#! /usr/bin/env python3 # def cross_chaos_test ( ): #*****************************************************************************80 # ## cross_chaos_test() tests cross_chaos. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 18 August 2025 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'cross_chaos_test():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' cross_chaos() uses an iterated map to plot a cross.' ) n = 5000 print ( ' Apply the cross iteration map', n, 'times.' ) cross_chaos ( n ) # # Terminate. # print ( '' ) print ( 'cross_chaos_test():' ) print ( ' Normal end of execution.' ) return def cross_chaos ( n ): #*****************************************************************************80 # ## cross_chaos() draws a cross using an iterated function system. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 18 August 2025 # # Author: # # John Burkardt. # # Reference: # # Scott Bailey, Theodore Kim, Robert Strichartz, # Inside the Levy cross, # American Mathematical Monthly, # Volume 109, Number 8, October 2002, pages 689-703. # # Michael Barnsley, Alan Sloan, # A Better Way to Compress Images, # Byte Magazine, # Volume 13, Number 1, January 1988, pages 215-224. # # Michael Barnsley, # Fractals Everywhere, # Academic Press, 1988, # ISBN: 0120790696, # LC: QA614.86.B37. # # Michael Barnsley, Lyman Hurd, # Fractal Image Compression, # Peters, 1993, # ISBN: 1568810008, # LC: TA1632.B353 # # Alexander Dewdney, # Mathematical Recreations, # Scientific American, # Volume 262, Number 5, May 1990, pages 126-129. # # Bernt Wahl, Peter VanRoy, Michael Larsen, Eric Kampman, # Exploring Fractals on the Mac, # Addison Wesley, 1995, # ISBN: 0201626306, # LC: QA614.86.W34. # # Input: # # integer n: the number of iterations. # import matplotlib.pyplot as plt import numpy as np plt.clf ( ) # # Define the linear map. # A = np.array ( [ \ [ 1.0 / 3.0, 0.0 ], \ [ 0.0, 1.0 / 3.0 ] ] ) # # Define the five possible translations. # b = np.array ( [ \ [ 1.0 / 3.0, 0.0, 1.0 / 3.0, 2.0 / 3.0, 1.0 / 3.0 ], \ [ 0.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0, 2.0 / 3.0 ] ] ) # # Random starting point in the unit square. # x = np.random.random ( size = 2 ) # # Iterate the map n times. # for _ in range ( n ): x = np.dot ( A, x.copy ( ) ) j = np.random.choice ( [ 0, 1, 2, 3, 4 ] ) x = x + b[:,j] plt.plot ( x[0], x[1], 'bo', markersize = 1 ) filename = 'cross_chaos.png' plt.savefig ( filename ) print ( ' Graphics saved as "' + filename + '"' ) plt.close ( ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) cross_chaos_test ( ) timestamp ( )