#! /usr/bin/env python3 # def mandelbrot_count ( c, countmax ): #*****************************************************************************80 # ## mandelbrot_count() returns the Mandelbrot count for a single point. # # Discussion: # # Starting with the value 0, repeatedly square and add complex value C. # # Return number of applications of this process at which the # value exceeds 2 in norm. # # Repeat no more than COUNTMAX times. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 10 May 2017 # # Author: # # John Burkardt # # Input: # # complex C, the value added at each step. # # integer COUNTMAX, the maximum number of iterations. # # Output: # # integer MANDEL_COUNT, the number of operations at which # the iterate first exceeded 2 in norm. If this never happens, # return COUNTMAX. # z = 0.0 + 0.0 * 1j for i in range ( countmax ): if ( 2.0 <= abs ( z ) ): return i z = z * z + c return countmax def mandelbrot_image ( xmin, xmax, ymin, ymax, xnum, ynum, countmax ): #*****************************************************************************80 # ## mandelbrot_image() creates an image of the Mandelbrot set. # # Discussion: # # Over the rectangle [XMIN,XMAX] x [YMIN,YMAX], determine the Mandelbrot # count for a grid of XNUMxYNUM points, using a particular value of # COUNTMAX. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 10 May 2017 # # Author: # # John Burkardt # # Input: # # real XMIN, XMAX, YMIN, YMAX, the physical limits of the rectangle. # # integer XNUM, YNUM, the number of points in X and Y directions. # # integer COUNTMAX, the maximum number of iterations. # import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np import time print ( '' ) print ( 'mandelbrot_image():' ) print ( ' Compute the Mandelbrot set and display it.' ) print ( '' ) print ( ' X range: [ %g, %g ]' % ( xmin, xmax ) ) print ( ' Y range: [ %g, %g ]' % ( ymin, ymax ) ) print ( ' Xnum = %d x Ynum = %d = %d Pixels' % ( xnum, ynum, xnum * ynum ) ) print ( ' Maximum number of iterations = %d' % ( countmax ) ) time1 = time.time ( ) clock1 = time.clock ( ) dpi = 72 width_inches = int ( xnum / dpi ) height_inches = int ( ynum / dpi ) x, y, count = mandelbrot_set ( xmin, xmax, ymin, ymax, xnum, ynum, countmax ) clock2 = time.clock ( ) time2 = time.time ( ) print ( '' ) print ( ' Compute time:' ) print ( ' Wallclock: %.02f sec.' % ( time2 - time1 ) ) print ( ' CPU: %.02f sec.' % ( clock2 - clock1 ) ) X, Y = np.meshgrid ( x, y, indexing = 'ij' ) fig, ax = plt.subplots ( figsize = ( width_inches, height_inches ), dpi = 72 ) cs = ax.contourf ( X, Y, count, cmap = cm.prism ) filename = 'mandelbrot.png' plt.savefig ( filename ) print ( '' ) print ( ' Graphics saved as "' + filename + '"' ) plt.show ( block = False ) plt.close ( ) return def mandelbrot_set ( xmin, xmax, ymin, ymax, xnum, ynum, countmax ): #*****************************************************************************80 # ## mandelbrot_set() computes the Mandelbrot count for a grid of points. # # Discussion: # # Over the rectangle [XMIN,XMAX] x [YMIN,YMAX], determine the Mandelbrot # count for a grid of XNUMxYNUM points, using a particular value of # COUNTMAX. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 10 May 2017 # # Author: # # John Burkardt # # Input: # # real XMIN, XMAX, YMIN, YMAX, the physical limits of the rectangle. # # integer XNUM, YNUM, the number of points in X and Y directions. # # integer COUNTMAX, the maximum number of iterations. # # Output: # # real X(XNUM), Y(YNUM), COUNT(XNUM,YNUM), the X and Y # grid locations, and the count for each point in the grid. # import numpy as np x = np.linspace ( xmin, xmax, xnum ) y = np.linspace ( ymin, ymax, ynum ) count = np.empty ( ( xnum, ynum ) ) for i in range ( xnum ): for j in range ( ynum ): count[i,j] = mandelbrot_count ( x[i] + 1j * y[j], countmax ) return ( x, y, count ) def mandelbrot_test ( ): #*****************************************************************************80 # ## mandelbrot_test() tests mandelbrot(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 23 March 2021 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'mandelbrot_test():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' Test mandelbrot()' ) xmin = -2.0 xmax = 0.5 ymin = -1.25 ymax = 1.25 xnum = 720 ynum = 720 countmax = 200 mandelbrot_image ( xmin, xmax, ymin, ymax, xnum, ynum, countmax ) # # Terminate. # print ( '' ) print ( 'mandelbrot_test():' ) print ( ' Normal end of execution.' ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) mandelbrot_test ( ) timestamp ( )