Sun Sep 14 16:51:47 2025 lapack_test(): python version: 3.10.12 numpy version: 1.26.4 Test lapack(). dgbtrf_test(): dgbtrf() factors a general band matrix. dgbtrs() solves a factored system. For a double precision real matrix (D) in general band storage mode (GB): Band matrix has kl = 1 ku = 1 Solution x (all should be 1) [1. 1. 1. 1. 1.] dgecon_test(): dgecon() computes the condition of a matrix that has been factored by dgetrf. The matrix A: [[1. 2. 3.] [4. 5. 6.] [7. 8. 0.]] Matrix 1-norm is 15.0 Reciprocal condition number for 1-norm is 0.019354838709677417 dgeev_test(): dgeev() computes the eigenvalues and eigenvectors of a matrix. The matrix A: [[0. 2. 0. 0. 0. ] [2. 0. 2.44948974 0. 0. ] [0. 2.44948974 0. 2.44948974 0. ] [0. 0. 2.44948974 0. 2. ] [0. 0. 0. 2. 0. ]] Eigenvalues: [[ 4.00000000e+00 0.00000000e+00] [-4.00000000e+00 0.00000000e+00] [-2.00000000e+00 0.00000000e+00] [-1.08455718e-16 0.00000000e+00] [ 2.00000000e+00 0.00000000e+00]] Eigenvectors (real parts): [[ 2.50000000e-01 -2.50000000e-01 -5.00000000e-01 6.12372436e-01 -5.00000000e-01] [ 5.00000000e-01 5.00000000e-01 5.00000000e-01 -7.39078793e-18 -5.00000000e-01] [ 6.12372436e-01 -6.12372436e-01 -2.65970010e-16 -5.00000000e-01 0.00000000e+00] [ 5.00000000e-01 5.00000000e-01 -5.00000000e-01 1.94637744e-16 5.00000000e-01] [ 2.50000000e-01 -2.50000000e-01 5.00000000e-01 6.12372436e-01 5.00000000e-01]] Eigenvectors (imaginary parts): [[ 2.50000000e-01 -2.50000000e-01 -5.00000000e-01 6.12372436e-01 -5.00000000e-01] [ 5.00000000e-01 5.00000000e-01 5.00000000e-01 1.16614303e-16 -5.00000000e-01] [ 6.12372436e-01 -6.12372436e-01 -4.53779085e-16 -5.00000000e-01 3.59413791e-17] [ 5.00000000e-01 5.00000000e-01 -5.00000000e-01 1.55267443e-17 5.00000000e-01] [ 2.50000000e-01 -2.50000000e-01 5.00000000e-01 6.12372436e-01 5.00000000e-01]] dgeqrf_test() dgeqrf() computes the QR factorization: A = Q * R dorgqr() computes the explicit form of the Q factor. For a double precision real matrix (D) in general storage mode (GE): The matrix A: [[ 1. 2. 3.] [ 4. 5. 6.] [ 7. 8. 0.] [ 5. 13. 3.]] Q: [[-0.10482848 0.07018624 0.42750483] [-0.41931393 -0.21055872 0.78375885] [-0.73379939 -0.49130368 -0.4400785 ] [-0.52414242 0.84223489 -0.09639815]] R: [[ -9.53939201 -14.99047317 -4.40279631] [ 0. 6.10620294 1.47391105] [ 0. 0. 5.69587314]] Q * R: [[1.00000000e+00 2.00000000e+00 3.00000000e+00] [4.00000000e+00 5.00000000e+00 6.00000000e+00] [7.00000000e+00 8.00000000e+00 1.43137723e-16] [5.00000000e+00 1.30000000e+01 3.00000000e+00]] dgesvd_test(): dgesvd() computes the singular value decomposition of a matrix. The matrix A: [[1. 2. 3.] [4. 5. 6.] [7. 8. 0.]] U: [[-0.23035703 -0.39607121 -0.88885501] [-0.60728383 -0.65520761 0.44934322] [-0.76035649 0.64329665 -0.08959596]] S: [13.20145862 5.43875711 0.37604705] vt: [[-0.60462923 -0.72567626 -0.32835569] [ 0.27325634 0.19824248 -0.94129214] [ 0.74816741 -0.65885802 0.07843244]] U*S*VT: [[1.00000000e+00 2.00000000e+00 3.00000000e+00] [4.00000000e+00 5.00000000e+00 6.00000000e+00] [7.00000000e+00 8.00000000e+00 9.68934426e-16]] dgetrf_test(): DGETRF factors a general matrix; DGETRS solves a linear system; For a double precision real matrix (D) in general storage mode (GE): The matrix A: [[ 5. -1. -1. -1. -1.] [-1. 