Wed Feb 4 20:23:17 2026 square_felippa_rule_test(): python version: 3.10.12 numpy version: 1.26.4 Test square_felippa_rule(). square_monomial_test(): square_monomial() returns the exact value of the integral of X^ALPHA Y^BETA Volume = 4.0 ALPHA BETA INTEGRAL 0 0 4.000000e+00 0 1 0.000000e+00 0 2 1.333333e+00 0 3 0.000000e+00 0 4 8.000000e-01 1 0 0.000000e+00 1 1 0.000000e+00 1 2 0.000000e+00 1 3 0.000000e+00 2 0 1.333333e+00 2 1 0.000000e+00 2 2 4.444444e-01 3 0 0.000000e+00 3 1 0.000000e+00 4 0 8.000000e-01 square_quad_test(): we approximate monomial integrals with square_rule(), which returns M by N point rules.. Monomial exponents: array([0., 0.]) 1 1 4.000000 2 2 4.000000 3 3 4.000000 4 4 4.000000 5 5 4.000000 3 5 4.000000 Exact 4.000000 Monomial exponents: array([2., 0.]) 1 1 0.000000 2 2 1.333333 3 3 1.333333 4 4 1.333333 5 5 1.333333 3 5 1.333333 Exact 1.333333 Monomial exponents: array([0., 2.]) 1 1 0.000000 2 2 1.333333 3 3 1.333333 4 4 1.333333 5 5 1.333333 3 5 1.333333 Exact 1.333333 Monomial exponents: array([4., 0.]) 1 1 0.000000 2 2 0.444444 3 3 0.800000 4 4 0.800000 5 5 0.800000 3 5 0.800000 Exact 0.800000 Monomial exponents: array([2., 2.]) 1 1 0.000000 2 2 0.444444 3 3 0.444444 4 4 0.444444 5 5 0.444444 3 5 0.444444 Exact 0.444444 Monomial exponents: array([0., 4.]) 1 1 0.000000 2 2 0.444444 3 3 0.800000 4 4 0.800000 5 5 0.800000 3 5 0.800000 Exact 0.800000 square_felippa_rule_test(): Normal end of execution. Wed Feb 4 20:23:17 2026