#! /usr/bin/env python3 # def hypersphere_angle_test ( ): #*****************************************************************************80 # ## hypersphere_angle_test() tests hypersphere_angle(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 31 May 2023 # # Author: # # John Burkardt # import matplotlib.pyplot as plt import numpy as np import platform print ( '' ) print ( 'hypersphere_angle_test():' ) print ( ' Python version: %s' % ( platform.python_version ( ) ) ) print ( ' Test hypersphere_angle().' ) for m in [ 2, 3, 5, 10, 20, 40, 80, 160 ]: n = 10000 cost_mu, cost_std, theta_mu, theta_std = hypersphere_angle_stats ( m, n ) print ( '' ) print ( ' Spatial dimension M = ', m ) print ( ' Number of samples N = ', n ) print ( ' COST = absolute value of cosine between two random points:' ) print ( ' Estimated mean = ', cost_mu ) print ( ' Estimated std = ', cost_std ) print ( ' THETA = arc cosine of absolute value of cosine between two random points:' ) print ( ' Estimated mean = ', theta_mu, ' (radians) =', theta_mu * 180 / np.pi, ' (degrees)' ) print ( ' Estimated std = ', theta_std, ' (radians) =', theta_std * 180 / np.pi, ' (degrees)' ) m_max = 100 x = np.zeros ( m_max ) y = np.zeros ( m_max ) n = 10000 for m in range ( 1, m_max + 1 ): cost_mu, cost_std, theta_mu, theta_std = hypersphere_angle_stats ( m, n ) x[m-1] = m y[m-1] = theta_mu * 180.0 / np.pi plt.plot ( x, y, 'b-', linewidth = 3 ) plt.xlabel ( '<-- Spatial dimension -->' ) plt.ylabel ( '<-- Angle in degrees -->' ) plt.title ( 'Average (positive) angle between random unit vectors' ) plt.grid ( True ) filename = 'hypersphere_angle.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) # # Terminate. # print ( '' ) print ( 'hypersphere_angle_test():' ) print ( ' Normal end of execution.' ) return def hypersphere_angle_stats ( m, n ): #*****************************************************************************80 # ## hypersphere_angle_stats() estimates unit hypersphere angle statistics. # # Discussion: # # Select two points at random on the unit hypersphere. # Compute the absolute value of the cosine of the angle between them. # Compute the angle corresponding to this nonnegative cosine. # # Return mean and standard deviation of the cosine and angle statistics. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 31 January 2019 # # Author: # # John Burkardt # # Input: # # integer M, the spatial dimension. # # integer N, the number of sample points to use. # # Output: # # real COST_MU, COST_STD, the estimated mean and standard # deviation of the absolute value of the cosine of the angle between # two random points on the unit hypersphere. # # real THETA_MU, THETA_STD, the estimated mean and standard # deviation of the (nonnegative) angle between two random points on # the unit hypersphere. # import numpy as np cost = np.zeros ( n ) for i in range ( 0, n ): p = hypersphere_unit_sample ( m ) q = hypersphere_unit_sample ( m ) cost[i] = np.abs ( np.dot ( p, q ) ) cost_mu = np.mean ( cost ) cost_std = np.std ( cost ) theta_mu = np.mean ( np.arccos ( cost ) ) theta_std = np.std ( np.arccos ( cost ) ) return cost_mu, cost_std, theta_mu, theta_std def hypersphere_unit_sample ( m ): #*****************************************************************************80 # ## hypersphere_unit_sample() returns sample points on the unit hypersphere. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 22 May 2019 # # Author: # # John Burkardt # # Reference: # # Russell Cheng, # Random Variate Generation, # in Handbook of Simulation, # edited by Jerry Banks, # Wiley, 1998, pages 168. # # Reuven Rubinstein, # Monte Carlo Optimization, Simulation, and Sensitivity # of Queueing Networks, # Wiley, 1986, page 232. # # Input: # # integer M, the spatial dimension. # # Output: # # real X(M,1), the point. # from numpy.random import default_rng import numpy as np rng = default_rng ( ) x = rng.standard_normal ( size = m ) # # Normalize the vector. # x = x / np.linalg.norm ( x ) return x def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 April 2013 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return None if ( __name__ == '__main__' ): timestamp ( ) hypersphere_angle_test ( ) timestamp ( )