5. -1. -1. -1.] [-1. -1. 5. -1. -1.] [-1. -1. -1. 5. -1.] [-1. -1. -1. -1. 5.]] The right hand side b: [1. 1. 1. 1. 1.] The solution x (all entries should equal 1): [1. 1. 1. 1. 1.] dgetri_test(): dgetri() computes the inverse of a matrix that has been factored by dgetrf. The matrix A: [[1. 2. 3.] [4. 5. 6.] [7. 8. 0.]] Ainv: [[-1.77777778 0.88888889 -0.11111111] [ 1.55555556 -0.77777778 0.22222222] [-0.11111111 0.22222222 -0.11111111]] A * Ainv: [[ 1.00000000e+00 5.55111512e-17 -4.16333634e-17] [ 5.55111512e-17 1.00000000e+00 -8.32667268e-17] [ 1.77635684e-15 -8.88178420e-16 1.00000000e+00]] dgtsv_test(): dgtsv() factors and solves a linear system with a general tridiagonal matrix for a double precision real matrix (D) in general tridiagonal storage mode (GT). Solution x (should be 1, 2, 3, ... ): [1. 2. 3. 4. 5.] dpotrf_test(): dpotrf() computes the Cholesky factorization R'*R for a double precision real matrix (D) in positive definite storage mode (PO). The matrix A: [[ 2. -1. 0. 0. 0.] [-1. 2. -1. 0. 0.] [ 0. -1. 2. -1. 0.] [ 0. 0. -1. 2. -1.] [ 0. 0. 0. -1. 2.]] Cholesky factor R: R' * R: [[ 2. -1. 0. 0. 0.] [-1. 2. -1. 0. 0.] [ 0. -1. 2. -1. 0.] [ 0. 0. -1. 2. -1.] [ 0. 0. 0. -1. 2.]] dpotri_test(): dpotri() computes the inverse for a double precision real matrix (D) in positive definite storage mode (PO). The matrix A: [[ 2. -1. 0. 0. 0.] [-1. 2. -1. 0. 0.] [ 0. -1. 2. -1. 0.] [ 0. 0. -1. 2. -1.] [ 0. 0. 0. -1. 2.]] The Cholesky factor C: [[ 1.41421356 -0.70710678 0. 0. 0. ] [ 0. 1.22474487 -0.81649658 0. 0. ] [ 0. 0. 1.15470054 -0.8660254 0. ] [ 0. 0. 0. 1.11803399 -0.89442719] [ 0. 0. 0. 0. 1.09544512]] Inverse matrix Ainv: [[0.83333333 0.66666667 0.5 0.33333333 0.16666667] [0.66666667 1.33333333 1. 0.66666667 0.33333333] [0.5 1. 1.5 1. 0.5 ] [0.33333333 0.66666667 1. 1.33333333 0.66666667] [0.16666667 0.33333333 0.5 0.66666667 0.83333333]] Product I = A * Ainv: [[ 1.00000000e+00 -4.44089210e-16 -4.44089210e-16 -4.44089210e-16 -1.66533454e-16] [ 3.33066907e-16 1.00000000e+00 4.44089210e-16 6.66133815e-16 2.22044605e-16] [ 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00] [-1.11022302e-16 5.55111512e-17 -4.44089210e-16 1.00000000e+00 -2.22044605e-16] [ 0.00000000e+00 -1.11022302e-16 0.00000000e+00 0.00000000e+00 1.00000000e+00]] dsyev_test() dsyev() computes eigenvalues and eigenvectors For a double precision real matrix (D) in symmetric storage mode (SY). (symmetric half) of A: [[0. 2. 0. 0. 0. ] [0. 0. 2.44948974 0. 0. ] [0. 0. 0. 2.44948974 0. ] [0. 0. 0. 0. 2. ] [0. 0. 0. 0. 0. ]] Eigenvalues w: [-4.00000000e+00 -2.00000000e+00 1.15640942e-16 2.00000000e+00 4.00000000e+00] Eigenvector matrix V: [[-2.50000000e-01 5.00000000e-01 6.12372436e-01 -5.00000000e-01 -2.50000000e-01] [ 5.00000000e-01 -5.00000000e-01 3.04123327e-16 -5.00000000e-01 -5.00000000e-01] [-6.12372436e-01 -2.89729077e-16 -5.00000000e-01 -2.10157702e-16 -6.12372436e-01] [ 5.00000000e-01 5.00000000e-01 -3.60391453e-16 5.00000000e-01 -5.00000000e-01] [-2.50000000e-01 -5.00000000e-01 6.12372436e-01 5.00000000e-01 -2.50000000e-01]] lapack_test(): Normal end of execution. Sun Sep 14 16:51:47 2025