Tue May 20 22:34:08 2025 svd_truncated_test(): python version: 3.10.12 numpy version: 1.26.4 Demonstrate the use of the truncated Singular Value Decomposition (SVD) for cases where the sizes of M and N are very different. svd_truncated_u_test(): M = 4 N = 3 Original matrix A: [[0.15333306 0.53370181 0.2489525 ] [0.6978926 0.33925746 0.68306671] [0.78401704 0.86739345 0.71723311] [0.74840143 0.48749487 0.96011544]] Maximum error |A - U*S*V| = 4.163336342344337e-16 Recomputed A = U * S * V: [[0.15333306 0.53370181 0.2489525 ] [0.6978926 0.33925746 0.68306671] [0.78401704 0.86739345 0.71723311] [0.74840143 0.48749487 0.96011544]] svd_truncated_v_test(): M = 3 N = 4 Original matrix A: [[0.8200497 0.73700845 0.61438166 0.73738404] [0.63573015 0.57336277 0.14576005 0.56786714] [0.2106874 0.85797394 0.00794206 0.40436866]] Maximum error |A - U*S*V| = 5.551115123125783e-16 Recomputed A = U * S * V: [[0.8200497 0.73700845 0.61438166 0.73738404] [0.63573015 0.57336277 0.14576005 0.56786714] [0.2106874 0.85797394 0.00794206 0.40436866]] svd_truncated_test(): Normal end of execution. Tue May 20 22:34:08 2025