#! /usr/bin/env python3 # def test_opt_con_test ( ): #*****************************************************************************80 # ## test_opt_con_test() tests test_opt_con(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'test_opt_con_test():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' Test test_opt_con().' ) test_opt_con_test01 ( ) test_opt_con_test02 ( ) # # Terminate. # print ( '' ) print ( 'test_opt_con_test():' ) print ( ' Normal end of execution.' ) return def test_opt_con_test01 ( ): #*****************************************************************************80 # ## test_opt_con_test01() simply prints the title of each problem. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # print ( '' ) print ( 'test_opt_con_test01():' ) print ( ' For each problem, print the title.' ) # # Get the number of problems. # problem_num = p00_problem_num ( ) print ( '' ) print ( ' Problem Title' ) print ( '' ) for problem in range ( 1, problem_num + 1 ): title = p00_title ( problem ) print ( ' %6d %s' % ( problem, title ) ) return def test_opt_con_test02 ( ): #*****************************************************************************80 # ## test_opt_con_test02() evaluates the objective function at each starting point. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # from numpy.random import default_rng import numpy as np rng = default_rng ( ) n = 100000 print ( '' ) print ( 'test_opt_con_test02():' ) print ( ' For each problem, evaluate the function at many points.' ) print ( ' Number of sample points = ', n ) # # Get the number of problems. # problem_num = p00_problem_num ( ) for problem in range ( 1, problem_num + 1 ): print ( '' ) print ( ' Problem ', problem ) title = p00_title ( problem ) print ( ' "' + title + '"' ) m = p00_m ( problem ) print ( ' M =', m ) a, b = p00_ab ( problem, m ) print ( '' ) print ( ' I A(i) B(i)' ) print ( '' ) for i in range ( 0, m ): print ( ' %4d %10g %10g' % ( i, a[i], b[i] ) ) x = rng.random ( [ m, n ] ) for i in range ( 0, m ): x[i,:] = a[i] * ( 1.0 - x[i,:] ) + b[i] * x[i,:] f = p00_f ( problem, m, n, x ) print ( '' ) print ( ' Max(F) = ', np.max ( f ) ) print ( ' Min(F) = ', np.min ( f ) ) know = 0 xs, know = p00_sol ( problem, m, know ) if ( know ): fs = p00_f ( problem, m, 1, xs ) print ( ' F(X*) = ', fs ) else: print ( ' X* is not given.' ) return def p00_ab ( problem, m ): #*****************************************************************************80 # ## p00_ab() returns bounds for a problem specified by index. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Input: # # integer PROBLEM, the problem index. # # integer M, the spatial dimension. # # Output: # # real a[m], b[m], lower and upper bounds. # if ( problem == 1 ): a, b = p01_ab ( m ) elif ( problem == 2 ): a, b = p02_ab ( m ) elif ( problem == 3 ): a, b = p03_ab ( m ) elif ( problem == 4 ): a, b = p04_ab ( m ) elif ( problem == 5 ): a, b = p05_ab ( m ) elif ( problem == 6 ): a, b = p06_ab ( m ) elif ( problem == 7 ): a, b = p07_ab ( m ) elif ( problem == 8 ): a, b = p08_ab ( m ) else: print ( '' ) print ( 'p00_ab(): Fatal error!' ) print ( ' Problem index out of bounds.' ) raise Exception ( 'p00_ab(): Fatal error!' ) return a, b def p00_f ( problem, m, n, x ): #*****************************************************************************80 # ## p00_f() returns the objective function value for a problem specified by index. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Input: # # integer PROBLEM, the problem index. # # integer M, the spatial dimension. # # integer N, the number of arguments. # # real X(M,N), the arguments. # # Output: # # real F(N), the function values. # if ( problem == 1 ): f = p01_f ( m, n, x ) elif ( problem == 2 ): f = p02_f ( m, n, x ) elif ( problem == 3 ): f = p03_f ( m, n, x ) elif ( problem == 4 ): f = p04_f ( m, n, x ) elif ( problem == 5 ): f = p05_f ( m, n, x ) elif ( problem == 6 ): f = p06_f ( m, n, x ) elif ( problem == 7 ): f = p07_f ( m, n, x ) elif ( problem == 8 ): f = p08_f ( m, n, x ) else: print ( '' ) print ( 'p00_f(): Fatal error!' ) print ( ' Problem index out of bounds.' ) raise Exception ( 'p00_f(): Fatal error!' ) return f def p00_m ( problem ): #*****************************************************************************80 # ## p00_m() returns the spatial dimension for a problem specified by index. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Input: # # integer PROBLEM, the problem index. # # Output: # # integer M, the spatial dimension. # if ( problem == 1 ): m = p01_m ( ) elif ( problem == 2 ): m = p02_m ( ) elif ( problem == 3 ): m = p03_m ( ) elif ( problem == 4 ): m = p04_m ( ) elif ( problem == 5 ): m = p05_m ( ) elif ( problem == 6 ): m = p06_m ( ) elif ( problem == 7 ): m = p07_m ( ) elif ( problem == 8 ): m = p08_m ( ) else: print ( '' ) print ( 'p00_m(): Fatal error!' ) print ( ' Problem index out of bounds.' ) raise Exception ( 'p00_m(): Fatal error!' ) return m def p00_problem_num ( ): #*****************************************************************************80 # ## p00_problem_num() returns the number of problems. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 14 January 2012 # # Author: # # John Burkardt # # Output: # # integer PROBLEM_NUM, the number of defined problems. # problem_num = 8 return problem_num def p00_sol ( problem, m, know ): #*****************************************************************************80 # ## p00_sol() returns known solutions for a problem specified by index. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Input: # # integer PROBLEM, the problem index. # # integer M, the order of the problem. # # integer KNOW, 0, or the index of the previously returned solution. # # Output: # # real x[m,1]: the solution. # # integer KNOW, 0 if there are no more solutions, or it is the # index of the next solution. # import numpy as np if ( problem == 1 ): x, know = p01_sol ( m, know ) elif ( problem == 2 ): x, know = p02_sol ( m, know ) elif ( problem == 3 ): x, know = p03_sol ( m, know ) elif ( problem == 4 ): x, know = p04_sol ( m, know ) elif ( problem == 5 ): x, know = p05_sol ( m, know ) elif ( problem == 6 ): x, know = p06_sol ( m, know ) elif ( problem == 7 ): x, know = p07_sol ( m, know ) elif ( problem == 8 ): x, know = p08_sol ( m, know ) else: print ( '' ) print ( 'p00_sol(): Fatal error!' ) print ( ' Problem index out of bounds.' ) raise Exception ( 'p00_sol(): Fatal error!' ) return x, know def p00_title ( problem ): #*****************************************************************************80 # ## p00_title() returns a title for a problem specified by index. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Input: # # integer PROBLEM, the problem index. # # Output: # # string TITLE, a title for the problem. # if ( problem == 1 ): title = p01_title ( ) elif ( problem == 2 ): title = p02_title ( ) elif ( problem == 3 ): title = p03_title ( ) elif ( problem == 4 ): title = p04_title ( ) elif ( problem == 5 ): title = p05_title ( ) elif ( problem == 6 ): title = p06_title ( ) elif ( problem == 7 ): title = p07_title ( ) elif ( problem == 8 ): title = p08_title ( ) else: print ( '' ) print ( 'p00_title(): Fatal error!' ) print ( ' Problem index out of bounds.' ) raise Exception ( 'p00_title(): Fatal error!' ) return title def p01_ab ( m ): #*****************************************************************************80 # ## p01_ab() returns bounds for problem 1. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # Output: # # real a[m], b[m], lower and upper bounds. # import numpy as np a = np.zeros ( m ) b = np.ones ( m ) return a, b def p01_f ( m, n, x ): #*****************************************************************************80 # ## p01_f() returns the objective function value for problem 1. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # integer N, the number of arguments. # # real X(M,N), the arguments. # # Output: # # real F(N), the function values. # import numpy as np f = np.zeros ( n ) for j in range ( 0, n ): p = np.prod ( x[:,j] ) s = np.sum ( x[:,j] ) f[j] = - np.exp ( p ) * np.sin ( s ) return f def p01_m ( ): #*****************************************************************************80 # ## p01_m() returns the spatial dimension for problem 1. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # integer M, the spatial dimension. # m = 4 return m def p01_sol ( m, know ): #*****************************************************************************80 # ## p01_sol() returns known solutions for problem 1. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the order of the problem. # # integer KNOW, 0, or the index of the previously returned solution. # # Output: # # real x[m,1]: the solution. # # integer KNOW, 0 if there are no more solutions, or it is the # index of the next solution. # import numpy as np if ( know == 0 ): know = 1 x = np.array ( [ \ [ 0.409887209247642, \ 0.409887209247642, \ 0.409887209247642, \ 0.409887209247642 ] ] ) else: know = 0 x = np.zeros ( [ 1, m ] ) # # Currently, *SOL returns X as a [1,M] array, # but the code assumes [M,1]. # For now, simply transpose it here. # This is only a cheap and temporary solution. # x = np.transpose ( x ) return x, know def p01_title ( ): #*****************************************************************************80 # ## p01_title() returns a title for problem 1. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # string TITLE, a title for the problem. # title = 'f(x) = - exp(prod(x)) * sin(sum(x)).' return title def p02_ab ( m ): #*****************************************************************************80 # ## p02_ab() returns bounds for problem 2. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # Output: # # real a[m], b[m], lower and upper bounds. # import numpy as np a = np.zeros ( m ) b = np.ones ( m ) return a, b def p02_f ( m, n, x ): #*****************************************************************************80 # ## p02_f() returns the objective function value for problem 2. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # integer N, the number of arguments. # # real X(M,N), the arguments. # # Output: # # real F(N), the function values. # import numpy as np f = np.zeros ( n ) for j in range ( 0, n ): p = x[0,j] * x[1,j]**2 * x[2,j]**3 * x[3,j]**4 s = np.sum ( x[:,j] ) f[j] = - np.exp ( p ) * np.sin ( s ) return f def p02_m ( ): #*****************************************************************************80 # ## p02_m() returns the spatial dimension for problem 2. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # integer M, the spatial dimension. # m = 4 return m def p02_sol ( m, know ): #*****************************************************************************80 # ## p02_sol() returns known solutions for problem 2. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the order of the problem. # # integer KNOW, 0, or the index of the previously returned solution. # # Output: # # real x[m,1]: the solution. # # integer KNOW, 0 if there are no more solutions, or it is the # index of the next solution. # import numpy as np if ( know == 0 ): know = 1 x = np.array ( [ \ [ 0.390500591228663, \ 0.392051909813608, \ 0.393601661544812, \ 0.395149843840982 ] ] ) else: know = 0 x = np.zeros ( [ 1, m ] ) # # Currently, *SOL returns X as a [1,M] array, # but the code assumes [M,1]. # For now, simply transpose it here. # This is only a cheap and temporary solution. # x = np.transpose ( x ) return x, know def p02_title ( ): #*****************************************************************************80 # ## p02_title() returns a title for problem 2. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # string TITLE, a title for the problem. # title = 'f(x) = - exp(x(1)*x(2)^2*x(3)^3*x(4)^4) * sin(sum(x)).' return title def p03_ab ( m ): #*****************************************************************************80 # ## p03_ab() returns bounds for problem 3. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # Output: # # real a[m], b[m], lower and upper bounds. # import numpy as np a = np.zeros ( m ) b = np.ones ( m ) return a, b def p03_f ( m, n, x ): #*****************************************************************************80 # ## p03_f() returns the objective function value for problem 3. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # integer N, the number of arguments. # # real X(M,N), the arguments. # # Output: # # real F(N), the function values. # import numpy as np f = np.zeros ( n ) for j in range ( 0, n ): s = - x[0,j] - 2.0 * x[1,j] - 3.0 * x[2,j] - 4.0 * x[3,j] f[j] = - 10000.0 * np.prod ( x[:,j] ) * np.exp ( s ) return f def p03_m ( ): #*****************************************************************************80 # ## p03_m() returns the spatial dimension for problem 3. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # integer M, the spatial dimension. # m = 4 return m def p03_sol ( m, know ): #*****************************************************************************80 # ## p03_sol() returns known solutions for problem 3. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the order of the problem. # # integer KNOW, 0, or the index of the previously returned solution. # # Output: # # real x[m,1]: the solution. # # integer KNOW, 0 if there are no more solutions, or it is the # index of the next solution. # import numpy as np if ( know == 0 ): know = 1 x = np.array ( [ \ [ 0.999980569087140, \ 0.500000721280566, \ 0.333341891834645, \ 0.249997266604697 ] ] ) else: know = 0 x = np.zeros ( [ 1, m ] ) # # Currently, *SOL returns X as a [1,M] array, # but the code assumes [M,1]. # For now, simply transpose it here. # This is only a cheap and temporary solution. # x = np.transpose ( x ) return x, know def p03_title ( ): #*****************************************************************************80 # ## p03_title() returns a title for problem 3. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # string TITLE, a title for the problem. # title = 'f(x) = -1000 * product(x) * exp(-x(1)-2x(2)-3x(3)-4x(4)).' return title def p04_ab ( m ): #*****************************************************************************80 # ## p04_ab() returns bounds for problem 4. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # Output: # # real a[m], b[m], lower and upper bounds. # import numpy as np a = np.zeros ( m ) b = np.ones ( m ) return a, b def p04_f ( m, n, x ): #*****************************************************************************80 # ## p04_f() returns the objective function value for problem 4. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # integer N, the number of arguments. # # real X(M,N), the arguments. # # Output: # # real F(N), the function values. # import numpy as np f = np.zeros ( n ) for j in range ( 0, n ): f[j] = - 100.0 * np.prod ( x[:,j] ) * np.exp ( - x[3,j] ) \ / ( 1.0 + x[0,j] * x[1,j] * x[2,j] )**2 return f def p04_m ( ): #*****************************************************************************80 # ## p04_m() returns the spatial dimension for problem 4. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # integer M, the spatial dimension. # m = 4 return m def p04_sol ( m, know ): #*****************************************************************************80 # ## p04_sol() returns known solutions for problem 4. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the order of the problem. # # integer KNOW, 0, or the index of the previously returned solution. # # Output: # # real x[m,1]: the solution. # # integer KNOW, 0 if there are no more solutions, or it is the # index of the next solution. # import numpy as np if ( know == 0 ): know = 1 x = np.ones ( [ 1, m ] ) else: know = 0 x = np.zeros ( [ 1, m ] ) # # Currently, *SOL returns X as a [1,M] array, # but the code assumes [M,1]. # For now, simply transpose it here. # This is only a cheap and temporary solution. # x = np.transpose ( x ) return x, know def p04_title ( ): #*****************************************************************************80 # ## p04_title() returns a title for problem 4. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # string TITLE, a title for the problem. # title = 'f(x) = -100 * product(x) * exp(-x(4)) / (1+x(1)+x(2)+x(3)).' return title def p05_ab ( m ): #*****************************************************************************80 # ## p05_ab() returns bounds for problem 5. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # Output: # # real a[m], b[m], lower and upper bounds. # import numpy as np a = np.zeros ( m ) b = np.ones ( m ) return a, b def p05_f ( m, n, x ): #*****************************************************************************80 # ## p05_f() returns the objective function value for problem 5. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # integer N, the number of arguments. # # real X(M,N), the arguments. # # Output: # # real F(N), the function values. # import numpy as np f = np.zeros ( n ) for j in range ( 0, n ): f[j] = ( x[0,j] - 3.0 / 11.0 )**2 \ + ( x[1,j] - 6.0 / 13.0 )**2 \ + ( x[2,j] - 12.0 / 23.0 )**4 \ + ( x[3,j] - 8.0 / 37.0 )**6 return f def p05_m ( ): #*****************************************************************************80 # ## p05_m() returns the spatial dimension for problem 5. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # integer M, the spatial dimension. # m = 4 return m def p05_sol ( m, know ): #*****************************************************************************80 # ## p05_sol() returns known solutions for problem 5. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the order of the problem. # # integer KNOW, 0, or the index of the previously returned solution. # # Output: # # real x[m,1]: the solution. # # integer KNOW, 0 if there are no more solutions, or it is the # index of the next solution. # import numpy as np if ( know == 0 ): know = 1 x = np.array ( [ \ [ 3.0 / 11.0, \ 6.0 / 13.0, \ 12.0 / 23.0, \ 8.0 / 37.0 ] ] ) else: know = 0 x = np.zeros ( [ 1, m ] ) # # Currently, *SOL returns X as a [1,M] array, # but the code assumes [M,1]. # For now, simply transpose it here. # This is only a cheap and temporary solution. # x = np.transpose ( x ) return x, know def p05_title ( ): #*****************************************************************************80 # ## p05_title() returns a title for problem 5. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # string TITLE, a title for the problem. # title = 'f(x) = (x(1)-3/11)^2+(x(2)-6/13)^2+(x(3)-12/23)^4+(x(4)-8/37)^6' return title def p06_ab ( m ): #*****************************************************************************80 # ## p06_ab() returns bounds for problem 6. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # Output: # # real a[m], b[m], lower and upper bounds. # import numpy as np a = np.zeros ( m ) b = np.ones ( m ) return a, b def p06_f ( m, n, x ): #*****************************************************************************80 # ## p06_f() returns the objective function value for problem 6. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the spatial dimension. # # integer N, the number of arguments. # # real X(M,N), the arguments. # # Output: # # real F(N), the function values. # import numpy as np f = np.zeros ( n ) for j in range ( 0, n ): arg = \ 1.0 / x[0,j] \ + 1.0 / x[1,j] \ + 1.0 / x[2,j] \ + 1.0 / x[3,j] f[j] = - np.sin ( arg ) return f def p06_m ( ): #*****************************************************************************80 # ## p06_m() returns the spatial dimension for problem 6. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # integer M, the spatial dimension. # m = 4 return m def p06_sol ( m, know ): #*****************************************************************************80 # ## p06_sol() returns known solutions for problem 6. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Input: # # integer M, the order of the problem. # # integer KNOW, 0, or the index of the previously returned solution. # # Output: # # real x[m,1]: the solution. # # integer KNOW, 0 if there are no more solutions, or it is the # index of the next solution. # import numpy as np if ( know == 0 ): know = 1 x = np.array ( [ \ [ 0.509282516910744, \ 0.509282516910744, \ 0.509282516910746, \ 0.509282516910744 ] ] ) else: know = 0 x = np.zeros ( [ 1, m ] ) # # Currently, *SOL returns X as a [1,M] array, # but the code assumes [M,1]. # For now, simply transpose it here. # This is only a cheap and temporary solution. # x = np.transpose ( x ) return x, know def p06_title ( ): #*****************************************************************************80 # ## p06_title() returns a title for problem 6. