#! /usr/bin/env python3 # def interp1d_test ( ): #*****************************************************************************80 # ## interp1d_test() tests the scipy() interp1d() function. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 26 December 2024 # # Author: # # John Burkardt # from scipy.interpolate import interp1d import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'interp1d_test():' ) print ( ' interp1d() performas several types of 1D interpolation.' ) x = np.linspace ( 0.0, 0.5, 8 ) y = f ( x ) # # Construct interpolating functions. # f_nearest = interp1d ( x, y, kind = 'nearest' ) f_linear = interp1d ( x, y, kind = 'linear' ) f_cubic = interp1d ( x, y, kind = 'cubic' ) # # Evaluate interpolants. # x2 = np.linspace ( 0.0, 0.5, 101 ) plt.clf ( ) plt.plot ( x, y, 'o', label = 'data points' ) plt.plot ( x2, f(x2), label = 'exact' ) plt.plot ( x2, f_nearest(x2), label = 'nearest' ) plt.plot ( x2, f_linear(x2), label = 'linear' ) plt.plot ( x2, f_cubic(x2), label = 'cubic' ) plt.grid ( True ) plt.legend ( ) filename = 'interp1d_test.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) # plt.show ( ) plt.close ( ) return def f ( x ): import numpy as np value = 10 * np.exp ( - 2.0 * x ) * np.cos ( 2.0 * np.pi * 4.0 * x ) return value if ( __name__ == "__main__" ): interp1d_test ( )