Mon Jul 17 10:32:00 2023 hexahedron_witherden_rule_test(): Python version: 3.8.10 Test hexahedron_witherden_rule(). hexahedron_witherden_rule_test01(): Quadrature rule for the unit hexahedron, Precision p = 5 I W X Y Z 0 0.110803 0.102089 0.5 0.5 1 0.110803 0.5 0.5 0.897911 2 0.110803 0.5 0.897911 0.5 3 0.110803 0.5 0.5 0.102089 4 0.110803 0.897911 0.5 0.5 5 0.110803 0.5 0.102089 0.5 6 0.0418975 0.879393 0.120607 0.120607 7 0.0418975 0.120607 0.879393 0.879393 8 0.0418975 0.120607 0.879393 0.120607 9 0.0418975 0.120607 0.120607 0.120607 10 0.0418975 0.120607 0.120607 0.879393 11 0.0418975 0.879393 0.879393 0.120607 12 0.0418975 0.879393 0.879393 0.879393 13 0.0418975 0.879393 0.120607 0.879393 Weight Sum 1.0000000000000002 hexahedron_witherden_rule_test02(): Test the precision of a quadrature rule for the unit hexahedron. Stated precision of rule = 5 Number of quadrature points = 14 Degree Maximum error 0 2.220446049250313e-16 1 3.33066907387547e-16 2 1.110223024625157e-16 3 1.665334536937735e-16 4 1.110223024625157e-16 5 8.326672684688674e-17 6 0.0004208754208754467 7 0.001235269360269312 hexahedron_witherden_rule_test03(): Test the precision of quadrature rules for the unit hexahedron. Check rules of precision p = 0 through 11 for error in approximating integrals of monomials. maximum maximum p absolute relative error error 0 0 0 1 0 0 2 2.220446049250313e-16 3.33066907387547e-16 3 2.220446049250313e-16 3.33066907387547e-16 4 3.33066907387547e-16 8.326672684688674e-16 5 3.33066907387547e-16 8.326672684688674e-16 6 2.220446049250313e-16 4.163336342344337e-16 7 2.220446049250313e-16 4.163336342344337e-16 8 1.110223024625157e-16 6.938893903907228e-16 9 1.110223024625157e-16 6.938893903907228e-16 10 8.881784197001252e-16 2.498001805406602e-15 11 8.881784197001252e-16 2.498001805406602e-15 hexahedron_witherden_rule_test(): Normal end of execution. Mon Jul 17 10:32:00 2023