#! /usr/bin/env python3 # def drum_normal_modes_test ( ): #*****************************************************************************80 # ## drum_normal_modes_test() computes and plots normal vibration modes of a drumhead. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 26 December 2024 # # Author: # # Original python version by Christian Hill. # This version by John Burkardt. # # Reference: # # Christian Hill, # Learning Scientific Programming with Python, # Cambridge University Press, # Second Edition, 2020, # ISBN: 978-1108745918 # import matplotlib.pyplot as plt import numpy as np print ( '' ) print ( 'drum_normal_modes_test():' ) print ( ' Display normal modes of a vibrating drumhead.' ) # # Set maximum normal mode allowed. # r = np.linspace ( 0.0, 1.0, 101 ) theta = np.linspace ( 0.0, 2.0 * np.pi, 101 ) R, T = np.meshgrid ( r, theta ) X = R * np.cos ( T ) Y = R * np.sin ( T ) n = 3 m = 4 Z = R * displacement ( n, m, R, T ) plot_contour ( X, Y, Z ) plot_contourf ( X, Y, Z ) plot_surface ( X, Y, Z ) return def plot_contour ( X, Y, Z ): #*****************************************************************************80 # ## plot_contour() plots contour lines. # import matplotlib.pyplot as plt plt.clf ( ) plt.contour ( X, Y, Z ) plt.axis ( 'equal' ) filename = 'drum_contour.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) # plt.show ( ) plt.close ( ) return def plot_contourf ( X, Y, Z ): #*****************************************************************************80 # ## plot_contourf() plots filled contours. # import matplotlib.pyplot as plt plt.clf ( ) plt.contourf ( X, Y, Z ) plt.contour ( X, Y, Z, colors = 'white' ) plt.axis ( 'equal' ) filename = 'drum_contourf.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) # plt.show ( ) plt.close ( ) return def plot_surface ( X, Y, Z ): #*****************************************************************************80 # ## plot_surface() plots a 3D surface. # from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import matplotlib.pyplot as plt fig = plt.figure ( ) ax = fig.add_subplot ( 111, projection = '3d' ) p = ax.plot_surface ( X, Y, Z, \ cmap = cm.coolwarm, edgecolor = 'none' ) # ax.set ( 'equal' ) fig.colorbar ( p, ax = ax ) filename = 'drum_surface.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) # plt.show ( ) plt.close ( ) return def displacement ( n, m, r, theta ): #*****************************************************************************80 # ## displacement() calculates the drum displacement at (r,theta) # import numpy as np from scipy.special import jn from scipy.special import jn_zeros bessel_zeros = jn_zeros ( n, m + 1 ) k = bessel_zeros[m] disp = np.sin ( n * theta ) * jn ( n, r * k ) return disp if ( __name__ == "__main__" ): drum_normal_modes_test ( )