Wed Mar 19 20:20:27 2025 monomial_symmetrize_test(): python version: 3.10.12 numpy version: 1.26.4 monomial_symmetrize() symmetrizes the coefficients of equivalent monomials, all of degree D, in B variables. Test # 1 b = 3 d = 3 n = 27 Original data C: # 0 C=6, [ 1, 1, 1 ] # 1 C=9, [ 1, 1, 2 ] # 2 C=12, [ 1, 1, 3 ] # 3 C=8, [ 1, 2, 1 ] # 4 C=11, [ 1, 2, 2 ] # 5 C=14, [ 1, 2, 3 ] # 6 C=10, [ 1, 3, 1 ] # 7 C=13, [ 1, 3, 2 ] # 8 C=16, [ 1, 3, 3 ] # 9 C=7, [ 2, 1, 1 ] #10 C=10, [ 2, 1, 2 ] #11 C=13, [ 2, 1, 3 ] #12 C=9, [ 2, 2, 1 ] #13 C=12, [ 2, 2, 2 ] #14 C=15, [ 2, 2, 3 ] #15 C=11, [ 2, 3, 1 ] #16 C=14, [ 2, 3, 2 ] #17 C=17, [ 2, 3, 3 ] #18 C=8, [ 3, 1, 1 ] #19 C=11, [ 3, 1, 2 ] #20 C=14, [ 3, 1, 3 ] #21 C=10, [ 3, 2, 1 ] #22 C=13, [ 3, 2, 2 ] #23 C=16, [ 3, 2, 3 ] #24 C=12, [ 3, 3, 1 ] #25 C=15, [ 3, 3, 2 ] #26 C=18, [ 3, 3, 3 ] Data gathered to representatives and averaged: # 0 mult=1 C2=6, [ 1, 1, 1 ] # 1 mult=3 C2=8, [ 1, 1, 2 ] # 2 mult=3 C2=10, [ 1, 1, 3 ] # 3 mult=3 C2=10, [ 1, 2, 2 ] # 4 mult=6 C2=12, [ 1, 2, 3 ] # 5 mult=3 C2=14, [ 1, 3, 3 ] # 6 mult=1 C2=12, [ 2, 2, 2 ] # 7 mult=3 C2=14, [ 2, 2, 3 ] # 8 mult=3 C2=16, [ 2, 3, 3 ] # 9 mult=1 C2=18, [ 3, 3, 3 ] Symmetric C: # 0 C=6, [ 1, 1, 1 ] # 1 C=8, [ 1, 1, 2 ] # 2 C=10, [ 1, 1, 3 ] # 3 C=8, [ 1, 2, 1 ] # 4 C=10, [ 1, 2, 2 ] # 5 C=12, [ 1, 2, 3 ] # 6 C=10, [ 1, 3, 1 ] # 7 C=12, [ 1, 3, 2 ] # 8 C=14, [ 1, 3, 3 ] # 9 C=8, [ 2, 1, 1 ] #10 C=10, [ 2, 1, 2 ] #11 C=12, [ 2, 1, 3 ] #12 C=10, [ 2, 2, 1 ] #13 C=12, [ 2, 2, 2 ] #14 C=14, [ 2, 2, 3 ] #15 C=12, [ 2, 3, 1 ] #16 C=14, [ 2, 3, 2 ] #17 C=16, [ 2, 3, 3 ] #18 C=10, [ 3, 1, 1 ] #19 C=12, [ 3, 1, 2 ] #20 C=14, [ 3, 1, 3 ] #21 C=12, [ 3, 2, 1 ] #22 C=14, [ 3, 2, 2 ] #23 C=16, [ 3, 2, 3 ] #24 C=14, [ 3, 3, 1 ] #25 C=16, [ 3, 3, 2 ] #26 C=18, [ 3, 3, 3 ] Test # 2 b = 4 d = 3 n = 64 Original data C: # 0 C=6, [ 1, 1, 1 ] # 1 C=9, [ 1, 1, 2 ] # 2 C=12, [ 1, 1, 3 ] # 3 C=15, [ 1, 1, 4 ] # 4 C=8, [ 1, 2, 1 ] # 5 C=11, [ 1, 2, 2 ] # 6 C=14, [ 1, 2, 3 ] # 7 C=17, [ 1, 2, 4 ] # 8 C=10, [ 1, 3, 1 ] # 9 C=13, [ 1, 3, 2 ] #10 C=16, [ 1, 3, 3 ] #11 C=19, [ 1, 3, 4 ] #12 C=12, [ 1, 4, 1 ] #13 C=15, [ 1, 4, 2 ] #14 C=18, [ 1, 4, 3 ] #15 C=21, [ 1, 4, 4 ] #16 C=7, [ 2, 1, 1 ] #17 C=10, [ 2, 1, 2 ] #18 C=13, [ 2, 1, 3 ] #19 C=16, [ 2, 1, 4 ] #20 C=9, [ 2, 2, 1 ] #21 C=12, [ 2, 2, 2 ] #22 C=15, [ 2, 2, 3 ] #23 C=18, [ 2, 2, 4 ] #24 C=11, [ 2, 3, 1 ] #25 C=14, [ 2, 3, 2 ] #26 C=17, [ 2, 3, 3 ] #27 C=20, [ 2, 3, 4 ] #28 C=13, [ 2, 4, 1 ] #29 C=16, [ 2, 4, 2 ] #30 C=19, [ 2, 4, 3 ] #31 C=22, [ 2, 4, 4 ] #32 C=8, [ 3, 1, 1 ] #33 C=11, [ 3, 1, 2 ] #34 C=14, [ 3, 1, 3 ] #35 C=17, [ 3, 1, 4 ] #36 C=10, [ 3, 2, 1 ] #37 C=13, [ 3, 2, 2 ] #38 C=16, [ 3, 2, 3 ] #39 C=19, [ 3, 2, 4 ] #40 C=12, [ 3, 3, 1 ] #41 C=15, [ 3, 3, 2 ] #42 C=18, [ 3, 3, 3 ] #43 C=21, [ 3, 3, 4 ] #44 C=14, [ 3, 4, 1 ] #45 C=17, [ 3, 4, 2 ] #46 C=20, [ 3, 4, 3 ] #47 C=23, [ 3, 4, 4 ] #48 C=9, [ 4, 1, 1 ] #49 C=12, [ 4, 1, 2 ] #50 C=15, [ 4, 1, 3 ] #51 C=18, [ 4, 1, 4 ] #52 C=11, [ 4, 2, 1 ] #53 C=14, [ 4, 2, 2 ] #54 C=17, [ 4, 2, 3 ] #55 C=20, [ 4, 2, 4 ] #56 C=13, [ 4, 3, 1 ] #57 C=16, [ 4, 3, 2 ] #58 C=19, [ 4, 3, 3 ] #59 C=22, [ 4, 3, 4 ] #60 C=15, [ 4, 4, 1 ] #61 C=18, [ 4, 4, 2 ] #62 C=21, [ 4, 4, 3 ] #63 C=24, [ 4, 4, 4 ] Data gathered to representatives and averaged: # 0 mult=1 C2=6, [ 1, 1, 1 ] # 1 mult=3 C2=8, [ 1, 1, 2 ] # 2 mult=3 C2=10, [ 1, 1, 3 ] # 3 mult=3 C2=12, [ 1, 1, 4 ] # 4 mult=3 C2=10, [ 1, 2, 2 ] # 5 mult=6 C2=12, [ 1, 2, 3 ] # 6 mult=6 C2=14, [ 1, 2, 4 ] # 7 mult=3 C2=14, [ 1, 3, 3 ] # 8 mult=6 C2=16, [ 1, 3, 4 ] # 9 mult=3 C2=18, [ 1, 4, 4 ] #10 