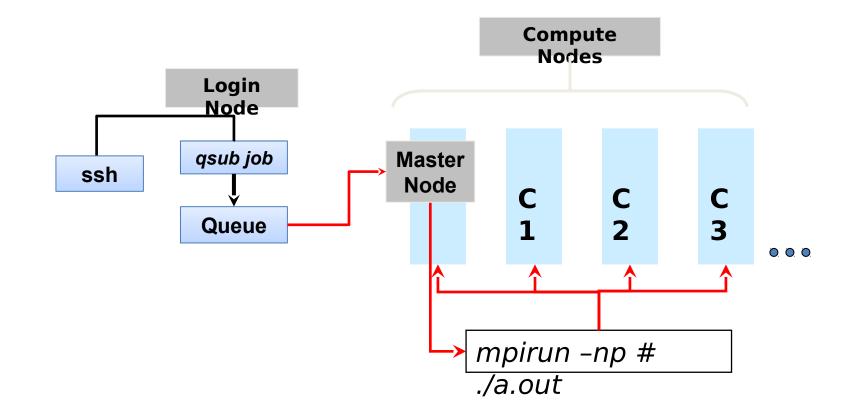
•Submit the job:

qsub mpiqd.qsub

•Scheduler returns job number:

25770.master.cluster

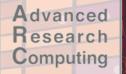
WirginiaTech


Wait for job to complete

- •Check job status:
 - checkjob -v 25770
 - showq -u hpcXX
- •When complete:
 - -Job output: mpiqd.qsub.o25770
 - -Errors: mpiqd.qsub.e25770
- •Copy results back to \$HOME:

cp mpiqd.qsub.o25770 \$HOME

Advanced Research Computing What is Job Submission?



Resources

- •ARC Website: <u>http://www.arc.vt.edu</u>
- •Compute Resources & Documentation: <u>http://www.arc.vt.edu/hpc</u>
- Storage Documentation: <u>http://www.arc.vt.edu/storage</u>
- •New Users Guide: http://www.arc.vt.edu/newusers
- Frequently Asked Questions: http://www.arc.vt.edu/faq
- Linux Introduction: <u>http://www.arc.vt.edu/unix</u>
- Module Tutorial: <u>http://www.arc.vt.edu/modules</u>
- Scheduler Tutorial:

www.atcovt.edu/scheduler

Questions

Presenter Name, Email

Computational Scientist Advanced Research Computing Division of IT

