Wed Oct 8 08:57:49 2025 svd_truncated_test(): python version: 3.10.12 numpy version: 1.26.4 Demonstrate the use of the truncated Singular Value Decomposition (SVD) for cases where the sizes of M and N are very different. svd_truncated_u_test(): M = 4 N = 3 Original matrix A: [[0.90101438 0.28563376 0.07889994] [0.43304785 0.53244186 0.36680798] [0.30872057 0.03247288 0.45752286] [0.53225302 0.04594687 0.85742615]] Maximum error |A - U*S*V| = 7.494005416219807e-16 Recomputed A = U * S * V: [[0.90101438 0.28563376 0.07889994] [0.43304785 0.53244186 0.36680798] [0.30872057 0.03247288 0.45752286] [0.53225302 0.04594687 0.85742615]] svd_truncated_v_test(): M = 3 N = 4 Original matrix A: [[0.48483093 0.29702868 0.98311609 0.89788261] [0.131214 0.04697484 0.41442448 0.86654716] [0.12805106 0.68321105 0.86515709 0.74725149]] Maximum error |A - U*S*V| = 5.551115123125783e-16 Recomputed A = U * S * V: [[0.48483093 0.29702868 0.98311609 0.89788261] [0.131214 0.04697484 0.41442448 0.86654716] [0.12805106 0.68321105 0.86515709 0.74725149]] svd_truncated_test(): Normal end of execution. Wed Oct 8 08:57:49 2025