mult=1 C2=12, [ 2, 2, 2 ] #11 mult=3 C2=14, [ 2, 2, 3 ] #12 mult=3 C2=16, [ 2, 2, 4 ] #13 mult=3 C2=16, [ 2, 3, 3 ] #14 mult=6 C2=18, [ 2, 3, 4 ] #15 mult=3 C2=20, [ 2, 4, 4 ] #16 mult=1 C2=18, [ 3, 3, 3 ] #17 mult=3 C2=20, [ 3, 3, 4 ] #18 mult=3 C2=22, [ 3, 4, 4 ] #19 mult=1 C2=24, [ 4, 4, 4 ] Symmetric C: # 0 C=6, [ 1, 1, 1 ] # 1 C=8, [ 1, 1, 2 ] # 2 C=10, [ 1, 1, 3 ] # 3 C=12, [ 1, 1, 4 ] # 4 C=8, [ 1, 2, 1 ] # 5 C=10, [ 1, 2, 2 ] # 6 C=12, [ 1, 2, 3 ] # 7 C=14, [ 1, 2, 4 ] # 8 C=10, [ 1, 3, 1 ] # 9 C=12, [ 1, 3, 2 ] #10 C=14, [ 1, 3, 3 ] #11 C=16, [ 1, 3, 4 ] #12 C=12, [ 1, 4, 1 ] #13 C=14, [ 1, 4, 2 ] #14 C=16, [ 1, 4, 3 ] #15 C=18, [ 1, 4, 4 ] #16 C=8, [ 2, 1, 1 ] #17 C=10, [ 2, 1, 2 ] #18 C=12, [ 2, 1, 3 ] #19 C=14, [ 2, 1, 4 ] #20 C=10, [ 2, 2, 1 ] #21 C=12, [ 2, 2, 2 ] #22 C=14, [ 2, 2, 3 ] #23 C=16, [ 2, 2, 4 ] #24 C=12, [ 2, 3, 1 ] #25 C=14, [ 2, 3, 2 ] #26 C=16, [ 2, 3, 3 ] #27 C=18, [ 2, 3, 4 ] #28 C=14, [ 2, 4, 1 ] #29 C=16, [ 2, 4, 2 ] #30 C=18, [ 2, 4, 3 ] #31 C=20, [ 2, 4, 4 ] #32 C=10, [ 3, 1, 1 ] #33 C=12, [ 3, 1, 2 ] #34 C=14, [ 3, 1, 3 ] #35 C=16, [ 3, 1, 4 ] #36 C=12, [ 3, 2, 1 ] #37 C=14, [ 3, 2, 2 ] #38 C=16, [ 3, 2, 3 ] #39 C=18, [ 3, 2, 4 ] #40 C=14, [ 3, 3, 1 ] #41 C=16, [ 3, 3, 2 ] #42 C=18, [ 3, 3, 3 ] #43 C=20, [ 3, 3, 4 ] #44 C=16, [ 3, 4, 1 ] #45 C=18, [ 3, 4, 2 ] #46 C=20, [ 3, 4, 3 ] #47 C=22, [ 3, 4, 4 ] #48 C=12, [ 4, 1, 1 ] #49 C=14, [ 4, 1, 2 ] #50 C=16, [ 4, 1, 3 ] #51 C=18, [ 4, 1, 4 ] #52 C=14, [ 4, 2, 1 ] #53 C=16, [ 4, 2, 2 ] #54 C=18, [ 4, 2, 3 ] #55 C=20, [ 4, 2, 4 ] #56 C=16, [ 4, 3, 1 ] #57 C=18, [ 4, 3, 2 ] #58 C=20, [ 4, 3, 3 ] #59 C=22, [ 4, 3, 4 ] #60 C=18, [ 4, 4, 1 ] #61 C=20, [ 4, 4, 2 ] #62 C=22, [ 4, 4, 3 ] #63 C=24, [ 4, 4, 4 ] monomial_symmetrize_test(): Normal end of execution. Wed Mar 19 20:20:27 2025