Sun May 21 14:17:10 2023 gen_laguerre_exactness_test(): Python version: 3.8.10 Test gen_laguerre_exactness(). gen_laguerre_exactness(): Investigate the polynomial exactness of a generalized Gauss-Laguerre quadrature rule by integrating exponentially weighted monomials up to a given degree over the [0,+oo) interval. The rule may be defined on another interval, [A,+oo) in which case it is adjusted to the [0,+oo) interval. User input: Quadrature rule X file = "gen_lag_o8_a0.5_x.txt' Quadrature rule W file = "gen_lag_o8_a0.5_w.txt' Quadrature rule R file = "gen_lag_o8_a0.5_r.txt' Maximum degree to check = 18 Weighting function exponent ALPHA = 0.5 OPTION = 0, integrate x^alpha*exp(-x)*f(x). Number of points = 8 The quadrature rule to be tested is a generalized Gauss-Laguerre rule ORDER = 8 A = 0.0 ALPHA = 0.5 OPTION = 0, standard rule: Integral ( A <= x < oo ) x^alpha exp(-x) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: [2.27139362e-01 3.93594543e-01 2.12908971e-01 4.78774832e-02 4.54251747e-03 1.62404600e-04 1.64237741e-06 2.17394313e-09] Abscissas X: [ 0.28263365 1.1398738 2.60152484 4.72411454 7.6052563 11.41718208 16.4994108 23.730004 ] Region R: [0.e+00 1.e+30] A generalized Gauss-Laguerre rule would be able to exactly integrate monomials up to and including degree = 15 Degree Error 0 0.0000000000000000 1 0.0000000000000002 2 0.0000000000000001 3 0.0000000000000002 4 0.0000000000000001 5 0.0000000000000006 6 0.0000000000000002 7 0.0000000000000004 8 0.0000000000000006 9 0.0000000000000006 10 0.0000000000000006 11 0.0000000000000009 12 0.0000000000000008 13 0.0000000000000010 14 0.0000000000000013 15 0.0000000000000013 16 0.0000561671454562 17 0.0004926661044425 18 0.0022799523824549 gen_laguerre_exactness(): Normal end of execution. gen_laguerre_exactness(): Investigate the polynomial exactness of a generalized Gauss-Laguerre quadrature rule by integrating exponentially weighted monomials up to a given degree over the [0,+oo) interval. The rule may be defined on another interval, [A,+oo) in which case it is adjusted to the [0,+oo) interval. User input: Quadrature rule X file = "gen_lag_o8_a0.5_modified_x.txt' Quadrature rule W file = "gen_lag_o8_a0.5_modified_w.txt' Quadrature rule R file = "gen_lag_o8_a0.5_modified_r.txt' Maximum degree to check = 18 Weighting function exponent ALPHA = 0.5 OPTION = 1, integrate f(x). Number of points = 8 The quadrature rule to be tested is a generalized Gauss-Laguerre rule ORDER = 8 A = 0.0 ALPHA = 0.5 OPTION = 1, modified rule: Integral ( A <= x < oo ) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: [0.5667959 1.1525548 1.77995022 2.48100694 3.30872386 4.36755153 5.92027404 9.02420731] Abscissas X: [ 0.28263365 1.1398738 2.60152484 4.72411454 7.6052563 11.41718208 16.4994108 23.730004 ] Region R: [0.e+00 1.e+30] A generalized Gauss-Laguerre rule would be able to exactly integrate monomials up to and including degree = 15 Degree Error 0 0.0000000000000001 1 0.0000000000000002 2 0.0000000000000001 3 0.0000000000000000 4 0.0000000000000000 5 0.0000000000000002 6 0.0000000000000000 7 0.0000000000000001 8 0.0000000000000001 9 0.0000000000000002 10 0.0000000000000006 11 0.0000000000000007 12 0.0000000000000008 13 0.0000000000000007 14 0.0000000000000005 15 0.0000000000000008 16 0.0000561671454584 17 0.0004926661044444 18 0.0022799523824566 gen_laguerre_exactness(): Normal end of execution. gen_laguerre_exactness_test(): Normal end of execution. Sun May 21 14:17:11 2023