#! /usr/bin/env python3 # def r83col_print_part ( n, a, max_print, title ): #*****************************************************************************80 # ## r83col_print_part() prints "part" of an R83COL. # # Discussion: # # An R83COL is a (3,N) array of R8's. # # The user specifies MAX_print, the maximum number of lines to print. # # If N, the size of the vector, is no more than MAX_print, then # the entire vector is printed, one entry per line. # # Otherwise, if possible, the first MAX_print-2 entries are printed, # followed by a line of periods suggesting an omission, # and the last entry. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 11 April 2015 # # Author: # # John Burkardt # # Input: # # integer N, the number of entries of the vector. # # real A(N,3), the vector to be printed. # # integer MAX_print, the maximum number of lines # to print. # # string TITLE, a title. # if ( 0 < max_print ): if ( 0 < n ): if ( 0 < len ( title ) ): print ( '' ) print ( title ) print ( '' ) if ( n <= max_print ): for i in range ( 0, n ): print ( ' %4d %14g %14g %14g' % ( i, a[i,0], a[i,1], a[i,2] ) ) elif ( 3 <= max_print ): for i in range ( 0, max_print - 2 ): print ( ' %4d %14g %14g %14g' % ( i, a[i,0], a[i,1], a[i,2] ) ) print ( ' .... .............. .............. ..............' ) i = n - 1 print ( ' %4d %14g %14g %14g' % ( i, a[i,0], a[i,1], a[i,2] ) ) else: for i in range ( 0, max_print - 1 ): print ( ' %4d %14g %14g %14g' % ( i, a[i,0], a[i,1], a[i,2] ) ) i = max_print - 1 print ( ' %4d %14g %14g %14g ...more entries...' \ % ( i, a[i,0], a[i,1], a[i,2] ) ) return def r83col_print_part_test ( ): #*****************************************************************************80 # ## r83col_print_part_test tests r83col_print_part. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 11 April 2015 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'r83col_print_part_test' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' r83col_print_part prints part of an R83COL.' ) n = 10 v = np.array ( [ \ [ 11, 12, 13 ], \ [ 21, 22, 23 ], \ [ 31, 32, 33 ], \ [ 41, 42, 43 ], \ [ 51, 52, 53 ], \ [ 61, 62, 63 ], \ [ 71, 72, 73 ], \ [ 81, 82, 83 ], \ [ 91, 92, 93 ], \ [ 101, 102, 103 ] ] ) max_print = 2 r83col_print_part ( n, v, max_print, ' Output with MAX_print = 2' ) max_print = 5 r83col_print_part ( n, v, max_print, ' Output with MAX_print = 5' ) max_print = 25 r83col_print_part ( n, v, max_print, ' Output with MAX_print = 25' ) # # Terminate. # print ( '' ) print ( 'r83col_print_part_test:' ) print ( ' Normal end of execution.' ) return def r8mat_write ( filename, m, n, a ): #*****************************************************************************80 # ## r8mat_write writes an R8MAT to a file. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 12 October 2014 # # Author: # # John Burkardt # # Input: # # string FILENAME, the name of the output file. # # integer M, the number of rows in A. # # integer N, the number of columns in A. # # real A(M,N), the matrix. # output = open ( filename, 'w' ) for i in range ( 0, m ): for j in range ( 0, n ): s = ' %g' % ( a[i,j] ) output.write ( s ) output.write ( '\n' ) output.close ( ) return def r8mat_write_test ( ): #*****************************************************************************80 # ## r8mat_write_test tests r8mat_write. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 12 October 2014 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'r8mat_write_test:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' Test r8mat_write, which writes an R8MAT to a file.' ) filename = 'r8mat_write_test.txt' m = 5 n = 3 a = np.array ( ( \ ( 1.1, 1.2, 1.3 ), \ ( 2.1, 2.2, 2.3 ), \ ( 3.1, 3.2, 3.3 ), \ ( 4.1, 4.2, 4.3 ), \ ( 5.1, 5.2, 5.3 ) ) ) r8mat_write ( filename, m, n, a ) print ( '' ) print ( ' Created file "%s".' % ( filename ) ) # # Terminate. # print ( '' ) print ( 'r8mat_write_test:' ) print ( ' Normal end of execution.' ) return def tetrahedron_grid_count ( n ): #*****************************************************************************80 # ## tetrahedron_grid_count counts the grid points inside a tetrahedron. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # # Input: # # integer N, the number of subintervals. # # Output: # # integer NG, the number of grid points. # ng = ( ( n + 1 ) * ( n + 2 ) * ( n + 3 ) ) // 6 return ng def tetrahedron_grid_count_test ( ): #*****************************************************************************80 # ## tetrahedron_grid_count_test tests tetrahedron_grid_count. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # import platform print ( '' ) print ( 'tetrahedron_grid_count_test:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' tetrahedron_grid_count can count the points in a grid' ) print ( ' with N+1 points on a side, based on any tetrahedron.' ) print ( '' ) print ( ' N NG' ) print ( '' ) for n in [ 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100 ]: ng = tetrahedron_grid_count ( n ) print ( ' %4d %8d' % ( n, ng ) ) # # Terminate. # print ( '' ) print ( 'tetrahedron_grid_count_test:' ) print ( ' Normal end of execution.' ) return def tetrahedron_grid_display ( xv, ng, xg, filename ): #*****************************************************************************80 # ## tetrahedron_grid_display displays grid points inside a tetrahedron. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # # Input: # # real XV[4,3], the vertices. # # integer NG, the number of grid points. # # real XG[NG,3], the grid points. # # string FILENAME, the name of the plotfile to be created. # import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure ( ) ax = fig.add_subplot ( 111, projection = '3d' ) # # Draw the grid points. # ax.scatter ( xg[:,0], xg[:,1], xg[:,2], 'b' ) # # Outline the region by its edges. # ax.plot ( [ xv[0,0], xv[1,0] ], [ xv[0,1], xv[1,1] ], [ xv[0,2], xv[1,2] ], 'r' ) ax.plot ( [ xv[0,0], xv[2,0] ], [ xv[0,1], xv[2,1] ], [ xv[0,2], xv[2,2] ], 'r' ) ax.plot ( [ xv[0,0], xv[3,0] ], [ xv[0,1], xv[3,1] ], [ xv[0,2], xv[3,2] ], 'r' ) ax.plot ( [ xv[1,0], xv[2,0] ], [ xv[1,1], xv[2,1] ], [ xv[1,2], xv[2,2] ], 'r' ) ax.plot ( [ xv[1,0], xv[3,0] ], [ xv[1,1], xv[3,1] ], [ xv[1,2], xv[3,2] ], 'r' ) ax.plot ( [ xv[2,0], xv[3,0] ], [ xv[2,1], xv[3,1] ], [ xv[2,2], xv[3,2] ], 'r' ) ax.set_xlabel ( '<---X--->' ) ax.set_ylabel ( '<---Y--->' ) ax.set_zlabel ( '<---Z--->' ) ax.set_title ( 'Grid points in tetrahedron' ) ax.grid ( True ) # ax.axis ( 'equal' ) plt.savefig ( filename ) plt.show ( block = False ) plt.close ( ) return def tetrahedron_grid_display_test ( ): #*****************************************************************************80 # ## tetrahedron_grid_display displays grid points inside a tetrahedron. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'tetrahedron_grid_display_test:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' tetrahedron_grid_display can display a grid of points in a tetrahedron.' ) xv = np.array ( [ \ [ 0.0, 0.0, 0.0 ], \ [ 2.0, 0.0, 0.0 ], \ [ 0.0, 2.0, 0.0 ], \ [ 0.0, 0.0, 2.0 ] ] ) ng = 10 xg = np.array ( [ \ [ 0.0, 0.0, 0.0 ], \ [ 1.0, 0.0, 0.0 ], \ [ 2.0, 0.0, 0.0 ], \ [ 0.0, 1.0, 0.0 ], \ [ 0.0, 2.0, 0.0 ], \ [ 1.0, 1.0, 0.0 ], \ [ 0.0, 0.0, 1.0 ], \ [ 1.0, 0.0, 1.0 ], \ [ 0.0, 1.0, 1.0 ], \ [ 0.0, 0.0, 2.0 ] ] ) filename = 'tetrahedron_grid_display.png' tetrahedron_grid_display ( xv, ng, xg, filename ) # # Terminate. # print ( '' ) print ( 'tetrahedron_grid_display_test:' ) print ( ' Normal end of execution.' ) return def tetrahedron_grid_points ( n, xv, ng ): #*****************************************************************************80 # ## tetrahedron_grid_points computes points on a tetrahedral grid. # # Discussion: # # The grid is defined by specifying the coordinates of an enclosing # tetrahedron T, and the number of subintervals each edge of the # tetrahedron should be divided into. # # Choosing N = 10, for instance, breaks each side into 10 subintervals, # and produces a grid of ((10+1)*(10+2)*(10+3))/6 = 286 points. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # # Input: # # integer N, the number of subintervals. # # real XV[4,3], the vertices of the tetrahedron. # # integer NG, the number of grid points. # # Output: # # real XG[NG,3], the tetrahedron grid points. # import numpy as np xg = np.zeros ( [ ng, 3 ] ) p = 0 for i in range ( 0, n + 1 ): for j in range ( 0, n + 1 - i ): for k in range ( 0, n + 1 - i - j ): l = n - i - j - k xg[p,0] = ( float ( i ) * xv[0,0] + float ( j ) * xv[1,0] \ + float ( k ) * xv[2,0] + float ( l ) * xv[3,0] ) / float ( n ) xg[p,1] = ( float ( i ) * xv[0,1] + float ( j ) * xv[1,1] \ + float ( k ) * xv[2,1] + float ( l ) * xv[3,1] ) / float ( n ) xg[p,2] = ( float ( i ) * xv[0,2] + float ( j ) * xv[1,2] \ + float ( k ) * xv[2,2] + float ( l ) * xv[3,2] ) / float ( n ) p = p + 1 return xg def tetrahedron_grid_points_test ( ): #*****************************************************************************80 # ## tetrahedron_grid_points_test tests tetrahedron_grid_points. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 10 November 2011 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'tetrahedron_grid_points_test:' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' tetrahedron_grid_points can define a tetrahedral grid' ) print ( ' with N+1 points on a side, based on any tetrahedron.' ) n = 5 print ( ' N = %d' % ( n ) ) ng = tetrahedron_grid_count ( n ) # # Define the tetrahedron vertices. # xv = np.array ( [ \ [ 0.0, 0.0, 0.0 ], \ [ 2.0, 1.0, 0.0 ], \ [ 1.0, 4.0, 0.0 ], \ [ 3.0, 3.0, 3.0 ] ] ) r83col_print_part ( 4, xv, 20, ' Tetrahedron vertices:' ) xg = tetrahedron_grid_points ( n, xv, ng ) r83col_print_part ( ng, xg, 20, ' Tetrahedron grid points:' ) # # Write the data to a file. # filename = 'tetrahedron_grid_points.xyz' r8mat_write ( filename, ng, 3, xg ) print ( '' ) print ( ' Data written to the file "%s".' % ( filename ) ) # # Plot the data. # filename = 'tetrahedron_grid_points.png' tetrahedron_grid_display ( xv, ng, xg, filename ) print ( '' ) print ( ' Plot written to the file "%s".' % ( filename ) ) # # Terminate. # print ( '' ) print ( 'tetrahedron_grid_points_test:' ) print ( ' Normal end of execution.' ) return def tetrahedron_grid_test ( ): #*****************************************************************************80 # ## tetrahedron_grid_test() tests tetrahedron_grid(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 15 April 2015 # # Author: # # John Burkardt # import platform print ( '' ) print ( 'tetrahedron_grid_test():' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' Test tetrahedron_grid().' ) # # Utilities: # r83col_print_part_test ( ) r8mat_write_test ( ) # # Library. # tetrahedron_grid_count_test ( ) tetrahedron_grid_display_test ( ) tetrahedron_grid_points_test ( ) # # Terminate. # print ( '' ) print ( 'tetrahedron_grid_test():' ) print ( ' Normal end of execution.' ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 April 2013 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return None if ( __name__ == '__main__' ): timestamp ( ) tetrahedron_grid_test ( ) timestamp ( )