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Harald Niederreiter, Kevin McCurley, # Optimization of functions by quasi-random search methods, # Computing, # Volume 22, Number 2, 1979, pages 119-123. # # Output: # # string TITLE, a title for the problem. # title = 'f(x) = - sin(1/x(1)+1/x(2)+1/x(3)+1/x(4))' return title def p07_ab ( m ): #*****************************************************************************80 # ## p07_ab() returns bounds for problem 7. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Input: # # integer M, the spatial dimension. # # Output: # # real a[m], b[m]: lower and upper bounds. # import numpy as np a = np.zeros ( m ) b = 10.0 * np.ones ( m ) return a, b def p07_f ( m, n, x ): #*****************************************************************************80 # ## p07_f() returns the objective function value for problem 5. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Langerman10 reference? # # Input: # # integer M, the spatial dimension. # # integer N, the number of arguments. # # real X(M,N), the arguments. # # Output: # # real F(N), the function values. # import numpy as np f = np.zeros ( n ) a = np.array ( [ \ [ 3.0, 5.0, 2.0, 1.0, 7.0 ], \ [ 5.0, 2.0, 1.0, 4.0, 9.0 ] ] ) c = np.array ( [ 1.0, 2.0, 5.0, 2.0, 3.0 ] ) for j in range ( 0, n ): for k in range ( 0, 5 ): arg = np.linalg.norm ( x[:,j] - a[:,k] ) f[j] = f[j] - c[k] * np.exp ( - arg**2 / np.pi ) * np.cos ( np.pi * arg ) return f def p07_m ( ): #*****************************************************************************80 # ## p07_m() returns the spatial dimension for problem 7. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Output: # # integer M, the spatial dimension. # m = 2 return m def p07_sol ( m, know ): #*****************************************************************************80 # ## p07_sol() returns known solutions for problem 7. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Input: # # integer M, the order of the problem. # # integer KNOW, 0, or the index of the previously returned solution. # # Output: # # real x[m,1]: the solution. # # integer KNOW, 0 if there are no more solutions, or it is the # index of the next solution. # import numpy as np know = 0 x = np.zeros ( [ 1, m ] ) # # Currently, *SOL returns X as a [1,M] array, # but the code assumes [M,1]. # For now, simply transpose it here. # This is only a cheap and temporary solution. # x = np.transpose ( x ) return x, know def p07_title ( ): #*****************************************************************************80 # ## p07_title() returns a title for problem 7. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Output: # # string TITLE, a title for the problem. # title = 'f(x) = Langerman2 function' return title def p08_ab ( m ): #*****************************************************************************80 # ## p08_ab() returns bounds for problem 8. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Input: # # integer M, the spatial dimension. # # Output: # # real a[m], b[m], lower and upper bounds. # import numpy as np a = np.zeros ( m ) b = 10.0 * np.ones ( m ) return a, b def p08_f ( m, n, x ): #*****************************************************************************80 # ## p08_f() returns the objective function value for problem 8. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Reference: # # Langerman10 reference? # # Input: # # integer M, the spatial dimension. # # integer N, the number of arguments. # # real X(M,N), the arguments. # # Output: # # real F(N), the function values. # import numpy as np f = np.zeros ( n ) # # A has been entered as the transpose of what it should be. # a = np.array ( [ \ [ 9.681, 0.667, 4.783, 9.095, 3.517, 9.325, 6.544, 0.211, 5.122, 2.020 ], \ [ 9.400, 2.041, 3.788, 7.931, 2.882, 2.672, 3.568, 1.284, 7.033, 7.374 ], \ [ 8.025, 9.152, 5.114, 7.621, 4.564, 4.711, 2.996, 6.126, 0.734, 4.982 ], \ [ 2.196, 0.415, 5.649, 6.979, 9.510, 9.166, 6.304, 6.054, 9.377, 1.426 ], \ [ 8.074, 8.777, 3.467, 1.863, 6.708, 6.349, 4.534, 0.276, 7.633, 1.567 ], \ [ 7.650, 5.658, 0.720, 2.764, 3.278, 5.283, 7.474, 6.274, 1.409, 8.208 ], \ [ 1.256, 3.605, 8.623, 6.905, 4.584, 8.133, 6.071, 6.888, 4.187, 5.448 ], \ [ 8.314, 2.261, 4.224, 1.781, 4.124, 0.932, 8.129, 8.658, 1.208, 5.762 ], \ [ 0.226, 8.858, 1.420, 0.945, 1.622, 4.698, 6.228, 9.096, 0.972, 7.637 ], \ [ 7.305, 2.228, 1.242, 5.928, 9.133, 1.826, 4.060, 5.204, 8.713, 8.247 ], \ [ 0.652, 7.027, 0.508, 4.876, 8.807, 4.632, 5.808, 6.937, 3.291, 7.016 ], \ [ 2.699, 3.516, 5.874, 4.119, 4.461, 7.496, 8.817, 0.690, 6.593, 9.789 ], \ [ 8.327, 3.897, 2.017, 9.570, 9.825, 1.150, 1.395, 3.885, 6.354, 0.109 ], \ [ 2.132, 7.006, 7.136, 2.641, 1.882, 5.943, 7.273, 7.691, 2.880, 0.564 ], \ [ 4.707, 5.579, 4.080, 0.581, 9.698, 8.542, 8.077, 8.515, 9.231, 4.670 ], \ [ 8.304, 7.559, 8.567, 0.322, 7.128, 8.392, 1.472, 8.524, 2.277, 7.826 ], \ [ 8.632, 4.409, 4.832, 5.768, 7.050, 6.715, 1.711, 4.323, 4.405, 4.591 ], \ [ 4.887, 9.112, 0.170, 8.967, 9.693, 9.867, 7.508, 7.770, 8.382, 6.740 ], \ [ 2.440, 6.686, 4.299, 1.007, 7.008, 1.427, 9.398, 8.480, 9.950, 1.675 ], \ [ 6.306, 8.583, 6.084, 1.138, 4.350, 3.134, 7.853, 6.061, 7.457, 2.258 ], \ [ 0.652, 2.343, 1.370, 0.821, 1.310, 1.063, 0.689, 8.819, 8.833, 9.070 ], \ [ 5.558, 1.272, 5.756, 9.857, 2.279, 2.764, 1.284, 1.677, 1.244, 1.234 ], \ [ 3.352, 7.549, 9.817, 9.437, 8.687, 4.167, 2.570, 6.540, 0.228, 0.027 ], \ [ 8.798, 0.880, 2.370, 0.168, 1.701, 3.680, 1.231, 2.390, 2.499, 0.064 ], \ [ 1.460, 8.057, 1.336, 7.217, 7.914, 3.615, 9.981, 9.198, 5.292, 1.224 ], \ [ 0.432, 8.645, 8.774, 0.249, 8.081, 7.461, 4.416, 0.652, 4.002, 4.644 ], \ [ 0.679, 2.800, 5.523, 3.049, 2.968, 7.225, 6.730, 4.199, 9.614, 9.229 ], \ [ 4.263, 1.074, 7.286, 5.599, 8.291, 5.200, 9.214, 8.272, 4.398, 4.506 ], \ [ 9.496, 4.830, 3.150, 8.270, 5.079, 1.231, 5.731, 9.494, 1.883, 9.732 ], \ [ 4.138, 2.562, 2.532, 9.661, 5.611, 5.500, 6.886, 2.341, 9.699, 6.500 ] ] ) c = np.array ( [ \ 0.806, 0.517, 1.500, 0.908, 0.965, \ 0.669, 0.524, 0.902, 0.531, 0.876, \ 0.462, 0.491, 0.463, 0.714, 0.352, \ 0.869, 0.813, 0.811, 0.828, 0.964, \ 0.789, 0.360, 0.369, 0.992, 0.332, \ 0.817, 0.632, 0.883, 0.608, 0.326 ] ) a = np.transpose ( a ) for j in range ( 0, n ): for k in range ( 0, 30 ): arg = np.linalg.norm ( x[:,j] - a[:,k] ) f[j] = f[j] - c[k] * np.exp ( - arg**2 / np.pi ) * np.cos ( np.pi * arg ) return f def p08_m ( ): #*****************************************************************************80 # ## p08_m() returns the spatial dimension for problem 8. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Output: # # integer M, the spatial dimension. # m = 10 return m def p08_sol ( m, know ): #*****************************************************************************80 # ## p08_sol() returns known solutions for problem 8. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Input: # # integer M, the order of the problem. # # integer KNOW, 0, or the index of the previously returned solution. # # Output: # # real x[m,1]: the solution. # # integer KNOW, 0 if there are no more solutions, or it is the # index of the next solution. # import numpy as np know = 0 x = np.zeros ( [ 1, m ] ) # # Currently, *SOL returns X as a [1,M] array, # but the code assumes [M,1]. # For now, simply transpose it here. # This is only a cheap and temporary solution. # x = np.transpose ( x ) return x, know def p08_title ( ): #*****************************************************************************80 # ## p08_title() returns a title for problem 8. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 07 March 2025 # # Author: # # John Burkardt # # Output: # # string TITLE, a title for the problem. # title = 'f(x) = Langerman10 function' return title def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) test_opt_con_test ( ) timestamp ( )